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Abstract: In this paper, we introduce a novel unsupervised representation learning method based on quasiconformal 
extension. It is essential to develop feature representations that significantly improve predictive performance, 
regardless of whether the approach is implicit or explicit. Quasiconformal extension extends a mapping to a 
higher dimension with a certain regularity. The method introduced in this study constructs a piecewise linear 
mapping of real line by leveraging the correspondence between the distribution of individual features and a 
uniform distribution. Subsequently, a higher-order feature representation is generated through quasiconformal 
extension, aiming to achieve effective representations. In experiments conducted across ten distinct datasets, 
our approach enhanced the performance of neural networks, extremely randomized trees, and support vector 
machines, when the features contained a sufficient level of information necessary for classification. 

1 INTRODUCTION 

When employing machine learning for predictive 
tasks, it is crucial to effectively generate features that 
significantly contribute to the prediction outcome. 
For instance, in a neural network employing 
convolutional neural networks, the convolutional 
layer acts as a filter of images. It formulates 
predictive representations by aggregating local 
features. Subsequently, based on these 
representations, a fully connected layer in the neural 
network classifies the images. In the context of 
support vector machines utilizing the kernel trick, the 
original features are projected into a higher-
dimensional space by the feature map induced by the 
selected kernel function. This extended space can be 
considered as an extended feature representation. By 
performing linear discrimination in this higher 
dimension, a nonlinear decision boundary is realized 
in the original space. In these approaches, the 
hyperparameters of the neural network and support 
vector machine are tuned to fit the dataset. However, 
when learning the representation in the process of 
supervised learning, essentially only representations 
relevant to the task at hand are acquired. 
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In this study, based on the distribution of each 
feature of the datasets, we attempt to naturally extend 
the feature space into a higher-dimensional space 
using quasiconformal extension in an unsupervised 
manner, aiming to achieve effective representations. 
In a series of experiments spanning ten unique 
datasets, our methodology led to performance 
improvements in neural networks, extremely 
randomized trees, and support vector machines, 
provided that the features include adequate 
information essential for effective classification. 
Furthermore, the methodology proposed herein offers 
the potential for various forms of extension. 

The structure of the subsequent sections is as 
follows: Section 2 introduces the related work 
pertinent to this study. Section 3 elaborates on the 
quasi-conformal extension used in the proposed 
representation learning technique. Section 4 presents 
the unsupervised representation learning method 
utilizing the quasi-conformal extension. Section 5 
outlines the experimental setup designed to evaluate 
the proposed approach. In Section 6, we present the 
experimental results and provide a discussion of their 
implications. Section 7 serves as the conclusion, 
summarizing the key findings and outlining potential 
avenues for extending the proposed methodology as 
well as future research directions. 
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2 RELATED WORKS 

As mentioned in Section 1, convolutional neural 
networks learn representations by adapting to datasets 
composed of features and their associated labels in 
the supervised tasks. However, our examination here 
centers on learning representations based on the 
intrinsic properties of features in an unsupervised 
manner. In this section, we will introduce research 
pertinent to this topic. 

2.1 Unsupervised Representation 
Learning in Outlier Detection 

In the realm of representation learning for outliers, 
there are methods that acquire representations using 
the output (outlier score) from unsupervised outlier 
detection. Zhao and Hryniewicki (2018) introduced 
XGBOD (eXtreme Gradient Boosting Outlier 
Detection), a semi-supervised ensemble framework 
for outlier detection, building upon the work of 
Micenková et al. (2014, 2015) and Aggarwal & Sathe 
(2017). The outlier scores, obtained from 
unsupervised outlier detection methods and 
subsequently transformed, offer a more enriched 
representation of the data in XGBOD. Shimauchi 
(2021) show that by learning the distribution of data 
within an expanded feature space using generative 
adversarial networks and subsequently performing 
quantitative extensions on outliers, the efficacy of 
outlier detection can be improved. 

2.2 Self-Supervised Learning 

Self-supervised learning is a pre-training technique 
that utilizes large datasets without annotated labels. It 
accomplishes this by solving a pretext task, which is 
an alternative task for which pseudo-labels are 
automatically generated. Self-supervised learning is 
garnering attention, particularly when used in 
conjunction with Transformer architectures in large 
language models (e.g., Radford et al., 2018). 
Furthermore, self-supervised learning is employed 
for representation learning in both image (e.g., He et 
al., 2020) and time-series data (e.g., Wickstrøm, 
2022), it fundamentally requires large-scale datasets. 

2.3 Manifold Learning 

The manifold hypothesis posits that many high-
dimensional datasets encountered in real-world 
scenarios inherently reside on low-dimensional latent 
manifolds within the high-dimensional space. 
Manifold learning techniques are predicated on this 

hypothesis, aiming to represent data in a lower 
dimensionality while preserving the intrinsic 
relationships and spatial structures of the original 
data. For instance, Locally Linear Embedding 
(Roweis, 2000) constructs local linear models among 
data points to achieve dimensionality reduction. In 
contrast, this paper aims to naturally extend the 
feature space, striving to construct rich 
representations for prediction derived from the 
inherent distribution of the data's features. 

3 QUASICONFORMAL 
EXTENSION 

In this section, we introduce the quasiconformal 
extension that is employed in the proposed method. 
We first elaborate on the concept of quasiconformal 
mapping. See Ahlfors (2006) for details. 

3.1 Quasiconformal Mapping 

Let 𝐷 and 𝐷′ denote domains in the complex plane. A 
sense-preserving homeomorphism 𝑓: 𝐷 → 𝐷ᇱ is 
called a quasiconformal mapping if 𝑓  satisfies the 
following two properties: 
 On almost every horizontal and vertical lines 

within any closed rectangle 𝑅 in 𝐷,  the 
mapping 𝑓 is absolutely continuous. 

 The condition |𝑓௭̅(𝑧)| ≤ k|𝑓௭(𝑧)| holds for 
some constant k > 1 almost everywhere in 𝐷, 
where 𝑓௭(𝑧): = (𝑓௫(z) − 𝑖𝑓௬(z))/2 , 𝑓௭(𝑧): =(𝑓௫(z) − 𝑖𝑓௬(z))/2  and 𝑧 = 𝑥 + 𝑖𝑦.  The 
symbol 𝑖 denotes the imaginary unit √−1. The 
terms 𝑓௫(z)  and 𝑓௬(z)  represent the partial 
derivatives of 𝑓  with respect to x  and y , 
respectively. 

Examples of quasi-conformal mappings include 
continuously differentiable homeomorphisms on a 
plane that preserve orientation, as well as piecewise 
linear homeomorphisms.  

The complex function 𝜇(𝑧) ≔ 𝑓௭̅(𝑧)/𝑓௭(𝑧)  can 
be defined on almost everywhere for a 
quasiconformal mapping 𝑓, and is called the Beltrami 
coefficient. The Beltrami coefficient represents the 
distortion of a quasiconformal mapping at each point. 
Locally, the transformation is dependent on Beltrami 
coefficient 𝜇(𝑧) , whereby infinitesimal circles are 
mapped onto ellipses with an axis-length ratio of |1 − 𝜇|: |1 + 𝜇|, experiencing a rotation by an angle 
corresponding to arg 𝜇/2. 
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Figure 1: Distortion by quasiconformal mapping. 

3.2 Quasisymmetric Mapping 

We will next present the definition of the quasi-
symmetric function. A homeomorphism g mapping 
the real line to itself is called quasisymmetric if it 
satisfies the following condition for every real 
number 𝑥, positive real number 𝑡 > 0 and for some 
constant 𝐿 > 1: 1𝐿 ≤ 𝑔(𝑥 + 𝑡) − 𝑔(𝑥)𝑔(𝑥) − 𝑔(𝑥 − 𝑡) ≤ 𝐿. (1)

Piecewise linear homeomorphism on the real line 
serves as an example of quasi-symmetric maps.  

It is noteworthy proposition that the restriction of 
a quasiconformal mapping, which maintains the real 
line, to the real line itself yields a quasi-symmetric 
map. 

3.3 Quasiconformal Extension 

Beurling and Ahlfors prove that any quasi-symmetric 
map can be extended to a quasi-conformal mapping 
in the upper half plane by constructing the extended 
mapping directory as follows: for a given quasi-
symmetric mapping 𝑔 , define 𝑓(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) +𝑖𝑣(𝑥, 𝑦) by  𝑢(𝑥, 𝑦) = 12𝑦 න 𝑔(𝑥 + 𝑡)௬

ି௬ 𝑑𝑡 (2)

and 𝑣(𝑥, 𝑦) = 12𝑦 න ൫𝑔(𝑥 + 𝑡) − 𝑔(𝑥 − 𝑡)൯𝑑𝑡௬
଴  (3)

for numbers 𝑥, 𝑦 . The extend mapping 𝑓  is a 
quasiconformal mapping of the upper half plane such 
that the maximal dilatation 𝐾௙ = |௙೥(௭)|ା|௙೥ത(௭)||௙೥(௭)|ି|௙೥ത(௭)| 
depends only on 𝐿  in the condition (1). Figure 2 
presents an example of a quasi-symmetric function 

along the real axis, while Figures 3 and 4 display the 
contour lines of the real and imaginary parts of the 
self quasi-conformal mapping in the upper half plane, 
generated through the quasi-conformal extension of 
the function 𝑔 in Figure 2.  
 

 
Figure 2: A quasisymmetric mapping 𝑔. 

 
Figure 3: Contour lines of the real parts of the quasi-
conformal extension of the function 𝑔 in Figure 2. 

 
Figure 4: Contour lines of the imaginary parts of the quasi-
conformal extension of the function 𝑔 in Figure 2. 
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The function 𝑔(𝑥) in Figure 2 is defined piecewise as 
follows: For |𝑥| > 1, 𝑔(𝑥) = 𝑥;  for 0 < 𝑥 < ଵଶ, 𝑔(𝑥) = ௫ସ ; and for ଵଶ < 𝑥 < ଵସ , 𝑔(𝑥) = ଻ସ  𝑥 − ଷସ . The 
Beurling-Ahlfors extension can be implemented 
through numerical integration methods. 

There also exists the quasiconformal extension by 
Douady and Earle (1986), which extends self-
homeomorphisms of the unit circle to self-
hommeomorphisms in the unit disk. The numerical 
algorithms for Douady-Earle extension have been 
studied in work of Abikoff & Ye (1997) and 
Cantarella & Schumacher (2022). Furthermore, 
extensions of quasisymmetric mapping (Tukia & 
Väisälä, 1980), quasiconformal mappings (Väisälä, 
1999, 2006) and quasiconformal extensions to higher 
dimensions can be found in Tukia & Väisälä, 1982.  

4 UNSUPERVISED 
REPRESENTATION LEARNIG 
BY QUASICONFORMAL 
EXTENSION 

Herein, we present an algorithm for extending the 
feature space utilizing quasi-conformal extension. 
For the scope of this section, it is assumed that all 
features in the data set are of distinct numerical 
values. 

4.1 Constructing Quasisymetric 
Mapping on Real Line 

We employ min-max scaling to normalize each 
feature in the data set, confining them to the interval [0,1]. Let 𝑁 be the sample size of dataset. We select 
a single feature and then sort the entire dataset in 
ascending order based on the values of that feature. 
Subsequently, we construct a piecewise linear 
mapping 𝑔  induced by its correspondence with a 
mesh of width 1/𝑁 in [0,1]. We extend 𝑔 to be the 
identity function outside the interval and define it as 
a piecewise linear mapping on the real axis. This 
construction yields a quasisymmetric mapping. 

4.2 Generating Features by 
Quasiconformal Extension 

We extend the quasisymmetric mapping 𝑔 
constructed in Section 4.1 to the quasiconformal 
mapping 𝑓 of the upper half plane using the Beurling-
Ahlfors extension discussed in Section 3.3. For each 

real-valued feature 𝑥଴ , it corresponds to a curve 𝑓(𝑥଴ + 𝑖𝑦) in the upper half plane from 𝑥଴ to infinity.  
Due to their homeomorphic characteristics, 

quasiconformal mappings ensure that the 
corresponding lines do not intersect. The shape of this 
curve is dependent on the distribution of the value of 
the selected feature. We sample a single point 𝑓(𝑥଴ +𝑖), namely a single complex number, from this curve. 
The pair of real and imaginary part of this complex 
number can be viewed as a representation within the 
two-dimensional space of the feature. While it is 
conceivable to sample multiple points and further 
increase the dimensionality, at this initial stage, we 
consider adding only a two-dimensional 
representation, a representation of the next higher 
dimension, as a first step. 

4.3 Whole Algorithm for Feature Space 
Extension by Quasiconformal 
Extension 

For each feature, we construct a quasi-symmetric 
mapping using the methodology outlined in Section 
4.1 and perform a quasi-conformal extension and 
sample new features described in Section 4.2. The 
pseudocode for the entire algorithm is provided in 
Algorithm 1. The algorithm was implemented using 
the Python programming language, along with SciPy, 
a package designed for numerical computations. 

Input: a real-valued dataset with a sample size of 𝑁 and a feature dimensionality of 𝑀. 
Output: the extended real-valued dataset with a 
sample size of 𝑁 and a feature dimensionality of 3𝑀. 

generate mesh of width 1/𝑁 in [0,1]; 
For each feature column in dataset do 

arrange in ascending order; 
define quasisymetric mapping 𝑔, as described 
in Section 4.1; 
define quasiconformal extension 𝑓, as shown 
in Section 4.2; 
For each 𝑥଴ in feature column do 
  Generate new feature Re[𝑓(𝑥଴ + 𝑖)] ; 

Generate new feature Im[𝑓(𝑥଴ + 𝑖)] ; 
 end 
end 

Algorithm 1: Unsupervised Representation Learning by 
Quasiconformal Extension. 
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5 EXPERIMENTAL SETTING 

We examine the effectiveness of unsupervised 
representation learning through quasi-conformal 
extension in scenarios characterized by limited data 
availability. In the given scenario, representation 
learning via self-supervised learning constitutes a 
challenging task. Specifically, we employ numerical-
only feature datasets pertaining to classification tasks, 
all sourced from the UCI repository and each 
containing fewer than 1,000 samples.  We conduct a 
comparative analysis of the performance fluctuations 
observed in classifiers developed using various 
machine learning algorithms, namely neural 
networks, support vector machines, and ensemble 
methods. This analysis is executed both prior to and 
following the extension of the feature space through 
the utilization of our proposed methodologies. 

5.1 Dataset 

In this experiment, we have selected ten datasets from 
the UCI repository, all of which exclusively contain 
either numerical features. These selected datasets are 
listed in Table 1. In our experiments, 75% of each 
dataset is allocated for training purposes, while the 
remaining 25% is used for testing. The datasets 
employed are designed for classification tasks, and 
we utilize accuracy on the test data as the evaluation 
metric. To account for variations in results, we 
conduct 10 independent trials and report the mean 
accuracy, while also observing the standard 
deviation. 

Table 1: Selected Datasets for Experiments. 

Name Number of 
Samples 

Number of 
Features 

Number 
of 

Classes
Blood 748 4 2

Breast-tissue 106 9 6
Glass 214 9 6

Haberman-
survival 306 3 2 

Seeds 210 7 3
Statlog-

australian-
credit 

690 14 2 

Statlog-heart 270 13 2
Teaching 151 5 3
Vertebral-

column-2clases 310 6 2 

Vertebral-
column-3clases 310 6 3 

 

5.2 Hyper-Parameter Settings 

The hyperparameters for each algorithm are 
determined using grid search, performed via 10-fold 
cross-validation on the training subset of the datasets. 

With regard to support vector machines (SVM), 
we utilize a Radial Basis Function kernel and explore 
its hyperparameters, specifically the gamma 
coefficient and the regularization term (Vapnik &  
Lerner, 1964 and Boser et al., 1993).  

We employ Extremely Randomized Trees (ERT) 
as a parallel ensemble method (Geurts et al., 2006), 
which is less susceptible to overfitting even when the 
number of weak learners is increased. The count of 
these weak learners is set at a sufficiently large value, 
and we choose the number of features based on either 
their square root, logarithm, or without imposing any 
constraints.  

For neural networks, we employ the Multilayer 
Perceptron (Rumelhart et al., 1985 and Rumelhart et 
al., 1986), which is a form of feedforward neural 
network (FNN) architecture and subject the number 
of units, the number of each hidden layers, and 
learning rate to grid search optimization. In the 
dataset employed for this experiment, there is an 
absence of inherent significance in the local 
arrangement of features, in contrast to image or time-
series data. Therefore, we opted not to incorporate 
other networks, e.g., one-dimensional convolutional 
neural networks (LeCun et al., 1989), into our 
methodology and concentrate our efforts on FNN.  

The respective hyperparameters are detailed in 
Tables 2, 3, and 4. In total, 81, 3, and 60 distinct 
models are constructed by SVM, ERT, and FNN, 
respectively. 

Table 2: Hyper Parameter grid of SVM (81 models). 

Hyper 
Parameter Value 

Regularization 
Constant

0.001, 0.005, 0.01, 0.05,  
0.1, 0.5, 1, 5, 10 

Kernel Radial Basis Function Kernel
Kernel 

Coefficient
0.001, 0.005, 0.01, 0.05,  

0.1, 0.5, 1, 5, 10 

Table 3: Hyper Parameter grid of ERT (3 models). 

Hyper 
Parameter Value 

Number of 
Estimator 2500 

Number of 
Features for Trees 

√𝑀, log 𝑀 , 𝑀 
(M: number of feature)
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Table 4: Hyper Parameter grid of FNN (60 models). 

Hyper 
Parameter Value 

Activation 
Function ReLU 

Number of 
Hidden Layer 1, 2, 3  

Number of 
Neuron in Each 
Hidden Layer 

16, 32, 64, 128 

Learning Rate 0.001, 0.005, 0.01, 0.05, 0.1
Epoch 200 (with Early Stopping)

6 RESULTS 

Tables 5 through 14 present the empirical findings 
garnered in accordance with the experimental 
procedure delineated in Section 5.  

Table 5: Results on Blood (mean and standard deviation of 
ten independent trials). 

  Original QCext Original+ 
QCext

 SVM 0.780 0.804 0.798 
mean ERT 0.750 0.761 0.758 

 FNN 0.776 0.794 0.810 
 SVM 0.013 0.020 0.027 

std ERT 0.017 0.029 0.028 
 FNN 0.023 0.022 0.013 

Table 6: Results on Breast-tissue. 

  Original QCext Original+ 
QCext

 SVM 0.652 0.641 0.648 
mean ERT 0.719 0.681 0.700 

 FNN 0.637 0.530 0.626 
 SVM 0.083 0.064 0.073 

std ERT 0.085 0.080 0.088 
 FNN 0.068 0.094 0.077 

Table 7: Results on Glass. 

  Original QCext Original+ 
QCext

 SVM 0.665 0.596 0.591 
mean ERT 0.794 0.780 0.806 

 FNN 0.567 0.513 0.498 
 SVM 0.047 0.060 0.054 

std ERT 0.037 0.034 0.039 
 FNN 0.091 0.041 0.081 

 

Table 8: Results on Haberman-survival. 

  Original QCext Original+ 
QCext

 SVM 0.727 0.739 0.739 
mean ERT 0.679 0.688 0.674 

 FNN 0.735 0.739 0.742 
 SVM 0.012 0.004 0.004 

std ERT 0.046 0.030 0.025 
 FNN 0.009 0.004 0.009 

Table 9: Results on Seeds. 

  Original QCext Original+ 
QCext

 SVM 0.934 0.932 0.936 
mean ERT 0.947 0.951 0.951 

 FNN 0.894 0.851 0.902 
 SVM 0.027 0.035 0.037 

std ERT 0.035 0.037 0.040 
 FNN 0.047 0.115 0.049 

Table 10: Statlog-australian-credit. 

  Original QCext Original+ 
QCext

 SVM 0.847 0.855 0.849 
mean ERT 0.859 0.864 0.864 

 FNN 0.843 0.841 0.861 
 SVM 0.022 0.017 0.019 

std ERT 0.023 0.024 0.025 
 FNN 0.017 0.033 0.026 

Table 11: Results on Statlog-heart. 

  Original QCext Original+ 
QCext

 SVM 0.835 0.841 0.838 
mean ERT 0.821 0.838 0.824 

 FNN 0.809 0.835 0.800 
 SVM 0.036 0.045 0.039 

std ERT 0.045 0.046 0.043 
 FNN 0.092 0.031 0.085 

Table 12: Results on Teaching. 

  Original QCext Original+ 
QCext

 SVM 0.542 0.495 0.482 
mean ERT 0.574 0.574 0.568 

 FNN 0.524 0.474 0.482 
 SVM 0.057 0.056 0.050 

std ERT 0.047 0.051 0.043 
 FNN 0.066 0.058 0.085 
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Table 13: Results on Vertebral-column-2clases. 

  Original QCext Original+ 
QCext

 SVM 0.832 0.860 0.862 
mean ERT 0.833 0.840 0.844 

 FNN 0.763 0.772 0.781 
 SVM 0.032 0.037 0.041 

std ERT 0.029 0.035 0.035 
 FNN 0.043 0.029 0.062 

Table 14: Results on vertebral-column-3clases. 

  Original QCext Original+ 
QCext

 SVM 0.833 0.844 0.847 
mean ERT 0.829 0.832 0.835 

 FNN 0.737 0.731 0.773 
 SVM 0.043 0.017 0.019 

std ERT 0.029 0.028 0.031 
 FNN 0.064 0.070 0.052 

It denotes three cases: 'Original,' utilizing the original 
dataset; 'QCext,' based on the data generated via 
quasi-conformal extension; and 'Original+QCext,' 
which amalgamates the original data with the data 
generated through quasi-conformal extension.   
'QCext' can be regarded as a form of representation 
based on quasiconformal extension within the two-
dimensional space of 'Original.'  

For each algorithm, the tables include the mean 
and standard deviation of accuracy calculated over 
ten independent trials. 

6.1 Observation of Results 

In the initial analysis, we examine the box plots of 
standard deviations across all datasets for 'Original', 
'QCext', and 'Original+QCext' cases, as produced by 
each algorithm SVM, ERT and FNN (see Figures 5, 
6, and 7). In the case of ERT, excluding outliers, the 
range becomes smaller in all scenarios. Conversely, 
for SVM, the range expands in both situations. For 
FNN, the range enlarges in the 'QCext' case but 
contracts in the 'QCext+Original' scenario. 
Subsequently, we will continue with the analysis by 
categorizing the scenarios into those where 
performance improvements are evident and those 
where they are not. 

Of the ten datasets examined, it was observed that 
either 'QCext' or 'Original+QCext' achieves the 
highest mean scores across all algorithms—SVM, 
ERT, and FNN—in seven of these datasets: Blood, 
Haberman-survival, Seeds, Statlog-australian-credit, 
Statlog-heart, Vertebral-column-2clases, and 
Vertebral-column-3clases.  

 
Figure 5: Boxplot analysis of standard deviation of SVM 
across all datasets.  

 
Figure 6: Boxplot analysis of standard deviation of ERT 
across all datasets. 

 
Figure 7: Boxplot analysis of standard deviation of FNN 
across all datasets. 

The mean accuracy has shown an improvement 
ranging from 0.2% to 3.3%. Furthermore, among the 
instances where the highest average score is achieved, 
approximately 86% show a difference in mean values 
between 'Original' and the top-performing variant that 
is larger than the corresponding difference in standard 
deviations, indicating an enhancement in the 
robustness of the results. We present boxplots in 
Figures 8, 9, and 10 that illustrate the performance 
improvements across all three algorithms: SVM, 
ERT, and FNN.  
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Figure 8: Boxplot analysis of SVM in scenarios of 
enhanced performance by QCext or Original+QCext (seven 
datasets).  

 

Figure 9: Boxplot analysis of ERT in scenarios of enhanced 
performance by QCext or Original+QCext (seven datasets).  

 
Figure 10: Boxplot analysis of FNN in scenarios of 
enhanced performance by  QCext or Original+QCext 
(seven datasets).  

Specifically, these figures display the standard 
deviations for the case 'Original,' 'QCext,' and 
'QCext+Original', as well as the performance 
difference from 'QCext' to 'Original,' and from 
'QCext+Original' to 'Original.  

Conversely, in the datasets pertaining to breast 
tissue, glass, and teaching, we observed some 

performance degradation. Specifically, SVM and 
FNN experienced declines of up to 7.4% and 11%, 
respectively. In the case of ERT, the performance 
fluctuations were more subdued, ranging from a 
decrease of 3.7% to an increase of 1.1%. 

6.2 Discussion 

For the seven datasets where performance 
improvements have been observed across all 
algorithms, the average accuracy with the original 
datasets already exceeds approximately 70%. There 
is potential for further performance enhancement 
when the features contain a sufficient level of 
information valuable for classification. In the three 
datasets where a decline in performance was observed, 
the performance of the original classifiers, excluding 
ERT, ranges from approximately 52% to 65%. The 
variability in ERT's performance, ranging from -3.7% 
to +1.1%, is considered to be an effect of a sufficient 
number of weak learners to reduce the variance. 
Given the variation in ERT's performance, it is 
plausible to assume that the features generated 
through quasi-conformal extension contain no 
additional information compared to the original 
features. A decline in performance exceeding 5% was 
observed in the cases of FNN for 'breast-tissue', FNN 
and SVM for 'glass', and SVM for 'teaching'. The 
incorporation of redundant features can negatively 
impact the performance of both SVM and FNN, 
thereby highlighting their sensitivity. 

A scenario in which quasi-conformal extension 
does not yield beneficial features occurs when the 
attributes are approximately aligned in an equidistant 
fashion. If the alignment is perfectly equidistant, the 
resultant piecewise-linear mapping manifests as an 
identity transformation, and its quasi-conformal 
extension will also reduce to an identity 
transformation. In such cases, duplicate features may 
be introduced, potentially leading to a decline in 
model performance. Furthermore, complications 
could emerge when the feature values are categorical 
integers. Specifically, the self-mappings of the real 
axis generated by the algorithm may lose their 
homeomorphic nature, and even if calculations are 
possible based on Equations (2) and (3), it is not 
guaranteed that the resulting extensions will 
constitute a quasiconformal mapping. The datasets 
incorporating categorical features are Statlog-
australian-credit, Statlog-heart, and Teaching. 
Notwithstanding this, performance has been 
enhanced for the first two.  

In accordance with the experimental assumptions 
elucidated within this paper, the image and time-
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series datasets were excluded from consideration. For 
example, in the context of images, it is possible to 
flatten each channel of images into a vector and then 
apply the proposed algorithm independently. The 
generated features are added as new channels. 
Nevertheless, it is not necessarily the case that the 
locations of discriminative and valuable features in 
images coincide. Therefore, there exists the 
possibility that this methodology may not prove 
beneficial for images. At this juncture, we have 
refrained from applying this technique to image data, 
and the validation of integrating the methodology 
proposed in this paper with convolutional neural 
networks or vision transformers (Dosovitskiy et al., 
2020) has not been pursued. 

The dilatation of the mapping after quasi-
conformal extension is dependent on the value 𝐿  in 
Section 3.2. When the 𝐿 parameter is large, there is a 
possibility that the inter-point distances within the 
extended data space may also increase compared to 
the original space, in such case facilitating the 
potential for improved classification performance. 
Determining the specific conditions for generating 
beneficial features is a direction for future research. 
In this paper, we sample a new feature by adding 𝑖 to 
the feature values and transforming by 
quasiconformal mapping, but this choice offers some 
degree of flexibility. This can also be treated as a 
hyperparameter in the method. Additionally, while 
we have employed the Beurling-Ahlfors extension as 
the quasi-conformal extension in this study, the use of 
the Douady-Earle extension or higher-dimensional 
quasi-conformal extensions could also be considered.  

7 CONCLUSION 

In this paper, we proposed a method for unsupervised 
representation learning method using quasiconformal 
extension. The generated features are sampled from 
curves on the upper half-plane, which are determined 
based on the distribution of each feature's values. 
Experimental results using ten datasets and three 
machine learning techniques (SVM, ERT, FNN) have 
demonstrated the potential for performance 
improvement through feature space expansion by the 
proposed method, provided the features contain a 
sufficient level of information necessary for 
discrimination. 

As a limitation of this study, it should be noted 
that the proposed method struggles to enhance 
performance when features are nearly equidistant. 
Additionally, when features are denoted by integer 
values that represent categories, the extended 

mapping is not guaranteed to be a quasiconformal 
transformation. 

There exists scope for refining the proposed 
methodology. Opportunities for enhancement include 
modifying the construction techniques for 
quasisymetric mappings, as well as altering or adding 
sampling points for features following the extension 
process. While performance improvements were 
observed under specific conditions in the current 
configuration, there remains the potential for 
achieving even higher levels of performance by 
treating these conditions as hyperparameters and 
optimizing them accordingly. In this work, we have 
used the Beurling-Ahlfors extension. The 
employment of other quasi-conformal extensions like 
Douady-Earle could provide new insights. By 
meticulously evaluating these directions, future 
research may offer more comprehensive insights into 
the effectiveness and limitations of using quasi-
conformal extension methods for unsupervised 
representation learning. 

This work opens up avenues for future research. 
The potential exists for synergistic improvements in 
the performance of semi-supervised outlier detection 
by integrating the methodology proposed in 
Shimauchi (2021). Specifically, this amalgamated 
approach begins with representation learning 
designed for outlier data, followed by the extension 
of the feature space using quasiconformal extension. 
Further the volume of extended datasets is then 
quantitatively augmented by the generative 
adversarial networks. Moreover, a promising avenue 
for future research lies in rigorously identifying the 
conditions under which beneficial features can be 
generated through quasiconformal transformations.  
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