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The current study aims to develop efficient machine learning models that can accurately predict potential
evapotranspiration, an essential parameter in agricultural water management. Knowing this value in advance
can facilitate proactive irrigation scheduling. Two models, Long Short-Term Memory and eXtreme Gradient
Boosting, are evaluated using performance metrics such as mean squared error, mean average error, and root
mean squared error. One of the challenges with these models is their lack of interpretability, as they are
often referred to as “black-boxes.” To address this issu, the study provides global explanations for how the
best-performing model learns. Additionally, the study incrementally improves the model’s performance based
on the provided explanations. Overall, the study contributes to developing more accurate and interpretable
machine learning models for predicting potential evapotranspiration, which can improve agricultural water

management practices.

1 INTRODUCTION

Advances in remote sensing (Yuan et al., 2020)
technologies have enabled the collection of massive
amounts of data in practically every facet of human
life, providing an opportunity to gain more signif-
icant insights from these data. Consequently, Ma-
chine Learning (ML) models have become increas-
ingly popular due to their capacity for learning non-
linear patterns. They are trained on massive amounts
of collected data to perform various tasks in different
environments. This data-driven approach to machine
learning allows it to learn from previous data rather
than explicitly executing predefined instructions. As
a result, ML models fully benefit from the massive
amounts of data now available in almost every in-
dustry, including agriculture. Modern precision agri-
culture relies on these data-driven models to provide
valuable insights into almost every agricultural sec-
tor. Moreover, the efficient use of water resources,
particularly irrigation water, is one of the most press-
ing issues in this area, as it can alleviate global wa-
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ter scarcity. In fact, despite accounting for only 17%
of all cultivated land, irrigated agriculture produces
more than 40% of all food produced globally (Fereres
and Garcia-Vila, 2018). Consequently, water-efficient
irrigation might considerably reduce water scarcity
while improving food production. Furthermore, pre-
cise crop water requirement estimation is crucial for
efficient irrigation water management and scheduling.
Crop evapotranspiration (ETc) is frequently used in
the literature to describe crop water requirements. It
is a combination of two processes: the evaporation
of water from the ground surface or wet surfaces of
plants and the transpiration of water through the stom-
ata of leaves. Machine Learning models based on the
design of neural networks have produced state-of-the-
art results in various fields, including agriculture (Li-
akos et al., 2018) and (Koné et al., 2023). Unfortu-
nately, these Deep Learning (DL) models are some-
times called black-box models because, unlike typi-
cal shallow models, they are difficult for humans to
interpret. As a result, adopting models based on arti-
ficial neural networks (ANN) is limited in scenarios
where both performance and interpretation are cru-
cial. Interpretability is defined by (Barredo Arrieta
et al., 2020) as a passive characteristic of a model that
refers to the level at which a model makes sense to a
human observer. Because some models, particularly
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neural network-based ones, lack this inherent charac-
teristic, they must provide explanations to establish
trust in their predictions. This paradigm is known as
explainable artificial intelligence (XAI). It aims to en-
hance ML models with explanations that provide in-
sight into the model’s training and generalization and
insight into the models’ predictions (Ras et al., 2022)
(Ben Abdallah et al., 2023).

Even though black-box models are often relatively
accurate, using them blindly can result in a few inac-
curate predictions, which can be costly in high-stakes
scenarios. Given the need to efficiently forecast ir-
rigation requirements and explain ML model predic-
tions, particularly black-box ones, we propose an ex-
plainable, efficient machine learning model for crop
water requirement prediction expressed as crop po-
tential evapotranspiration. To sum up, the main con-
tributions of this study are: (i) Propose effective data—
driven learning models that estimate the volume of
irrigation required. (ii) Provide model explanations
to improve learning performance while minimizing
complexity and guaranteeing forecast certainty.

The remainder of this paper is structured as fol-
lows. Section 2 summarizes the current state of
irrigation-requirements prediction as well as agricul-
tural explanability research. Section 3 describes the
materials and methods used in this study. Section
4 assesses the performance of deep learning models.
Section 5 provides the conclusions and recommenda-
tions for future research.

2 RELATED WORK

To the best of our knowledge, few agricultural predic-
tive ML studies deal with explainability. As a result,
we present related works in this section in terms of
precise irrigation studies and explainable agricultural
ML studies.

2.1 Irrigation-Requirements Prediction

Machine learning techniques have been used in var-
ious research projects to forecast irrigation require-
ments. (Goap et al., 2018), for example, used a
hybrid ML-based technique that included supervised
Support-Vector Regression (SVR) and unsupervised
k-means clustering algorithms. The SVR algorithm’s
prediction was fed into the k-means algorithm to in-
crease prediction accuracy. To determine the optimal
amount of water required for a plant, (Ben Abdal-
lah et al., 2022) used a stacking approach combined
with feature selection. To estimate the weekly irri-
gation needs of a citrus plantation, (Navarro-Hellin
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et al., 2016) developed two standalone ML models:
Partial Least Square Regression (PLSR) and Adaptive
Neuro Fuzzy Inference Systems (ANFIS). While AN-
FIS performed better for each estimation, PLSR was
more accurate in terms of total water required. More-
over, (Goldstein et al., 2018) developed and com-
pared various ML models to predict agronomists’ ir-
rigation recommendations. Linear Regression, De-
cision Trees, Random Forests, and Gradient Boost
were among the models developed in the study, with
the last achieving the highest prediction accuracy.
(Jimenez et al., 2021) recently used a deep learning
approach to forecast irrigation needs in Alabama, em-
ploying a Long Short-Term Memory (LSTM) neural
network. (Adeyemi et al., 2018) used a similar ap-
proach to schedule irrigation based on soil moisture
predictions. The authors developed two deep learning
models, a feed-forward neural network and an LSTM,
and compared their performances. The LSTM model
achieved comparable performance to the FENN while
involving less pre-processing of the input data.

Even though neural network-based and tree-based
models have produced significant achievements in re-
cent research on irrigation demand prediction, there
is a compelling need to understand why these mod-
els are reaching state-of-the-art performance. As a re-
sult, we propose effective deep neural network mod-
els with explanations for how they learn and predict
irrigation demand.

2.2 XAl in Agriculture

Researchers have been looking into using XAl in agri-
culture for the last few years. (Chakraborty et al.,
2021) and (Rima et al., 2023), for example, tested
interpretable and non-interpretable machine learning
models to estimate reference crop evapotranspira-
tion. The authors used the eXtreme Gradient Boost-
ing (XG) model to provide visual and rule-based ex-
planations since it produced significant results. These
explanations aided in identifying the global order of
importance of predictor variables while emphasizing
the predictors’ and predicted variables’ local depen-
dencies and interconnections. Furthermore, (Zhuang
et al., 2020) trained a Convolutional Neural Network
(CNN) to classify and estimate maize water stress de-
gree. The trained CNN was used to extract explana-
tions presented as feature maps. The most contribut-
ing feature maps were selected to build a classification
SVM model. As a result, the authors reduced both
feature dimensionality and model complexity. Simi-
larly, (Ghosal et al., 2018) developed an explainable
deep CNN for plant stress identification and classifi-
cation.



To the best of our knowledge, few studies have
considered the applicability of XAI in irrigation
amount prediction. Therefore, in this study, we aim
to develop explainable data-driven models to predict
forthcoming crop water requirements.

3 MATERIALS AND METHODS

The approach adopted in this study is illustrated by
Figure 1.

The approach is made up of two steps: building
models and explaining the predictions of the best-
performing model. In the first step, machine learning
models are built using the COSMOS dataset (Stan-
ley et al., 2021) of climate and soil observations. To
prevent missing values from affecting model perfor-
mance, they are first interpolated. Interpolation is the
process of calculating missing values for an observa-
tion using its preceding values. The sequential nature
of this interpolation technique matches up to the tem-
poral nature of time-series data. Following that, the
input data is standardized to account for the varying
range of input parameters. This serves as the founda-
tion for developing ML models. In this study, two ma-
chine learning models are developed: Extreme Gra-
dient Boosting (XG) and Long Short-Term Memory
(LSTM). The two models are compared using statis-
tical performance metrics. Then, the best-performing
model is fed into the second step of our approach.

The second step of our approach focuses on ex-
plaining the predictions of the model selected in the
first step (models building). Using the provided ex-
planations, we take a self-refining approach to the
ML model. As a result, we show in this study how
explained performant opaque ML models can benefit
both the model builder and the user. The following
sections go into greater detail about the adopted ap-
proach.

3.1 Datasets Description

Cosmic-ray soil moisture monitoring (COSMOS)
dataset is collected from 51 sites across the UK,
which record various hydro-meteorological and soil
characteristics. From October 2013 to December
2019, the dataset covers sub-daily hydrometeorolog-
ical and soil observations. Radiation (short wave,
longwave, and net), precipitation, atmospheric pres-
sure, air temperature, wind speed and direction, and
humidity are measured in the meteorological data.
Measurements of soil heat flux, soil temperature, and
Volumetric Water Content (VWC) at different depths
are among the observed soil data.

Explainable Machine Learning for Evapotranspiration Prediction

3.2 Models Description

The foundations of the deep learning models are
rooted in Artificial Neural Networks (ANN). Briefly,
an ANN is composed of input, hidden(s), and out-
put layers, each of which consists of many simple,
connected processors called neurons (Schmidhuber,
2015). Unlike standard ANNS, the inputs in recurrent
neural networks are not assumed to be independent
of one another. As a result, each input is processed
by RNN based on the feedback provided by previ-
ous input processing. This ability is critical when
dealing with sequential problems involving data de-
pendencies. However, standard RNNSs, while theoret-
ically appropriate for sequential issues, cannot deal
well with long-term dependencies. It is because mi-
nor changes to input data caused by activation are
applied between time-steps, resulting in the loss of
relevant historical knowledge. To address this issue
encountered in standard RNNs, the LSTM-variant of
recurrent neural networks was introduced (Hochreiter
and Schmidhuber, 1997; Sutskever et al., 2014).

Gradient Boosting is a tree-based ML technique
which represents an ensemble of weak learners (most
often, regression trees). A single decision or regres-
sion tree fails to include predictive power from mul-
tiple, overlapping regions of the feature space. Weak
prediction models are incrementally added to correct
the prediction of previous ones. The idea is to use
the weak learning method several times to get a suc-
cession of hypotheses, each one refocused on the ex-
amples that the previous ones found difficult and mis-
classified (Valiant, 2014). The loss optimization is
based on gradient descent algorithm which is also
used in neural networks.

3.3 Explanation Method

Several methods have been proposed to explain ma-
chine learning models predictions, LIME (Ribeiro
et al., 2016) and SHAP (Ribeiro et al., 2016) being
the most dominant ones. LIME provides local expla-
nations of complex models by building surrogate lin-
ear models around a particular prediction. The SHap-
ley Additive exPlanations (SHAP) method explains
the prediction of a particular instance by estimating
game-theory Shapley values which represent the av-
erage contribution of each feature to the prediction.
In other words, an importance value for a particular
prediction is assigned to each feature.

As we aim to investigate the explainability of a
black-box in evapotranspiration prediction, we looked
at the rules learned by the machine learning model
such as the importance and influence of the predic-
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Figure 1: Overview of the adopted approach.

tor variables (climate and soil) on target evapotran-
spiration. Therefore, we investigate the suitability
of a novel explanation-based feature selection using
SHAP global explanations. Furthermore, we provide
LIME local explanations for some predictions in or-
der to assess the model’s learning ability. As a result,
the current study provides insights into the model’s
learning process, which aids in the development and
refinement of a robust model, as well as the reasons
for the model’s predictions.

3.4 Metrics of Performance

The model’s performance is evaluated by means of
the following regression metrics:

* Mean Squared Error (MSE) represents the mean
of the square of the individual prediction errors.
n
Z(Ypred - ygbs)2

MSE = lf (1)

* Mean Absolute Error (MAE) represents the mean
of the absolute values of the individual prediction
errors on over all instances (Sammut and Webb,
2010).

n
)y | Ypred — Yobs I

MAE = 17 2)

* Root Mean Squared Error (RMSE) represents the
square root of the mean of the square of the indi-
vidual prediction errors.

n

Z(ypred _yobs)z
— 3)

n

RMSE =

100

« Coefficient of determination (R?) is a goodness-
of-fit measure for models based on the proportion
of explained variance (Di Bucchianico, 2008).

Z(ypred _yobs)z

RP=1- Sk
Z(ypred - YObs)

4
where y,.q is the predicted value, y,s is the observed
value, n is the number of instances, and the prediction
error represents the difference between the predicted
and the observed values.

4 RESULTS AND DISCUSSIONS

Several XG and LSTM variants were implemented
and tested to evaluate their performance using the
aforementioned metrics. For XG, we used grid search
cross validation, which involves looking for the best
model parameters from a set of chosen ones. The
maximum depth, total number of estimators, and
learning rate are the variables taken into account in
the grid search. The values used in the grid search for
each parameter are shown in Table 1. As for LSTM,
the two hyperparameters tuned using Keras Tuner are
the number of units in the hidden layer and the learn-
ing rate. Table 2 shows the set of hyperparameters
and their corresponding values. Finally, the Adam op-
timizer was used to compile the LSTM variants.

The Grid search results indicate that learning rate
= 0.01, maximum depth = 3, and number of estima-
tors = 300 are the ideal XG parameters. As for the
LSTM, The ideal hyperparameters are 64 hidden units
and a learning rate of 0.03. Additionally, we assessed
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Table 1: Grid Search Cross Validation Parameters.

Values
3,6,9,12
100, 200, 300, 400, 500
0.005, 0.015, 0.01, 0.1

Parameter
Max depth
Number of estimators
Learning rate

Table 2: Keras Tuner Hyperparameters.

Values
16, 32, 64, 128
0.0003, 0.0001, ..., 0.03, 0.01

Hyperparameter
Number of units
Learning rate

the performance of the best variant of each model on
two external sites for the year 2019: Chinmey Mead-
ows and Chobham. The two test sets were further di-
vided into three test subsets that covered the months
of January through April, May through August, and
September through December, respectively. Table 3
summarizes these results.

These results show that XG outperforms LSTM in
this prediction scenario while being less time consum-
ing. In comparison to 0.4722, 0.4746, and 0.6872 for
LSTM, the best performing variant of XG has MSE,
MAE, and RMSE of 0.3940, 0.4659, and 0.6277,
respectively. Figure 3 depicts the evolution of ac-
tual and predicted potential evapotranspiration on test
sites. These findings are consistent with those of
(Chakraborty et al., 2021), in which the authors state

that eXtreme Gradient Boosting can be more effective
than Long Short-Term Memory in predicting time-
series tabular data. Furthermore, the XG model devel-
oped in this study outperforms the hybrid deep learn-
ing model developed in (Xing et al., 2022), with RM-
SEs of 0.6277 and 0.651, respectively, despite using
significantly less data.

The SHAP summary plot, shown in Figure 4 plot,
provides a global explanation of the XG model by
highlighting the importance of each feature as well
as its effect on the model’s outputs. According to the
figure, the top five contributing features to the model
are: net radiation, air temperature, heat flux, air pres-
sure and relative humidity. While features such as net
radiation and air temperature have a positive overall
impact on the model’s output, the likes of heat flux
and relative humidity have a negative impact. In other
words, low values of the first two features (net radia-
tion and air temperature) are associated with low po-
tential evapotranspiration, whereas low values of the
last two (heat flux and relative humidity) are associ-
ated with high potential evapotranspiration. This ex-
planation is critical because it demonstrates that the
model is correctly learning the dynamics of evapo-
transpiration. For example, it learned that high air
temperature lead to higher water loss. This is be-
cause high temperatures increase plant transpiration.
High relative humidity, on the other hand, indicates
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Table 3: Results of XG on evaluation sites.

Site Data Coverage MSE MAE | RMSE
January to April 0.2094 | 0.3358 | 0.4576
Balruderry May to August 0.7937 | 0.7590 | 0.8909
September to December | 0.1722 | 0.2963 | 0.4150
January to April 0.2480 | 0.3615 | 0.4980
Chimney Meadows | May to August 1.1066 | 0.8670 | 1.0519
September to December | 0.2591 | 0.3695 | 0.5091
January to April 0.3905 | 0.4640 | 0.6249
Chobham May to August 1.5314 | 1.0236 | 1.2375
September to December | 0.3084 | 0.4197 | 0.5553
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Figure 3: Actual vs XG Predicted Potential Evapotranspira-
tion.

the presence of a certain amount of water, leading to
a lower evapotranspiration value. As a result, XG, de-
spite being a black-box model, successfully captured
the fundamental principles of evapotranspiration.
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Figure 4: SHAP Summary Plot of XG Model.
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Furthermore, as shown in Figure 4, relative hu-
midity, heat flux, and wind speed have the least influ-
ence on the model’s predictions. Additionally, wind
speed feature seems not to be discriminatory enough
for the model as there is not a clear indication of its
overall impact on the predictions. Figure 2 gives fur-
ther detail about these features’ impact on evapotran-
spiration. It depicts the dependence plot of each fea-
ture with the target feature (potential evapotranspira-
tion). We can observe that most values of relative hu-
midity, wind speed and heat flux have near to no im-
pact on the model as the corresponding shapley val-
ues turn around zero. This might indicate that these
features could be ignored for this particular predic-
tion. For this purpose, we retrained the model with-
out these two features to see how the model’s per-
formance changed. There was no discernible perfor-
mance loss, as we obtained MSE, MAE, and RMSE
values of 0.3777, 0.4512, and 0.6146 in comparison
to 0.3809, 0.4573, and 0.6171. Rather, we can notice
a slight improvement in model’s performance. As a
result, we achieved slightly better results while signif-
icantly simplifying the model and speeding up com-
putation.

Additionally, the test set’s subdivision allowed
us to identify the time frame with the highest er-
ror rate. The highest prediction errors (MSE, MAE,
and RMSE), as shown in Table 3, are encountered
between May and August. We will concentrate on
this subset of data to eventually provide additional
insights into the model’s learning abilities. For this
purpose, we provide model explanations using SHAP
collective force plot for data ranging from May to Au-
gust as illustrated in Figure 5.

The figure shows that the high values of Net Ra-
diation have the greatest influence on the majority of
the model’s decisions. As a result of the high Net
Radiation values observed between May and August,
the model is forecasting high evapotranspiration val-
ues. Because a large net radiation value from only the
past day might not be enough, we took into account
some past net radiation values instead. As a result, the
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Figure 5: SHAP Collective Force Plot from May to August.

model performed better, with MSE, MAE, and RMSE
values of 0.3578, 0.4409, and 0.5982, respectively.
Finally, Figure 6 shows local explanations for a
specific model’s prediction. Such information pre-
vents a model prediction from being used blindly be-
cause it explains why this particular instance was pre-
dicted. The figure, for example, shows that the model
was able to set thresholds for each parameter and
make decisions based on them. For example, air pres-
sure has a 0.07 positive impact on the prediction. A
positive influence raises the prediction value. The re-
maining features, on the other hand, had a negative
impact on the prediction. As a result, this can assist in
comprehending the internal process of the developed
model and, eventually, avoid erroneous prediction.

negative
Net Radiation <= -0.82

o4t [ ] 27

(min) 0.45 (max) Previous PE <= -0.84}
0.211

Predicted value positive

Air Pressure > 0.65
-0.89 < Soil Temperatur...

-0.89 < PrevSolTemp ...
0.04l

Figure 6: LIME explanations.

5 CONCLUSION

The present study proposed two machine learning
models to effectively predict potential evapotranspira-
tion. The study first compared a deep learning LSTM
model with an extreme gradient boosting model. Al-
though the LSTM architecture has been initally de-
signed to deal with sequential data, our study demon-
strated that XG can outperform it. As a result, the
study established the suitability of such a model to
tabular time series data.

Next, because XG was the best-performing model,
we explained what and how the model learned from
data. Consequently, this study provided two types of
explanations: global and local. Global model expla-
nations using SHAP enabled us to recursively refine
the model’s learning ability. As a result, we demon-
strated how explaining opaque models can aid in their
performance improvement. Local explanations using
LIME, on the other hand, were provided for some spe-
cific instances. These details help explaining why the
model made a particular prediction. In conclusion,
this study proposed an efficient, explainable machine
learning model for predicting potential evapotranspi-
ration.
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