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Abstract: When artificial intelligence is used for making decisions, people are more likely to accept those decisions if
they can be made intelligible to the public. This understanding has led to the emerging field of explainable
artificial intelligence. We review how research on explainable artificial intelligence is being conducted and
discuss the limitations of current approaches. In addition to technical limitations, there is the huge problem
that human decision-making is not entirely transparent either. We conclude with our position that the opac-
ity of intelligent decision-making may be intrinsic, and with the larger question of whether we really need
explanations for trusting inherently complex and large intelligent systems — artificial or otherwise.

1 INTRODUCTION

Those of us who have returned to the refrigerator mul-
tiple times expecting different food to have materi-
alised know that human behaviour is often inexplica-
ble; at least we can rely on the cold logic of machines
to make decisions, though. Or can we?

Doubts about involving artificial intelligence (AI)
in our decision-making has motivated calls for human
scrutiny. For this, it is essential that AI-motivated
decisions can be seen to ‘make sense’ to human ob-
servers; that is, they should be explainable. Explain-
able artificial intelligence (Das and Rad, 2020), of-
ten referred to as XAI, is an emerging and somewhat
embryonic field. XAI is the development and analy-
sis of a set of tools with the motivation of providing
human-readable explanations about how artificial in-
telligence algorithms make their decisions. Although
there has been increased interest and effort in this re-
search area lately (Keane and Smyth, 2020; Trajanov
et al., 2022; Thomson et al., 2023), there is a lack of
proper analysis and benchmarking of XAI methods
and a lack of consistency in how XAI is carried out.
Additionally, there are important limitations to XAI
techniques. In the sections that follow, we discuss the
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most popular methods in the existing XAI categories
and the problems with using them. We then follow
up with overarching issues and challenges of the XAI
domain in Section 6. In Sections 7-9, explainable real
intelligence is introduced and methods, theories and
limitations for explaining human intelligence are dis-
cussed. Finally, our position on the matter is given in
Section 10.

2 FEATURE ATTRIBUTION
METHODS

Most popular XAI methods fall into the category of
feature attribution methods, meaning they attribute a
relative or absolute importance measure to each fea-
ture for a given machine learning model and its pre-
diction. These methods work post-hoc and are usu-
ally model-agnostic; they aim to either explain a sin-
gle prediction (local) or a complete machine learning
model (global). Local explanation methods can also
be aggregated over an entire training or test set to pro-
vide more global explanations.

Local Feature Attribution. One of the most pop-
ular feature attribution methods is Shapley additive
explanations (Lundberg and Lee, 2017) (usually re-
ferred to as SHAP) which provide local explanations
for an individual prediction. Given a feature, f1,
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SHAP considers models which contain f1 and obtains
the predicted values for the input data at hand; it also
does this for models which are identical to those in
the previous step, except f1 (and only f1) has been re-
moved as a predictor. The mean differential between
the predicted output (including f1) and the predicted
output (excluding f1) are the feature’s marginal con-
tribution; the SHAP value for f1 is the mean marginal
contribution over all considered models. SHAP val-
ues can be positive, negative, or even zero.

Despite the prevalence of SHAP in explainable
AI, it exhibits several disadvantages. For large feature
sets SHAP is computationally expensive, and in these
cases it relies on approximation techniques such as
exploiting the tree information in TreeSHAP (Yang,
2021) or by using a subsample of model configura-
tions; it follows that randomness can have an effect
on the computed values. In addition, values can de-
pend on the order in which features are presented.
SHAP is not particularly stable: for example, a fea-
ture may have a large SHAP magnitude for one spe-
cific input, but not for any other. Additionally, there is
the question of just how human-accessible SHAP val-
ues are. They are essentially just numbers on a non-
normalised scale and it may not be clear to a stake-
holder or patient how to interpret them. There is also
the issue that SHAP values are unlikely to be intuitive
or helpful when the features in question are individ-
ual pixels in image data (a map of image features with
scores like this is called a pixel attribution map) or
complex time-series data. A recent work showed that
SHAP can be misleading when the marginal contri-
butions for a feature have differing amounts of noise
(Kwon and Zou, 2022); they proposed weightedSHAP
to address this issue.

Local interpretable model-agnostic explanations
(Ribeiro et al., 2016), or LIME for short, is another
popular local XAI approach (Magesh et al., 2020;
Gabbay et al., 2021; Kuzlu et al., 2020). LIME es-
timates feature importance magnitudes for a predic-
tion by randomly perturbing the values of the input
data several times and obtaining the resultant predic-
tion by the model. A separate linear model is then fit
to the perturbed inputs and associated outputs; the co-
efficients for the linear model are the LIME scores for
the original model. One of the limitations of LIME
is that it depends on the randomness and size of per-
turbations applied to the input data. These effects can
result in different scores for the same features. LIME
is designed for computing feature scores for a single
prediction, meaning that it could fail to pick up on
global patterns or overall model behaviour. Another
limitation of LIME is that it might generate perturba-
tions that are infeasible or unrealistic in reality (due

to constraints or underlying feature interactions), and
therefore generate explanations that are unrealistic.

Global Feature Attribution. While each local fea-
ture attribution method can be used for approximating
global explanations, there are also methods specifi-
cally designed for attributing importance to features
on a global model level. Sensitivity analysis meth-
ods are perhaps the oldest variant of explainable AI.
The Morris method (Morris, 1991) or Sobol sensitiv-
ity analysis (Sobol, 2001) are methods to create global
explanations of a model by using a large space fill-
ing design of samples and computing the sensitivity
scores for features, groups of features, and feature
interactions. These methods also allow for the com-
putation of second and higher order interactions, but
they are computationally very expensive and do not
explain single predictions. Next to Morris and Sobol
there is a large number of other similar approaches
(Van Stein et al., 2022) that can be used for global sen-
sitivity analysis. Most of these methods are limited to
specific sampling methods, require a large number of
samples to show robust behaviour, and are computa-
tionally expensive.

Feature Interactions. Real world prediction sce-
narios often — if not always — exhibit interactions
between features; this means that the combined ef-
fect of two or more features is different than what
their additive individual effects would be. This can
be the case in, for example, predicting breast can-
cer (Behravan et al., 2020) and acute coronary syn-
dromes (Alsayegh et al., 2022). Despite this, common
XAI techniques do not properly address, account for,
and uncover feature interactivity: SHAP, LIME, and
counterfactual explanations do not manage this well.
There are some tools which are aimed at feature in-
teraction, however. Friedman’s H-Statistic (Friedman
and Popescu, 2008) is based on partial dependence
decomposition and represents the proportion of vari-
ance explained by an interaction. The H-Statistic is
very computationally expensive (Molnar, 2020); in-
deed, the experience of an author of the present work
is that it can be prohibitively expensive in situations
where computational power is restricted due to data
privacy. The H-Statistic is also sensitive to noise in
the data.
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3 COUNTERFACTUAL
EXPLANATIONS

Counter-factual explanations (Keane and Smyth,
2020) are a human-friendly XAI approach. They are
written in human language and take the form ‘if X ,
then Y ’, where X is a configuration of — or change
to — the input data and where Y is the resultant pre-
dicted response. To generate a counterfactual for a
particular input, the practitioner decides what they
desire the output to change to. In regression con-
texts, an example might be ‘for the predicted revenue
to increase by £500’; for classification, it might be
‘for the prediction of cancer to switch to no cancer’.
A search algorithm is then used to discover which
mutants of the original input data result in the de-
sired outcome. These solutions are then converted
into human-readable sentences; these are counterfac-
tuals. Although this approach is intuitive and widely
understandable to stakeholders, there are several limi-
tations. Counterfactuals do not consider feature inter-
activity, or address the problem of correlation versus
causality. Multiple conflicting counterfactuals can ex-
ist for the same model, and in these situations it is not
clear which takes precedence over the other.

4 MODEL INTRINSIC
EXPLANATIONS

Model intrinsic XAI techniques are mainly presented
in the context of artificial neural networks, where the
weights of the layers, the gradients, or attention mech-
anisms (Vaswani et al., 2017) are used to generate ex-
planations. Neural networks often have millions, or
indeed billions, of parameters. With this in mind, it
might be argued that intelligible explanations for what
is happening inside the network are improbable. Even
so, there have been some steps forward to this end.
Network dissection (Bau et al., 2017) is an approach
for convolutional neural networks (CNNs) which cap-
tures how interpretable learned features in the latent
space are. The method maps channels which have
been significantly ‘activated’ with human-defined ob-
jects, such as ‘ear’. Unfortunately, in realistic CNN
architectures there can be a very high number of chan-
nels to consider. Additionally, while the explanation
of a network component is valuable, it does not ex-
plain the whole system and can miss feature interac-
tions. Also, it could be argued that these explanations
are not truly accessible: grasping them fully requires
an understanding of CNNs.

As mentioned in Section 2, pixel attribution maps

display an importance score for each pixel compris-
ing input data, and can be based on SHAP values (or
indeed LIME). There are also gradient-based tools for
this, such as Image-Specific Class Saliency (ISCS)
(Simonyan et al., 2013). ISCS works by propagating
an particular image through the network and then us-
ing derivatives to compute the gradients attributable
to input pixels. Another gradient-based approach
is gradCAM (Selvaraju et al., 2017), which calcu-
lates the gradients backwards to the deepest convo-
lutional layer and outputs a map indicating important
regions of the original input image. Similarly to net-
work dissection, ISCS and gradCAM can miss fea-
ture interactions. ISCS can have difficulty identifying
small features, and its precision can be quite coarse-
grained. GradCAM can sometimes identify image re-
gions which are not actually relevant to the desired
explanation, leading to a misleading interpretation.

A solution to the problem of unintelligible neu-
ral networks might be deliberately simplifying mod-
els with explainability in mind. The problem with this
is the known tradeoff between accuracy and complex-
ity (which is visualised in Figure 1); it is likely that
a substantial simplification would be needed to facil-
itate truly accurate justifications for decisions — an
example of simplification would be reducing param-
eter cardinality by removing network layers — and
a corresponding decrease in model quality would be
expected.

5 INTERPRETABLE MODELS

There is also, of course, the option of deliberately
choosing models which are known to be inherently in-
terpretable: decision trees or linear models, for exam-
ple. A decision tree, with the rules it has learned from
the data, can be visualised (if not too big). People of-
ten find that reading the binary rules is intuitive and
accessible. With linear models, feature coefficients
can be extracted. These are essentially weights or im-
portances for the features. Despite these interpretabil-
ity advantages, deciding upon one of these as your
model is not a straightforward choice: decision trees
have a sensitivity to noise, and linear models have un-
derlying assumptions which may not suit non-trivial
real world data. More complex models such as neu-
ral networks may often be needed to capture nonlinear
patterns in data; in general, more interpretable models
are less accurate. This phenomenon is shown in Fig-
ure 1. Notice that while linear models are at the high
end of interpretability, they are typically lower in ac-
curacy. On the other end, deep neural networks tend
to be low in interpretability but higher in accuracy.
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Figure 1: The tradeoff between model accuracy and model
interpretability.

6 CONSIDERATIONS AND
LIMITATIONS

Throughout the discussion of popular XAI tech-
niques, we notice that a common limitation to them is
their sensitivity to randomness and noise; this could
be formalised as their lack of stability. There is also
the issue that prevalent XAI tools such as SHAP,
LIME, and counterfactuals do not properly consider
feature interactions. In addition there is not much
work done to integrate uncertainty quantification in
XAI, as often machine learning models have to deal
with uncertainty and have uncertainty in their pre-
dictions. In practise, XAI results are presented of-
ten over-confidently without taking uncertainty and
model over- and under-fitting into account.

We observe that there is a lack of consistency in
how practitioners carry out explainable artificial in-
telligence. For example, some carry out SHAP in iso-
lation (Moncada-Torres et al., 2021); some use both
SHAP and LIME (Rao et al., 2022); others use SHAP,
LIME, and counterfactuals (Zhou et al., 2022). Aside
from the specific tools used, there do not appear to be
known ‘best practice’ axioms yet. In addition, there
are only a few (very recent, somewhat limited and not
yet widely used) benchmark suites for XAI methods
(Liu et al., 2021; Arras et al., 2022; Agarwal et al.,
2022; Clark et al., 2023).

An arterial problem in the field of XAI is the phe-
nomenon of ‘false explanations’. False explanations
are inaccurate or misleading and can arise for a num-
ber of reasons: for example, noise (in the data, the
model, or the XAI method itself); spurious correla-
tions (also known as the Rashomon effect (Leventi-
Peetz and Weber, 2022)), and the issue of causal-
ity versus correlation; and bias in the training data,
which may result in that bias being amplified through

explanations of prediction. The most salient chal-
lenge in XAI, however, is arguably the accuracy-
complexity trade off which was mentioned in Sections
4 and 5: neural networks are popular due to their un-
rivalled accuracy, but the task of making their inner
workings truly comprehensible and accessible is gar-
gantuan.

7 METHODS FOR EXPLORING
EXPLAINABLE REAL
INTELLIGENCE

What constitutes XAI ultimately depends on what
makes sense to human intelligence. This depends
on whether we recognise machine decisions as ones
we could make. But how do we make decisions?
As the anecdote at the beginning of this article sug-
gested, there are people who expect redemption from
their refrigerator. Perhaps, therefore, we should re-
consider the likelihood of finding explainable real in-
telligence (XRI) in humans. Human intelligence is a
multifaceted concept. Our search for XRI requires a
focus on decision-making capacity. At the face of it,
XRI seems readily available. We can simply ask de-
cision makers to explain their considerations. In ev-
eryday life, this is normally sufficient, as long as we
can pretend that our decisions are rational.

In science, more caution is needed. Introspective
reports can be considered fundamentally unreliable
(Schwitzgebel, 2008). People are known to come up
with all sorts of rationalizations after the fact. There-
fore, we may want them to express their reflections
while they are still in progress (think-aloud protocols;
(Simon and Ericsson, 1984). However, people hide
their true motives; some cultures find it unusual, un-
comfortable and unnatural to express what they are
thinking (Güss, 2018; Kim, 2002). Moreover, many
people have too limited a vocabulary to do so, or
lack the necessary metacognitive skills such as self-
control, prediction, and self-questioning (Wong and
Jones, 1982).

A final reason why thought protocols may be un-
reliable is that deliberation might not always be con-
scious. Dijksterhuis and Nordgren proposed that de-
cisions improve after a diversion of conscious thought
(Dijksterhuis and Nordgren, 2006). This, apparently,
because the thought process continues unencumbered
by conscious hangups, and becomes more fruitful.
Yet this seems to be a red herring, as a study by
Nieuwenstein et al. found the evidence for improved
decision-making not replicable (Nieuwenstein et al.,
2015).
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Think-aloud protocols can be informative in do-
mains fostering covert speech, for instance in com-
plex math or for monitoring the user experience of
automated devices (Simon and Ericsson, 1984). Even
there will protocols necessarily be incomplete, given
the time limits on what people can overtly verbalize
while performing an attentionally demanding task. In
nonverbal, i.e. pictorial domains, sketching made dur-
ing the process may be collected to understand the
reasoning (Jaarsveld and van Leeuwen, 2005). Ca-
pacity limitations similarly apply to have sketching
produce informative results.

When introspective reports or sketches are un-
available, we may turn to implicit measures such as
eye tracking, or decoding neural signals. In humans,
noninvasive signals can be obtained through EEG/
MEG, or fMRI, among others. Eye-tracking can in-
form us what an observer is fixating on, and there-
fore is attending to. But this measure has limitations:
in real images, several items compete for attention.
As a result, observers often fixate on one, while fo-
cusing covert attention on another. As a result, both
are quickly forgotten (Nikolaev et al., 2013). Eye-
tracking results, therefore, can be unreliable at times,
in particular when complex, realistic scenes are in-
volved.

Decoding algorithms for brain signals were ini-
tially developed in the context of brain-computer in-
terfaces. Within the temporal (fMRI) and spatial
(EEG) restrictions of the medium, they reveal the non-
stationary and dynamic patterns of brain activity that
play increasingly prominent roles in our efforts to un-
derstand cognitive processes (Loriette et al., 2022).
This field is rapidly expanding. Machine-learning-
based techniques for decoding dynamic signals are
used for identifying the locus of covert attention in
humans (Astrand et al., 2015). Cross-temporal de-
coding can be used for distinguishing codes for stable
stimulus representation from transient ones, which
presumably are used in computation (King and De-
haene, 2014).

Despite these advances, they can provide us with
only a fragmented understanding of what the brain
does. We can identify patterns in neuronal activity,
but what we observe turns out to be highly context-
specific. In combination with the high-dimensionality
of the brain, this implies that patterns are hard to pre-
dict. Unlike in artificial neural networks, we have
only limited knowledge of the dynamics by which
brain and brain activity evolve, what aspects of the
activity and structure are relevant, and which are not.
In other words, we need a theory of mind and brain to
guide us in developing our hypotheses and predictions
involving brain signals.

8 THEORIES OF XRI

XRI is traditionally associated with rationality, i.e.
following rules or maxims in decision-making (Kaisla
et al., 2001). Not all rules are good. Thus the notion
of rationality has inherently a moral component. The
doctrine of liberalism prescribes that it is ultimately
beneficially for society, when each individual pursues
their own benefit. As a result, classical economics
has long upheld the fiction that decisions optimize
value (or utility) to the individual. Psychologists have
helped dismantle this idea, two of which have been
awarded Nobel prizes. (Simon, 1956) proposed that
decisions are made by satisficing (a port manteau of
sufficing and satisfying). Rather than optimal bene-
fits, those are preferred that are good enough, and easy
to obtain. We may still consider this rational if we
take into account the limitations to our information
processing capacity and the information available to
us (Simon, 1982). More generally, (Simon, 1978) ar-
gues that rationality should take into account the pro-
cedural aspects of decision-making, both individually
and within an organization and its environment.

Thus satisficing is an ‘ecologically rational’ strat-
egy that enables efficient decision-making under time
constraints. Like other animals, humans are some-
times forced to do just that. Add to this the fact that
human decisions made in a social context may de-
viate from individual ones: ‘I want A but we want
B’. To accommodate these aspects of our decision-
making, Daniel Kahneman famously developed his
two-systems theory (Kahneman, 2011). System 1
is involved in decisions which are made effortlessly,
intuitively, involuntary or habitually and with min-
imal conscious involvement, while system 2 is all
about reasoning processes needing focused attention
(Stanovich and West, 2000). This distinction resem-
bles that between automatic and controlled process-
ing in visual search (Schneider and Shiffrin, 1977) but
goes beyond it in scope. System 1 includes all innate
cognitive skills and ones acquired through extensive
practice, such as reading and grandmaster chess. Sys-
tem 2 encompasses reasoning, selection, and is asso-
ciated with a sense of agency. Both systems interact;
a salient stimulus (e.g. a loud bang) triggers System
1, which alerts System 2 which takes control to sup-
presses System 1’s flight response and produces the
reasoned decision whether to explore the source. Sys-
tem 2 can instruct System 1. Waiting for a relative at
the station, and knowing that the person has a beard,
System 2 instructs System 1 to look for a person with
a beard. System 1, which determines routine deci-
sions, operates with superficial heuristics and is liable
to biases such as availability, representativeness and
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anchoring (Tversky and Kahneman, 1974), implying
that reasoned decisions are superior. This is a strong
claim whose value depends on a precise demarcation
of both systems.

However, the broadness of these concepts and the
appeal to intuitive examples makes it hard to pin
down. The soundness of the empirical basis of Kah-
neman’s work has been contested. Namely, Gigeren-
zer et al. argue that the representativeness heuristic
implies that people ignore base rates in belief revi-
sion (Gigerenzer et al., 1988). Tversky & Kahne-
man’s “engineers versus lawyers problem” purported
to show that people do not revise their beliefs in light
of probability information (How likely is the person
matching the description of a typical lawyer to be an
engineer, given this description is drawn from an urn
with 30/70 vs 70/30 engineers) (Tversky and Kahne-
man, 1974). Whether base rate neglect occurs turns
out to depend on the context. In domains where
people have everyday familiarity in applying proba-
bilistic reasoning (“how likely is Sunderland to win
against Manchester United, given that the half time
score is 3–1”), base rates are not ignored. In other
words, people here operate like Bayesians. Gigeren-
zer argues that what goes by System 1 is actually
more intelligent than Kahneman suggests, and that its
“gut feelings” often are superior to reasoned decisions
(Gigerenzer, 2007).

9 FROM BEHAVIOR TO THE
BRAIN

Bayesian principles today are believed to underly
much of our everyday responses. Predictive cod-
ing theory assumes that the brain constantly keeps
and updates an internal model of the environment.
The model is tested and updated against our sen-
sations. Testing and updating happens recursively
on several hierarchical strata, where the higher level
passes predictions to the lower one, and the lower
level sends prediction errors (or surprise) up, as a re-
sult of which the priors are adjusted. Predictive cod-
ing originated in models of the visual system (Rao and
Ballard, 1999) and was generalized to a theory of cog-
nition and brain (Clark, 2013). It provides an action-
oriented view of cognition, given the output generated
by the top-down stream projects to the motor system.

According to Friston, reduction of overall predic-
tion error is the basic function of the brain. He pos-
tulates this principle on account of a thermodynamic
analogy, identifying prediction error with free energy.
Living systems are unique as self-organizing systems
in that they work to maintain or increase order within

their system. Hence the states with locally minimal
free energy constitute a global attractor for the sys-
tem. As long as the system dwells near the attractor,
sensory surprisals are supposed to be maximally in-
frequent and cause minimal perturbance.

Note first, that students of neural networks will
be familiar with what is being advertised here. Sim-
ilar principles involving energy minimization can be
found in Hopfield networks and Boltzmann machines,
and in statistical inferencing algorithms (MacKay,
1995); attractor dynamics are the bread and butter
of recurrent neural networks. The way surprises are
minimized resembles the Generative Adversarial Net-
work (GAN) approach. None of these approaches,
however, have gone so far in exploiting the analogy
of energy and information entropy.

Herein lies much of the attraction of the free en-
ergy principle. It promises no less than to unify biol-
ogy and psychology under the same thermodynamic
principles. But it is exactly these principles that cause
havoc for the theory. The second law of thermody-
namics requires that if order is created internally to
minimize free energy, an equal or larger amount of
warmth (or free energy, or disorder) must be dissi-
pated to its environment. Estimates for the upper
bounds of energy dissipation in biological systems ex-
ist (Skinner and Dunkel, 2021). But what would be
such dissipation in the informational analogue of free
energy? Perhaps the immense amounts of nonsense
spouted on social media may count as such? More
seriously, to prevent such harm to the outside world
and vice versa, Markov blankets isolate the interior
brain from the exterior world. This, allows the non-
equilibrium steady-state of minimal surprise to per-
sist, but in the informational version only. So the pre-
tended universality of this approach appears to be a
case of bait and switch.

This notwithstanding, at least internally, rational-
ity has been restored to the system: rule following
behavior was initially replaced with satisficing, and
now has made a comeback with the principle of free
energy minimization. This principle restores rule fol-
lowing behavior at computational level, in the form
of attractor dynamics. The theory promotes random
and fragile attractors. This allows the system to show
complex dynamical trajectories when stochastically
perturbed, and wander chaotically amongst the vari-
ous wings of the attractor (Tsuda, 2001)). Because
it allows for complex attractor structures and chaotic
itinerancy, inflexibility is not a problem for such sys-
tems. But is this behavior ecologically rational? If
brains compute, they must compute online to meet
the immediate demands of navigating their environ-
ment. Attractors cannot be reached in short time. This
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means the approach is unsuitable for online comput-
ing. Transient computation may be more suitable in
that case (Rabinovich et al., 2008). Transients galore
in chaotic itinerancy. But when they do the compu-
tational work, whence the need for a global attrac-
tor minimizing surprise? Early criticisms of this ap-
proach have pointed out that such a principle may be
limited in its ability to explain exploratory behavior
(Van Leeuwen, 1990). We may have to allow for the
possibility that living systems actively seek surprise.
This is needed for enterprise, exploration and discov-
ery. The same may be true for the brain. Exploration
is needed for making new discoveries in creative in-
vention (Verstijnen et al., 2000).

Later critiques (e.g. (Di Paolo et al., 2022)) have
emphasized the incompatibility of the free energy
principle as applied here, and embodied cognitive
science (Varela et al., 1992), in particular the enac-
tive approach. According to Di Paolo, “These ten-
sions have to do with how the enactive approach con-
ceives of agents as precarious, self-constituted entities
in ongoing historical development and capable of in-
corporating different sources of normativity through-
out their development, a world-involving process that
is co-defined with their environment across multiple
spatiotemporal scales and together with other agents.”
(p.3). The enactive approach argues that our mental
life is found at this ecological level, rather than hid-
ing in the brain under a Markov blanket.

It will be clear that underlying these tensions are
differences in how we consider the human cogni-
tion: as enclosed within its organism, mainly engaged
in ordering its own attic or as a person, individu-
ally and collectively engaging with their environment.
Humans typically vacillate between such states: ex-
ploitation and exploration. We observe this kind of
everyday behavior, but encounter it even in the labo-
ratory, for instance in the perception of visual scenes
(Nikolaev et al., 2023). Perhaps such cycles, rather
are relevant to how brain dynamics should be under-
stood. It remains to be seen if the notions of chaotic
itinerancy and the free energy principle are versatile
enough to explain this behavior.

10 POSITION

Given the above observations, how likely is it that
theories of human intelligence (or: cognition) will,
within any reasonable amount of time, reach a level
of maturity such that we can actually explain — or
maybe even predict — a person’s decisions?

Not very likely, it would seem. The rule-based
explanations of the 1950s, 60s, and 70s all had their

fallacies — either from a philosophical or an empir-
ical standpoint — and do not hold the explanatory
power we need to truly understand why or how people
make decisions, or classify sensory instances. Do the
more contemporary models, rooted in thermodynam-
ics, entropy, time series and attractors then provide for
more explainability? Hardly. Even though these mod-
els have (some) biological validity, and the promising
‘fragile’ attractor models do seem to answer the ‘how’
question, at least partially, the explanation of ‘why’
still eludes. Worse still, we might never capture it.
Many dynamical systems exhibit chaotic behaviour,
which in some cases is unpredictable (Moore, 1990)
— for the same reason the local weather is unpre-
dictable: the unpredictability is a property of the sys-
tem itself ; any forward projection of the system will
separate exponentially fast from the real state (Ding-
well, 2006).

With these thoughts in mind, one cannot help but
consider this: human intelligence is opaque to this
extent, then what justification do we have trying to
explain artificial intelligence? Why do we generally
trust a medical diagnosis from human doctor better
than the same diagnosis from an AI algorithm – even
when the latter performs better? The answer might
be partially because it’s new. Resistance to new tech-
nology has persisted since the dawn of time; some
famous examples include nuclear power, information
technology and biotechnology (Bauer, 1995). AI, ex-
plainable or unexplainable, has recently made its way
into our daily lives, and is rapidly gaining ground.
To what extent ‘explanantion’ should be seen as our
generations’ resistance, or our trouble getting accus-
tomed to the new reality will likely be answered by
future generations.

Maybe Max Planck’s famous quote is a good way
to conclude this position: “[A new scientific truth
does not triumph by convincing people and making
them see the light, but rather because its opponents
eventually die, and a new generation grows up that
is familiar with it.]” (Planck, 1949). All this does
not mean we should give up human control over AI
decision-making. Rather than putting trust on XAI,
we should rely on our gut feelings (Gigerenzer, 2007)
when evaluating the role of AI in our decisions.
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