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Abstract: Goods shipping supports the operation and the development of the global economy. As there are thousands
of logistics companies, there exists a big need for solutions for their daily operation. The shipment can be
carried out in many ways. This work focuses on the road transportation in form of the Full Truck Load (FTL).
Once the service is supported by the third party, there is a need to have a tool that compares various offers
and allows to estimate the cost. Generally, FTLs are used in the long range routes and the estimation of such
contracts can be handled in many ways starting from the simple calculators up to data based machine learning
solutions. Nonetheless, the need for the cost estimation appears for the short routes, which often support long
range ones. Their pricing rules differs from the long range ones and the required approaches should differ as
well. This work presents the wide comparison of 35 regression and machine learning approaches applied to
the task. The assessment is performed using real contract data of several companies operating in Europe.

1 INTRODUCTION

Full truckload (FTL) is a common transportation way,
where the goods fill an entire truck. It ideally suits for
large volume of goods where a load covers the whole
truck space. There is an alternative approach called
less than truckload (LTL), in which a truck takes par-
tial loads to different contract load/unload locations
within a single travel. This paper focuses on the FTL
approach, however from a rare perspective.

First of all, the case of external fleet contract pric-
ing is considered. It is assumed the contractor may
use some custom dynamic pricing model, which is
associated with serious challenges (Stasiński, 2020).
These issues become even more significant in the case
of short routes, when common relationships with the
fuel costs and driver time start to matter much less.
External fleet long range contracts pricing can be
solved with the use of popular fright cost calculators
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or using the artificial intelligence (AI) and machine
learning (ML) (Tsolaki et al., 2022).

The task of the short range external fleet FTL ship-
ment cost estimation, is not specifically addressed in
the literature. Actually, this subject is hidden behind
the general FTL estimation and people practically do
not distinguish short routes cost prediction as sepa-
rate task. The findings that appeared during the in-
vestigation of this project repeat despite the method
used. The biggest challenge in the FTL cost predic-
tion is that the highest estimation residua appear for
the short routes and low costs. The shorter the route,
the more difficult it is to be estimated. The general
absolute performance measures are low, while the rel-
ative ones appear to be suspiciously high. This hap-
pens due to the possible high share of the low cost
routes. Thus, we have decided to take a closer look at
this subject decomposing the problem into two sub-
problems. This work copes with the problem of the
short routes, while the longer ones are already cov-
ered in (Cyperski et al., 2023). Concluding, our work
aims to fill this gap. General FTL cost estimation ap-
proaches are introduced in Section 2. The case study
and used data are presented in Section 3. This work
compares 35 various estimators described in Section
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4, which are applied to the task. Section 5 analyzes
the results, while the work is concluded in Section 6.

2 DYNAMIC FTL PRICING

The FTL freight cost estimation model is needed
as external fleets use dynamic pricing strategies
(Stasiński, 2020). Any information about cost influ-
ential factors helps, especially in its structure evalu-
ation and features selection. One should consider a
combination of general and custom market and non-
market factors (Vu et al., 2022). Proper selection of
the influencing features improves the estimation.

Contract dependent factors are included in the
order limiting the solution. They may address the
type of the truck and required specific equipment,
ADR (l’Accord européen relatif au transport inter-
national des marchandises Dangereuses par Route –
transport with hazardous materials) or drivers’ certifi-
cates. Shipping load and unload locations determine
the route. The location and the contract timeframe
has to be matched with the drivers availability. The
contract also defines the payment terms. The litera-
ture focuses on the blind machine learning approaches
(Pioroński and Górecki, 2022; Tsolaki et al., 2022) or
more complex hybrid ones (Cyperski et al., 2023).

3 ESTIMATION CASE STUDY

The data used to evaluate and test the method orig-
inated from the databases for selected Polish trans-
portation companies (Janusz et al., 2022). Original or-
ders database consists of approximately 414,000 po-
sitions. The data considered are limited only to the
short range contracts, which limits the number of data
to 20,239 records from the time period from January
1st , 2016 to April 30th, 2022. These record are con-
sidered as the training data. Records from May 1st ,
2022 till August 1st , 2022 are considered as the val-
idating dataset. Therefore, we obtain 703 records in
the validating dataset (see Table 1).

Table 1: Size of datasets used in experiments.

Raw data Preprocessed data
Train set 414 404 20 239
Test set 14 968 703

3.1 Data Preprocessing

Each registered contract is described by 22 variables
from the production databases. While modeling the

transportation cost, we limit this number to 12 the
most important features: date of payment, min and
max transport time, time interval, date of transport,
lead time, total and total empty distances, number of
pickups and unloadings, demand for cold storage and
fuel-cost. The following descriptors are excluded:

• ID number → it is just a sequence number,

• maximum weight and tonne-kilometres → these
data are frequently incomplete, and cannot be
practically used,

• location cluster number (Cyperski et al., 2023),
the latitudes and longitudes of the loading and un-
loading site → are used only in the selection of
the short range contracts.

Python programming language (scikit learn and
torch libraries) and MATLAB (Statistics and Machine
Learning Toolbox) are used during data processing
and the estimation process.

4 ESTIMATION APPROACHES

This section describes the machine learning ap-
proaches taken into account during the study. The
choice of black box approaches is motivated by the
unknown pattern behind the data due to the dynamic
geopolitical situation and the specificity of the very
short shipping. Among other factors, rising inflation,
Brexit and the COVID-19 pandemic are impacting
truck cargo transit prices. The following regression
estimation methods are taken into account:

– regression approaches:

LMS: Least Mean Squares,
R-LMS: Robust Linear Regression, which is ro-

bust against outliers
(Holland and Welsch, 2007),

SLR: Stepwise Linear Regression
(Yamashita et al., 2006),

TS-LR: Theil-Sen Regression
(Wang et al., 2009),

H-LR: Huber Regressor
(Huber and Ronchetti, 2011),

– support vector machines (Wang and Hu, 2005):

LSVM: Linear Support Vector Machines,
KSVM: Kernel Support Vector Machines,
QSVM: Quadratic Support Vector Machines,
CGSVM: Coarse Gaussian Support Vector Ma-

chines,
MGSVM: Medium Gaussian Support Vector

Machines,
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FGSVM: Fine Gaussian Support Vector Ma-
chines,

– Gaussian processes (Schulz et al., 2018):

EGPR: Exponential Gaussian Process,
SEGPR: Squared Exponential Gaussian Process

Regression,
MGPR: Matern 5/2 Gaussian Process Regres-

sion,
RGPR: Rational Quadratic Gaussian Process

Regression,

– k-NN: k-Nearest Neighbors Regressor
(Yao and Ruzzo, 2006),

– OMP Orthogonal Matching Pursuit
(Tropp, 2004),

– ridge regressions (Li et al., 2020):

RR: Ridge Regression,
ARD-RR: Automatic Relevance Determination,
B-RR: Bayesian Ridge Regression,

– decision trees (Breiman et al., 1984):

DTR: Decision Tree Regressor
(Breiman, 2017),

BoostRT: Boosted Regression Trees
(Bergstra et al., 2012),

GBoostRT: Gradient Boosting Regression
(Friedman, 2001),

HGBoostRT: Histogram Gradient Boosting Re-
gression
(Tiwari and Kumar, 2021),

ERTR: Extremely Randomized Trees
(Geurts et al., 2006),

BRTR: Bagged Regression Trees
(Sutton, 2005),

F-DTR: Fine Regression Tree,
M-DTR: Medium Regression Tree,
C-DTR: Coarse Regression Tree,
RFR: Random Forest Regression

(Ho, 1995),

– regularization techniques (Tibshirani, 1996):

LASSO-R: LASSO Regression,
LARS-R: LARS Lasso

(Efron et al., 2004),
ENR: Elastic Net Regression

(Zou and Hastie, 2005),
LAR: Least Angle Regression,

– ANN: Artificial Neural Network optimized ac-
cording to the following hyperparameters:

– number of hidden neurons: 12-2048,
– number of hidden layers: 1-8,

– activation fun.: RELu, Tanh, identity, logistic,
– optimizer: Adaptive Moment Estimation,

Stochastic Gradient Descent.

5 RESULTS

The comparison of the methods uses the residuum
analysis. Three performance measures are used:
Mean Absolute Error (MAE), Mean Absolute Per-
centage Error (MAPE) and Mean Square Error
(MSE). MAE error is defined as (1), while the MSE as
(2), where y is the actual and ŷ is the predicted value.

MAE =
1
n ∑ |y− ŷ| (1)

MSE =
1
n ∑(y− ŷ)2 (2)

MAPE defines the accuracy of a forecasting
method that is given by the formula (3)

MAPE =
100%

n ∑

∣∣∣∣y− ŷ
y

∣∣∣∣ . (3)

Colin David Lewis proposed in (Lewis, 1982) the ta-
ble (see Table 2) containing interpretation of typical
MAPE values. MAPE as a relative error allows us to
more naturally interpret of how accurate the model is.

Table 2: Interpretations of MAPE values.

MAPE [%] Interpretation
<10 Highly accurate forecasting

10–20 Good forecasting
20–50 Reasonable forecasting
>50 Inaccurate forecasting

5.1 Comparison of the Performance

At first, the models are simply compared by their per-
formance measures. Table 3 shows the respective val-
ues. Even the draft review brings interesting obser-
vations. First of all, each measure indicates different
models. The MSE highly penalizes residua with large
values in opposition to the small ones. It is shown (Se-
borg et al., 2010) that the MSE punishes large devia-
tions and is sensitive to the outlying observations. The
MAE is less conservative. It has the closest relation-
ship to economic considerations (Shinskey, 2002).

The difference between MAE and MAPE also re-
quires for some discussion. The fact that both indexes
indicate different regressors is due to the fact that the
errors lie in different parts of data. Minimized MAE
is due to the residua of the higher cost sacrificing the
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Table 3: Comparison of the regression models. Grey color highlights the extreme values of the models: the worst (red) and
the best (green). Bold numbers indicate the worst and the best one.

No Descriptor Method Name MAE MSE MAPE [%]

1 LMS Least Squares 205.8 704903 66.24
2 R-LMS Robust Linear Regression 189.2 837335 37.69
3 SLR Stepwise Linear Regression 226.8 1664193 75.34
4 TS-LR Theil-Sen Regressor 188.4 851928 46.61
5 H-LR Huber Regressor 177.6 763898 41.4

6 LSVM Linear Support Vector Machines 175.6 764256 36.11
7 KSVM Kernel Support Vector Machines 298.9 1943548 60.79
8 QSVM Quadratic Support Vector Machines 187.1 877200 45.61
9 CGSVM Coarse Gaussian Support Vector Machines 195.6 1088107 50.5

10 MGSVM Medium Gaussian Support Vector Machines 235.0 1479565 56.79
11 FGSVM Fine Gaussian Support Vector Machines 304.8 1746572 79.59

12 EGPR Exponential Gaussian Process Regression 155.5 748644 42.58
13 SEGPR Squared Exponential Gaussian Process Regression 202.4 1193684 42.76
14 MGPR Matern 5/2 Gaussian Process Regression 182.1 967428 42.37
15 RGPR Rational Quadratic Gaussian Process Regression 159.7 718013 38.31

16 k-NN k-Nearest Neighbors Regressor 200.9 824671 57.08

17 OMP Orthogonal Matching Pursuit 198.0 858053 40.65

18 RR Ridge Regression 205.8 704902 66.24
19 ARD-RR Automatic Relevance Determination 205.4 704991 65.99
20 B-RR Bayesian Ridge Regression 205.7 704758 66.31

21 DTR Decision Tree Regressor 167.9 614842 35.45
22 BoostRT Boosted Regression Trees 164.7 719251 33.58
23 GBoostRT Gradient Boosting Regression 151.8 695577 38.04
24 HGBoostRT Histogram Gradient Boosting Regression 140.0 490936 34.01
25 ERTR Extremely Randomized Trees 131.2 712589 27.68
26 BRTR Bagged Regression Trees 128.5 626157 26.83
27 F-DTR Fine Regression Tree 161.6 688117 29.23
28 M-DTR Medium Regression Tree 140.6 675587 27.12
29 C-DTR Coarse Regression Tree 130.5 609023 26.25
30 RFR Random Forest Regression 136.1 625584 30.77

31 LASSO-R LASSO Regression 205.9 705301 66.54
32 LARS-R LARS Lasso 205.9 705301 66.54
33 ENR Elastic Net Regression 204.9 702740 66.39
34 LAR Least Angle Regression 205.8 704903 66.24

35 ANN Artificial Neural Network 134.0 651000 27.82

contracts of low cost. In contrary, minimization of the
relative error (MAPE) does not distinguish between
the contract absolute value. This observation may be
used to design estimation performance index.

Furthermore, the reference between obtained
numbers and the MAPE errors interpretation sketched
in Table 2 shows that none of models can be consid-
ered as useful for the good or highly accurate fore-
casting. The majority of them are categorized as
reasonable. Few of these reasonable models, such
as Coarse, Medium or Bagged Regression Trees are

positioned the closest to the good forecasting cate-
gory. In contrary there are some models, like the
Least Squares, Stepwise Linear Regression, the ma-
jority of Support Vector Machines, k-Nearest Neigh-
bors, ridge regression variants and regularized models
that are clearly unacceptable.

Thus, we notice that some categories of the ap-
proaches perform better, while the other ones, despite
the version applied are not able to cope with the prob-
lem. We may clearly see, that despite the applied vari-
ant decision trees deliver consistently good results,
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in contrary to the Support Vector Machines. Linear
Regression models are characterized by high variabil-
ity in their performance. Robust Linear Regression
is twice better than the Stepwise Linear version. It
is probably due to the frequent outlying observations
in data. Artificial Neural Network model is relatively
good, however it looses against decision trees.

Further residuum analysis might be performed
using the comparison of the obtained residua his-
tograms. Fig.1 shows sample histograms for the
best Coarse Regression Tree and the worst perform-
ing Fine Gaussian Support Vector Machines model.
We clearly notice the non-Gaussian properties of the
residua probably due to the original process data or
the relatively small sample size. Furthermore, we ob-
serve that the results are skewed towards negative er-
rors, i.e. overestimation. We also see a lot of outlying
observations, which is reflected by the large differ-
ence between normal and robust version of the fitted
Gaussian probabilistic density function (PDF).
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(a) Coarse Regression Tree model.
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(b) Fine Gaussian Support Vector Machines model.

Figure 1: Sample histogram plots for the best and the worst
models with the fitted normal and robust Gaussian PDFs.

Next plot shows the predicted versus the real costs
plot analyzing the hypothesis that the error and the
quality of estimation may depend on the cost of the
shipping. Fig. 2 shows this relationship for two se-
lected models: C-DTR and FGSVM. We observe the

largest difference in the decision tree model improve-
ment is achieved for low and medium cost contracts.
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Figure 2: The predicted versus real cost for selected models.

It can be observed in Fig. 3, which shows the re-
lationship between prediction error and the real cost.
This dependence is well seen through the polynomial
fitting the error and the real cost. To discard the effect
of outliers robust regression is used for fitting.
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Figure 3: The relationship between the prediction error (3rd

order polynomial) and the contract real cost.

Residuum analysis is not a simple comparison be-
tween two numbers, as each measure, their relations
matter, which can be further assessed with the statisti-
cal analysis or dedicated multi-criteria plots. Clearly,
this is multi-criteria assessment. As one can see, ab-
solute and relative errors may indicate different pre-
diction models as good ones. There is a need for
an aggregating approach and the according measure.
We propose the two-dimensional plot of the relative
(MAPE) versus the absolute (MAE) measure, denoted
as Index Ratio Diagrams (IRD). The best model (pre-
dictor) is the one, which is the closest to the origin.
The distance measure is called the Aggregated Dis-
tance Measure (ADiMe). Fig. 4 presents IRD plot for
the considered FTL cost estimation models.

The general formulation of the aggregated ADiMe
index is sketched in Eq. (4). Generally, the measure
might be scaled with coefficients w1 and w2, which set
the ratio between the relative and the absolute index.
In the considered case both coefficients are equal and
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Figure 4: The IRD plot comparing the models: red line shows the worst model (the longest distance), green the best one (the
shortest distance).

w1 = w2 = 1.

ADiMe =
√

w1 ·MAE2 +w2 ·MAPE2 (4)

The colors on the plot indicates various classes of
the models. In this way, the assessment of the mod-
els is much easier, as each model is represented by a
single point in the two-dimensional plot. We clearly
see that the class of the decision tree models is the
most homogeneous and all of them achieve relatively
good performance. In contrary, the support vector
machines models represent the most scattered class,
with the biggest difference in their performance. We
also see that the ridge regression variant and the se-
lection of the regularization technique make no dif-
ference for the model property. Gaussian regression
schemes are also quite homogeneous, however their
performance is worse comparing to the decision trees.

Table 4 compares the models. It presents ordered
first five the best models and five the worst ones as
well. We see that the difference between the methods
is significant, as poor estimators might be three times
worse than the best one. This observation once more
confirms the well-known fact that the model selection
is crucial to achieve satisfactory estimators.

Comparison of the best models is not clearly vis-
ible in the non scaled plot. Therefore, the Fig. 5
shows the same plot, but with the magnified region

Table 4: Comparison of five the best and five the worst mod-
els according to the ADiMe.

rank method ADiMe MAE MAPE [%] MSE

1 BRTR 131.3 128.5 26.83 626157
2 C-DTR 133.2 130.5 26.25 609023
3 ERTR 134.1 131.2 27.68 712589
4 ANN 136.9 134.0 27.82 651000
5 RFR 139.6 136.1 30.77 625584

...
...

...
...

...
30 LASSO-R 216.4 205.9 66.54 705301
31 LARS-R 216.4 205.9 66.54 705301
32 SLR 239.0 226.8 75.34 1664193
33 MGSVM 241.7 235.0 56.79 1479565
34 KSVM 305.0 298.9 60.79 1943548
35 FGSVM 315.0 304.8 79.59 1746572

of the best models. It’s worth to notice that the arti-
ficial neural network model (ANN) behaves similarly
to the best predictors, being ranked as the fourth best.

6 CONCLUSIONS AND FURTHER
OPPORTUNITIES

The presented work has three dimensions and conclu-
sion types. Firstly, it analyzes the issue of the short
routes external fleet FTL contracts cost assessment,
which actually is hardly analysed in the literature.
Subject seems to be underrated, despite of its huge

Study on Cost Estimation of the External Fleet Full Truckload Contracts

321



R-LMS

H-LR

LSVM

EGPR MGPR

RGPR

OMP

DTR

BoostRT

GBoostRT

HGBoostRT

ERTR

BRTR

F-DTR

M-DTR

C-DTR

RFR

ANN

25

27

29

31

33

35

37

39

41

43

45

120 130 140 150 160 170 180 190 200

M
A
P
E

MAE

Figure 5: The scaled IRD plot comparing the best prediction models.

practical value. Probably it is hidden behind the gen-
eral FTL pricing, or the results are not so impressive
though being practically acceptable.

The second contribution is in fact that we were
able to find out approaches, originating from the de-
cision trees that allow to get satisfactory models. Es-
pecially, the Coarse, Medium or Bagged Regression
Trees deliver reasonable prediction accuracy.

Finally, the obtained results are used to perform
deeper residuum analysis. It shows that an error is
not equal to the error. The specific use of the measure
may favor one method against the other and the inter-
pretation of the results can be easily biased. There-
fore, the estimation model analysis should not be lim-
ited to the simple comparison of one measure num-
bers, but further investigation using statistical meth-
ods, or just different residua presentation can help.

It is also proposed the aggregated approach to the
multi-criteria residuum analysis using the visual ap-
proach through the Index Ratio Diagrams (IRD) and
resulting Aggregated Distance Measure (ADiMe).

The analysis of the FTL shipping is still not over.
Several subjects remain open. How to improve ob-
tained models and optimize their hyperparameters?
How to improve the residuum analysis and how to get
it simpler? There is still a work to be done.
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