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Abstract: We present transformer-based methods for extracting information about research processes from scholarly 
publications. We developed a two-stage pipeline comprising a transformer-based text classifier that predicts 
whether a sentence contains the entities sought in tandem with a transformer-based entity recogniser for 
finding the boundaries of the entities inside the sentences that contain them. This is applied to extracting two 
different types of entities: i) research activities, representing the acts performed by researchers, which are 
entities of complex lexico-syntactic structure, and ii) research methods, representing the procedures used in 
performing research activities, which are named entities of variable length. We also developed a system that 
assigns semantic context to the extracted entities by: i) linking them according to the relation 
employs(Activity,Method) using a transformer-based binary classifier for relation extraction; ii) associating 
them with information extracted from publication metadata; and iii) encoding the contextualized information 
at the output into an RDF Knowledge Graph. The entire workflow is ontology-driven, based on Scholarly 
Ontology, specifically designed for documenting scholarly work. Our methods are trained and evaluated on a 
dataset comprising 12,626 sentences, manually annotated for the task at hand, and shown to surpass simpler 
transformer-based methods and baselines. 

1 INTRODUCTION 

Access to knowledge contained in research 
publications has become an increasingly demanding 
task, dramatically exaggerated due to the explosive 
growth rates of publications in scholarly domains 
(Bornmann et al., 2021). To address this problem, 
intelligent systems need to be able to capture the 
essence of knowledge represented in textual format, 
encode it according to concepts general enough to be 
applicable across disciplines and, at the same time, 
capable of representing semantic context that 
addresses the information needs of researchers, 
transforming the ways in which they engage with 
literature (Renear & Palmer, 2009). This type of 
encoded information can alleviate the task of keeping 
up to date in a specific domain, while maintaining a 
bird’s-eye-view over a discipline or across 
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disciplines, something particularly useful in 
interdisciplinary fields. To this end, generic concepts 
for representing knowledge of “who has done what 
and how” need to be modelled, appropriately 
identified in text and extracted into a knowledge base 
capable of answering questions of the form: “find all 
papers that address a given problem”; “how was the 
problem solved”; “which methods are employed by 
whom”; etc. This goes beyond the retrieval features 
of search engines widely used by researchers, such as 
Google Scholar1, Scopus2 or Semantic Scholar3 that 
mostly leverage bibliographic metadata, while 
knowledge expressed in the actual text is exploited 
mostly by matching query terms to documents.  

Extracting and encoding the knowledge contained 
in research articles is a complex task which poses 
several challenges. For instance, the procedures 
employed by the researchers need to be identified and 
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extracted (as a kind of entities, here called “research 
methods”) but also to be associated properly with 
their semantic context, i.e. the actual research 
activities in which they were used. To further capture 
the context of the research reported in an article (who 
is involved, what are their interests, affiliations, etc.), 
information must be drawn from the metadata of the 
article and associated with information extracted 
from the text, through mapping onto an appropriate 
schema.  

In this paper we present Deep Learning (DL) 
methods for entity extraction along with a pipeline 
architecture based on a two-stage setup, consisting of 
an Entity Recogniser on top of a binary classifier, to 
extract two types of entities from the text of research 
articles: i) research methods, treated as named entities 
of variable length and ii) research activities, which 
appear as entities of complex lexico-syntactic 
structures. In addition, we present a system, that 
contextualizes the extracted entities by (1) extracting 
from the text the relation between research methods 
and research activities in which these are employed, 
using a transformer-based binary classifier we 
configured to this end; (2) by associating the 
information extracted from text with further 
contextual information derived from articles’ 
metadata; and encodes all the derived  knowledge into 
an RDF knowledge base adhering to Linked-Data 
standards. Finally, we present a manually created 
dataset consisting of 12,626 sentences specifically 
curated for the training and evaluation of our 
Information Extraction (IE) methods.  

 The rest of this paper proceeds as follows: in 
Section 2 we present background and related work; in 
Section 3 we describe the methodology and 
experimental setup; in Section 4 we report on the 
evaluation experiments; in Section 5 we discuss the 
evaluation results; and we conclude in Section 6 with 
insights for future work. 

2 RELATED WORK 

Information extraction (i.e. entity and relation 
extraction) from text constitutes an active research 
field where methodologies from ML and DL are 
employed and combined in different architectures and 
various domains. Entity extraction is usually treated 
as a token classification or sequence labelling task 
where a classifier predicts whether each token 
belongs to the entity in question or not.  Relation 
extraction can be treated as text classification where 
the textual span representing the concatenation of 
specific extracted entities, or the text bounded 

somehow by those entities, is classified or not with 
the label of a designated relation among the entities. 
Through the years, various methods employing 
different techniques and designs have been proposed 
for dealing with information extraction from text. In 
works like (Chalkidis et al., 2017; Do et al., 2013; 
Pertsas et al., 2018), in order to extract entities and 
relations, the authors use a combination of engineered 
features representing textual, syntactic and surface 
form attributes along with various types of 
embeddings (word, POS, dependency, etc.) for vector 
representation, in tandem with ML models like SVM, 
Logistic Regression or CRFs that handle the 
classification task. In (Chiu & Nichols, 2016; Luan, 
Ostendorf, et al., 2018; Ma & Hovy, 2016; Peters et 
al., 2017) instead of handcrafted features, neural 
architectures like RNNs, LSTMS, BiLSTMS are 
employed for vector representation. In (Yu et al., 
2020) the authors use ideas from graph-based 
dependency parsing to provide their model a global 
view on the input via a biaffine model (Dozat & 
Manning, 2017) and they show that it excels, 
especially in extracting nested entities, compared to 
CRF-based solutions. Similar conclusions are 
reached in (Lample et al., 2016), where transition-
based parsers on top of Stack-LSTMs are considered 
as alternatives to CRFs for the sequence labeling task, 
with equal or higher performance. After the invention 
of large language models using transformer 
architectures (Vaswani et al., 2017), in more recent 
works like (He et al., 2022; Li et al., 2022; Nguyen & 
Huynh, 2022; Pandey et al., 2022; Pu et al., 2022) 
transformer-based language models like BERT or 
RoBERTa, that use self-attention to process input 
sequences and generate contextualized 
representations of words in a sentence, are employed 
either in combination with linear classifiers for text 
classification, or with CRFs in various architectures 
(like CRFs on top of ensembles of one-hot encoders) 
for the entity recognition (token classification) task. 

In our methods, we combine transformer models 
with sigmoid activation layers on top for text 
classification. For entity extraction, inspired by 
(Lample et al., 2016), we use a transition-based parser 
for the sequence-labeling task, but this time combined 
with transformer models for text representation. In 
addition, we take one step further and experiment 
with a two-stage pipeline consisting of a transformer-
based binary classifier for sentence classification and 
a transformer-, transition- based parser for boundary 
detection of the entities inside the sentence. 

In parallel, systems that transform texts into 
Knowledge Graphs can be considered a useful 
component of the IE task, especially in the Science IE  
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Figure 1: Scholarly Ontology core concepts and relations. 

field where they have gained a lot of attention 
recently. Many efforts like (Dessì et al., 2020; 
D’Souza & Auer, 2022; Michel et al., 2020; 
Steenwinckel et al., 2020) use off-the-shelf solutions 
(such as DBpedia Spotlight, NCBO BioPortal 
Annotator, CrossRef, DyGIE++, etc.) in specialized 
domains of scientific literature, like Covid-19, 
Named Entity Recognition (NER) or Artificial 
Intelligence. Others like (Jaradeh et al., 2019) extract 
instances of generic concepts, namely those of 
process, method, material and data, using task-
specific neural architectures atop pretrained 
SciBERT embeddings with a CRF-based sequence 
tag decoder. In (Luan, He, et al., 2018), the authors 
create a Knowledge Graph based on a unified 
learning model for extracting scientific entities, 
relations and coreference resolution. In our work we 
adopt a modular architecture allowing for easy future 
expansion where each module is independently 
trained for the task at hand. In addition, we train all 
our ML models on a dataset specifically curated for 
the task at hand. Furthermore, we use mechanisms for 
capturing semantic context by interrelating our 
extracted entities and by associating them with 
publication information and other Linked Data 
repositories like ORCID6.  

 
6 https://orcid.org/ 

3 SETUP AND METHODOLOGY 

3.1 Conceptual Model 

The schema for the Knowledge Graph at the output as 
well as the definitions for all the concepts and 
relations we employ are provided by the Scholarly 
Ontology (SO) (Pertsas & Constantopoulos, 2017), a 
domain-independent ontology of scholarly/scientific 
work. A specialization, in fact precursor, of SO already 
applied to the domain of Digital Humanities is the 
NeDiMAH Methods Ontology (NeMO) 
(Constantopoulos et al., 2016). A brief overview of SO 
core concepts is given in the following section. For a 
full account see (Pertsas & Constantopoulos, 2017).  

The core concepts and relations of SO, which form 
the basis for answering the “who”, “what”, and “how” 
in the scholarly domain, are displayed in Figure 1. The 
ontology is built around the central notion of activity, 
viewed from three different perspectives: i) the agency 
perspective, concerning actors and intentionality; ii) 
the procedure perspective, concerning the intellectual 
framework and organization of work; and iii) the 
resource perspective, concerning the material and 
immaterial objects consumed, used or produced in the 
course of activities. 
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Figure 2: Textual spans of Method employed by Activity in neighbouring sentence and active voice. 

 
Figure 3: Textual spans of a Method, employed by an Activity in passive voice. 

In this paper we are dealing with the extraction of 
textual representations of the SO concepts Activity 
and Method as well as the relation employs(Act,Meth) 
among them. Instances of the Activity class represent 
research processes or steps thereof such as an 
experiment, a medical or social study, an 
archaeological excavation, etc. They usually manifest 
in text as spans of phrases in passive or active voice 
in first person singular or plural, according to the 
number of authors who are their actual participants. 

In contrast to activities, which are actual events 
carried out by actors, instances of the Method class 
denote procedures, such as an algorithm, a technique 
or a scheme that can be employed during an activity 
and describe how this was carried out. They are 
usually designated by single or multiple word terms, 
e.g. “ANOVA”, “radio-carbon dating”, etc., so their 
manifestations in text are mostly identified as named 
entities. Examples of textual manifestations of the 
classes Activity, Method and of the relation 
employs(Act,Meth) are shown in Figures 2 and 3. 

SO provides for associating activities with their 
respective methods and participants through the 
relations employs(Act,Meth), and 
hasParticipant(Act,Actor) respectively. Provenance 
(e.g. the research article from where they were 
extracted) of those entities and relations can be 
modeled through the SO relations 
isDocumentendIn(Act,ContentItem) or 
isReferencedIn(Meth,ContentItem) and the class 
ContentItem, a subclass of the SO Information 
Resource Class which denotes all information 
resources (or parts thereof) utilized for representing 
content (e.g. articles, paragraphs, sections, etc.) 
independently of their physical carriers. 

3.2 The Dataset 

To train and evaluate all our ML models we used a 
manually annotated dataset consisting of 12,626 
sentences. These sentences were derived from over 
3,200 research articles (abstracts and main text) from 
305 publishers spanning over 160 disciplines and 

research subfields so as to cover a broad variety of 
writing styles. The sentences were manually 
annotated by three human annotators. After 
appropriate training in SO, the annotators participated 
in 5 consecutive annotation trials covering in total 
500 sentences from 300 papers. Each trial was 
followed by discussion on the results and evaluation 
of the Inter Annotator Agreement (IAA) using the 
Cohen’s Kappa metric for IAA on individual couples 
and Fleiss’ Kappa for the group IAA. After the trials, 
the best IAA scores reached 0.90 for Activity, 0.92 for 
Method and 0.91 for employs(Act,Meth) respectively 
yielding sufficient agreement levels so that annotators 
could subsequently work on separate datasets. The 
entire annotator training process lasted approximately 
20 hours.  

The annotation statistics of the final dataset after 
adjudication, are shown in Table 1. At sentence level 
the dataset contains 10,178 labels (i.e. each time a 
sentence contains an entity, it is assigned a respective 
label). At span level (as a span we consider each 
individual text-chunk that is annotated as an entity) 
there are in total 11,896 entity labels (i.e., labels 
assigned to spans to denote them as activities or 
methods). Finally at token level (as tokens we 
consider individual lexical units like words, 
punctuation marks, etc.) the dataset contains 128,914 
labels (i.e., annotation labels assigned to tokens to 
denote them as part of a textual span representing an 
activity and/or a method). In addition, we created 
4,754 textual spans bounded by any combination of 
the extracted activities and methods, even if they 
derive from neighbouring sentences (in order to 
capture any possible coreferences), out of which 
2,284 were annotated as employs(Act,Meth). 

Compared to other published benchmarks in 
ScienceIE tasks (Augenstein et al., 2017; Jain et al., 
2020; Luan, He, et al., 2018; QasemiZadeh & 
Schumann, 2016) our dataset shows similar or higher 
number of annotations, which renders it a good source 
for ground truth in such experiments. The dataset was 
randomly shuffled and split (hold-out method) into 
training, development, and evaluation sets with the  
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Figure 4: KG Creation. System architecture. 

latter consisting of 20% of the entire dataset and the 
development set consisting of 10% of the rest. 

Table 1: Dataset Characteristics. 

Annotations Activity Method Total 
Sentence-level 5018 5160 10,178 
Span-level 5506 6390 11,896 
Token-level 110,298 18,616 128,914 
employs(A,M) 2,284 spans 4,754 spans 

3.3 Entity Extraction 

For the entity extraction task, we developed a module 
that receives as input a sentence, tokenizes it and 
performs token-based classification in order to 
identify whether each token belongs to a textual span 
representing one of the entities to be extracted. 
Because our entities can be overlapping, we treat each 
entity recognition task independently. This also 
allows for further entity recognizers to be added 
easily in the future without having to retrain the 
previous ones. In the work reported here, we use two 
binary classifiers in order to identify and extract 
textual spans for Activities and Methods. Specifically, 
for each entity type we use two deep learning entity 
recognizers by combining Bert-base-NER and 
Roberta-base transformer models from the Hugging-
Face library 7  for vector representation and a 
transition-based parser for the sequence labelling 
part. Both transformer models and the transition-
based parser were fine-tuned / trained on the same 
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dataset. These are the models A-BERT-base-NER, 
A-RoBERTa-base, for the extraction of Activities 
and M-BERT-base-NER and M-RoBERTa-base 
for the extraction of Methods. 

In addition, we developed a two-stage pipeline 
consisting of a text (sentence) classifier with an entity 
recognizer on top (models: A-Pipeline and M-
Pipeline for Activities and Methods respectively). 
The text classifier -consisting of a Transformer model 
(RoBERTa-base) and a sigmoid activation layer- 
receives as input a sentence and predicts whether it 
contains the requested entity or not. If yes, the 
sentence is then passed to the entity recognizer -
consisting of a transformer with a transition-based 
parser- that performs token-based classification to 
identify the boundaries of the extracted entity. The 
entity recogniser (second component) of the pipeline 
is trained only in detecting the boundaries of entities 
inside sentences that contain them. The intuition 
behind the pipeline is that, by splitting the task into 
two simpler sub-tasks, each separate classifier will 
achieve high enough accuracy for their concatenation 
to produce better results despite any error 
propagation.  

3.4 Relation Extraction 

Extracting relations requires examining all plausible 
entity pairs. For every pair of extracted 
activity/method, the text chunk bounded by these two 
entities, [entity1, ..., entity2], is treated as expressing 
a candidate relation. In order to restrict the search to 
a reasonable set of candidates but also to allow for  
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Figure 5: Excerpt from produced RDF Triples. 

possible coreferences among sentences to be 
resolved, a maximum limit of two (neighbouring) 
sentences is set for candidate creation. A classifier 
then determines whether the bounding entities of the 
chunk satisfy the property employs(Act,Meth). 

To this end, we developed a module that takes as 
input the candidate textual span and predicts whether 
the bounded entities satisfy the employs(Act,Meth) 
relation. For the classification, we used a binary 
classifier consisting of a transformer (BERT-base-
uncased and RoBERTa-base) model for text 
representation, followed by a sigmoid activation layer 
(models BERT-based-uncased and RoBERTa-
base). Both the transformer model and the classifier 
are fine-tuned/trained on the same dataset. 

In addition, all the information extracted from text 
(entities and relations) is further related to publication 
information extracted from articles’ metadata. The 
linking is based on post processing rules that map the 
extracted activities and methods to the researchers 
(authors of the paper) based on the corresponding SO 
properties of hasParticipant and usesMethod 
respectively. Provenance (e.g. the research article 
from where they were extracted) of those entities and 
relations can be modelled through the SO relations 
isDocumentendIn or isReferencedIn among the 
classes Activity / Method and the class ContentItem 
which denotes all information resources (or parts 
thereof) independently of their physical carriers. An 
overview of the entire system’s modular architecture 
is given in Figure 4.  

3.5 URI Generation 

At the final stage we transform the extracted and 
contextualized information into RDF triples adhering 
to the Linked Data standards. Specifically, regarding 
the entities extracted from publication metadata, we 
produce URIs for the authors (further linked, when 

 
8 https://persistence.uni-leipzig.org/nlp2rdf/ 

possible, with ORCID using the provided API) and 
their affiliations (as instances of the SO Actor class 
and corresponding subclasses  Person and 
Organization), the research article (as instance of the 
ContentItem class) associated further with 
publication information, such as publisher, 
publication date, DOI etc., as well as disciplines 
associated with each publication and author keywords 
(as instances of the SO Topic class and its subclasses 
Discipline and TopicKeyword respectively), using the 
namespaces for SO, SKOS, RDFS and RDF when 
appropriate.  

Regarding the entities extracted from text, we 
produce URIs for each extracted entity and relation 
using the NIF8 and SO namespaces for preserving the 
context of the corresponding sentence and 
instantiating the appropriate classes and relations 
respectively. The output of the module is a set of RDF 
triples containing approximately 300 triples per 
publication on average. Figure 5 illustrates an 
example of the produced triples regarding an 
extracted textual span (label: “All individuals were 
assigned pseudonyms”) representing an instance of 
the Activity class. 

4 EVALUATION  

The evaluation of Information Extraction methods 
involves comparing classifier results against a “gold 
standard” produced by human annotators. To this end, 
a confusion matrix is calculated based on the true 
positives (TP) -correctly classified predictions-, false 
positives (FP) -incorrectly classified predictions-, 
true negatives (TN) -correctly non-classified 
predictions and false negatives (FN) -incorrectly non-
classified predictions. Performance scores are then   
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Table 2: Entity Extraction Evaluation Results. 

Model Token-based Entity-based-partial Entity-based-strict 
P R F1 P R F1 P R F1 

A-Baseline 0.68 0.71 0.69 0.60 0.61 0.60 0.40 0.51 0.51 
A-BERT-base-NER 0.86 0.87 0.86 0.79 0.80 0.80 0.72 0.73 0.72 
A-RoBERTa-base 0.82 0.91 0.85 0.76 0.84 0.79 0.69 0.76 0.73 
A-Pipeline 0.86 0.90 0.88 0.80 0.83 0.81 0.73 0.77 0.75 
M-Baseline 0.62 0.66 0.65 0.66 0.73 0.70 0.55 0.60 0.57 
M- BERT-base-NER 0.72 0.89 0.80 0.69 0.85 0.76 0.63 0.78 0.70 
M-RoBERTa-base 0.75 0.85 0.78 0.73 0.83 0.77 0.67 0.76 0.70 
M-Pipeline 0.80 0.83 0.82 0.76 0.79 0.78 0.70 0.72 0.71 

 

Table 3: Pipeline components evaluation. 

Pipeline P R F1 
A-TexCat 0.91 0.93 0.92 
A-NER 0.80 0.82 0.81 
A-Pipeline 0.86 0.90 0.88 

M-TextCat 0.90 0.91 0.90 
M-NER 0.78 0.79 0.79 
M-Pipeline 0.80 0.83 0.82 

Table 4: Relation Extraction evaluation. 

Model P R F1 
Baseline 0.83 0.78 0.80
BERT-base-uncased 0.73 0.95 0.83
RoBERTa-base 0.82 0.95 0.87

measured based on Precision (P), Recall (R) and F1 
scores computed as follows: 
 𝑃 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 , 𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 , 𝐹1 = 2 ∗ 𝑃 ∗ 𝑅𝑃 + 𝑅  
 
For the entity extraction task, we conduct three types 
of evaluation experiments inspired by the guidelines 
in (Segura-Bedmar et al., 2013): 1) token-based, 
where a true positive (TP) is a token correctly 
classified as part of a chunk representing the entity, 
etc.; 2) entity-based -partial matching, where some 
overlap between the tagged entity and the “golden” 
entity is required but counts as half compared to the 
exact matches and 3) entity-based -strict matching, 
where only exact boundaries of the entities are 
counted for the match.  

Table 2 shows evaluation results for each method 
and entity type. For comparison reasons we included  
a baseline model consisting of a residual CNN with 
bloom embeddings that utilize a stochastic 
approximation of traditional embeddings in order to 
provide unique vectors for a large number of words 
without explicitly storing a separate vector for each 

of them (Miranda et al., 2022), trained on the same 
dataset. Regarding the pipeline classifier which 
consists of a sentence- and a token-based classifier in 
tandem, detailed per stage and aggregate performance 
results are shown in Table 3. The aggregate scores of 
the pipeline are also shown in Table 2 for comparison 
with the other methods.  

The evaluation of employs(Act,Meth) relation 
extraction methods involves comparing the predicted 
relations among the gold standard entities in each test 
set with those produced by the human annotators on 
the basis of Precision, Recall and F1 scores calculated 
as usual. A true positive (TP) is a chunk 
[entity1,...,entity2] for which the classifier correctly 
predicted the employs(act, meth) property; a false 
positive (FP) is a chunk for which employs(Act,Meth) 
was incorrectly predicted; and a false negative (FN) 
is a chunk for which employs(Act,Meth) incorrectly 
failed to be predicted. Table 4 shows the evaluation 
results for the employs(Act,Meth) relation extraction 
models using binary classifiers on top of Bert-base-
uncased and RoBERTa language models as well as 
bloom embeddings (as baseline). All models are fine-
tuned/trained on the same dataset. 

5 DISCUSSION 

As a general comment regarding the Information 
Extraction from text task, all methods except the 
baselines performed well, demonstrating the 
capabilities of transformer-based language models in 
text representation over the simpler neural-based 
methods (i.e. embeddings). Among the transformer 
models, the RoBERTa-base outperformed BERT-
base in almost every metric, which can be attributed 
to the fact that the RoBERTa model is pre-trained on 
a much larger dataset (10 times larger) than BERT 
and uses a dynamic masking technique during 
training that helps it learn more robust and 
generalizable representations of words. 
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5.1 Entity Extraction Evaluation 

Concerning the entity extraction methods, the 
pipeline architecture exhibited the best performance 
in all experiments and entity types, yielding up to 4% 
performance increase (F1 M-Pipeline) which proves 
our initial intuition that -splitting the task into two 
simpler ones -those of i) sentence classification and 
ii) boundary detection only in sentences with entities- 
would yield overall better performance, despite the 
possible error propagation.  

The latter seems to be of less importance since the 
sentence classifier (first component) achieves very 
high recall, which yields the majority of the sentences 
containing entities to the input of the second 
component that focuses only on detecting the 
boundaries inside the sentence. However, as can be 
observed from the difference in performance among 
the various evaluation experiments (e.g. compare the 
F1 scores among token-based, entity-based-partial 
and entity-based-strict evaluations), the exact 
boundaries of the entity -even with the pipeline- are 
difficult to capture. This can be attributed to the fact 
that our entities are quite complex in terms of length 
variance, or/and lexico-syntactic structure which 
makes them difficult to isolate from the rest of the text 
in a sentence.  

Regarding the Method class, lesser performance 
compared to the Activity classifiers can be attributed 
to the fewer labelled tokens on the dataset since each 
Method entity consists of much fewer tokens, on 
average. This could also be the reason for the lesser 
performance of the M-NER boundary detector model 
that “drags down” the entire M-pipeline performance. 
Error analysis showed that most errors were attributed 
to cases with long names (more than 3 tokens) and /or 
names containing multiple punctuation marks that 
seemed to confuse the classifier in identifying the 
correct boundaries of the entity (e.g. “Tests of 
population genetic structure and nested clade 
phylogeographic analysis (NCPA) [12,13] were used 
to infer connectivity on both sides of the Amazon 
basin.”).  However, even in such cases, at least 50% 
of the tokens of the span representing the entity name 
were captured correctly by the classifier.  

Regarding the recognition of textual spans 
representing instances of the Activity class, error 
analysis attributes the majority of errors to cases of 
passive voice where the agent (implied or not) was 
other than the authors of the paper. These cases 
usually refer to statements regarding someone else 
(e.g. "In [54] linguistic analysis was performed on 
10000 samples from MeCaB database.") and seem to 
be classified (erroneously) as research activities of the 

authors, although this is clearly not the case. 
However, similar cases of agents other than the 
authors of the paper, but in active voice, do not seem 
to confuse the classifier. This can be attributed to the 
lexico-syntactic complexities of passive voice, 
especially when the length of the sentence is big, and 
could probably be resolved with more training data 
(focused on passive voice).  

Additional errors were detected in boundaries of 
the entities, where the classifier seemed to set the end-
boundary one or two tokens after the proper end (e.g. 
“We collected data from more than 200 crania to test 
hypotheses about the relationships between cranial 
variation and genetic time and space in the Aleutian 
Islands.”). In such cases, where only the last one or 
two tokens of the entity are erroneously classified, the 
boundary can be fixed with post processing rules. 

5.2 Relation Extraction Evaluation 

In relation extraction, like in entity extraction, 
transformer-based models exhibited superior 
performance. Error analysis suggests that 
misclassifications are mostly due to sentences with 
multiple entities, where the classifier failed to 
interrelate all the entities properly. For example, 
consider the excerpt: “Pre-test data were collected 
and analysed using T-test, while post-test were 
further analysed using ANOVA and two-way 
ANOVA.” Here the classifier erroneously related the 
methods ANOVA and two-way ANOVA to the first 
activity (“pre-test data were collected and analysed 
using T-test”), although this is not the case based on 
the actual text.  

In addition, in cases with adjacent sentences 
where both sentences contained a lot of entities, the 
majority of misclassifications involved a method of 
the first sentence being erroneously related to the 
second sentence even if this was clearly not the case. 
For example, consider the excerpt: “We employed 
both Logistic Regression and SVM to conduct the 
classification experiments and then analysed the 
results using T-test. The latter was used in 
combination with ART tests to prove the statistical 
significance of our results.”. In this case the classifier 
erroneously related all the extracted methods 
(Logistic Regression, SVM and T-Test) of the first 
sentence, with the activity of the second sentence, 
although this was the case for only the last one (T-
test).  

Concerning the two-sentence limit for textual 
chunks construction, by visual observation of more 
than 1000 relations, we were able to notice that the 
majority of references occurred inside the sentence 

Ontology-Driven Extraction of Contextualized Information from Research Publications

115



with very few cases of reference to a method from an 
adjacent sentence and none more than two sentences 
apart, thus justifying the heuristic for a two-sentence 
limit in chunk creation.  

5.3 Knowledge Graph Creation 

Regarding the KG creation using post-processing 
rules that extract metadata and link them to the 
extracted entities, the system exhibited very good 
performance since it relies solely on pre-constructed 
mappings between fixed schemas. Few isolated 
incidents (lower than 1%) of improper association 
were due to errors in tags (e.g. non-Unicode 
characters or few missed entries that produced 
inconsistencies) and can be treated with additional 
escape rules as part of the general debugging process. 

The KG created as described in this paper offers 
structured semantic views of the content of 
publications, which enhance our capability for 
comprehensive exploration of research work. This 
can be demonstrated through semantically complex 
queries executed over the KB. Indicative such 
queries, expressed in SPARQL are presented below:  

Query 1: Retrieve all activities that employ any 
method regarding reconstruction (e.g. 2D or 3D 
reconstruction) in Paleontology. 
 
SELECT DISTINCT ?a_label 
WHERE { 
 ?a rdfs:label ?a_label. 
 ?a so:employs ?m. 
 ?m so:comesFromDiscipline so:Paleontology. 
 ?m rdfs:label ?m_label. 
 filter 
contains(lcase(?m_label),"reconstruction").} 

Here, using the SO relation 
(so:comesFromDiscipline) and the filter contains 
SPARQL expression, all the method labels 
containing –in lower or upper case- the word 
“reconstruction” and coming from the discipline of 
Paleontology can be retrieved. They are then 
associated with the activities that employ them. 

Query 2: For a specific paper (e.g. “Paper1”), 
retrieve all the research activities conducted by the 
authors along with the methods they employed. 
SELECT ?m_label ?a_label  
WHERE { 
 ?a so:isDocumentedIn so:Paper1. 
 ?a rdfs:label ?a_label. 
 ?a so:employs / rdfs:label ?m_label.} 

Here, through the use of property chains in 
SPARQL, the overall activity reported in a paper is 

decomposed into a series of activities denoting 
“what” the authors have done, associated with the 
methods employed during those activities. In this 
way, questions of “what” and “how” regarding the 
activities described in a research publication can be 
answered. Thus, the reader obtains an enhanced 
“bird’s-eye” view of what is described in a paper 
before actually reading it. Additional information 
regarding the authors and their research interests, can 
also be retrieved using the appropriate SO classes and 
relations.   

6 CONCLUSION 

We presented a system that extracts contextualized 
information from scholarly publications and creates 
an RDF Knowledge Graph. The entire process is 
ontology-driven, based on the concepts and 
definitions provided by Scholarly Ontology, 
specifically designed for documenting scholarly 
work. We focused on the extraction of two types of 
entities, research methods and research activities, and 
of the relation employs(Act,Meth) denoting that an 
activity employs a particular method. This was 
integrated with information drawn from publication 
metadata, also on the basis of the ontology.  

For the entity extraction task, we used transition-
based parsers on top of BERT and RoBERTa 
transformer models for text representation. In 
addition, we used a two-stage pipeline architecture, 
comprising a transformer-based binary classifier for 
detecting the existence of entities in a sentence, in 
tandem with a transition-based parser for boundary 
detection.  

To extract the employs(Act,Meth) relation, we 
used two transformer-based binary classifiers 
employing BERT and RoBERTa language models 
respectively. All our ML models are fine-tuned and 
trained on the same -manually curated- dataset 
consisting of 12,626 sentences from scholarly 
publications, specifically curated for the tasks at 
hand.  

Evaluation was based on token-based, entity-
partial-based and entity-exact-based calculations of 
P, R and F1 scores for each ML method and 
entity/relation type. Results showed higher 
performance of the pipeline architecture and overall 
good performance of the transformer-based models 
compared to a baseline approach that uses 
embeddings for textual representation. 

Future work includes expanding the Knowledge 
Graph with recognition and extraction of other 
entities of the ontology, such as researchers’ 
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assertions based on the outcomes of their activities, 
the activities’ objectives (i.e., research goals) and 
information from citations, as well as linking 
extracted entities with other knowledge bases across 
the Web, such as Wikidata, for named entity mentions 
and Open Citations for bibliographic information. 
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