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Abstract: There are sixteen critical infrastructure (CI) sectors whose assets, systems, and networks, whether physical or 
virtual, are considered so vital to the United States that their incapacitation or destruction would have a 
debilitating effect on military readiness, economic security, public health, or safety. The communications 
sector is unique as a critical infrastructure sector due to its central role in facilitating the flow of information, 
enabling communication, and supporting all other CIs as well as other components of the economy and society. 
Within the communications sector, the cellular base station (cell tower) network serves as its foundational 
backbone. During a crisis, if towers in the network stop functioning or are damaged, the service load of 
associated users/businesses will have to be transferred to other towers, potentially causing congestion and 
cascading effects of overload service outages and vulnerabilities. In this paper, we investigate cellular base 
station network vulnerability by uncovering the most critical nodes in the network whose collapse would 
trigger extreme cascading effects. We model the cellular base station network via a linear-threshold influence 
network, with the objective of maximizing the spread of influence. A two-stage approach is proposed to 
determine the set of critical nodes. The first stage clusters the nodes geographically to form a set of sub-
networks. The second stage simulates congestion propagation by solving an influence maximization problem 
on each sub-network via a greedy Monte Carlo simulation and a heuristic Simpath algorithm.  We also identify 
the cascading nodes that could run into failure if critical nodes fail. The results offer policymakers insight into 
allocating resources for maximum protection and resiliency against natural disasters or attacks by terrorists 
or foreign adversaries. We extend the model to the weighted LT influence network (WLT-IN) and prove that 
the associated influence function is monotone and submodular. We also demonstrate an adaptable usage of 
WLT-IN  for airport risk assessment and biological intelligence of COVID 19 disease spread and its scope of 
impact to air transportation,  economy, and population health.

1 INTRODUCTION 

Critical infrastructures (CI) are systems, assets, and 
networks that are essential for the operation of a 
country's economy, security, and public health and 
safety. They are critical to the functioning and well-
being of a society, and their disruption could have 
debilitating effects on private businesses and 
government.  

 
a  https://orcid.org/0000-0003-0415-4640 

The importance of CI security and resilience has 
been identified by the U.S. government (Presidential 
Policy Directive 21 (PPD-21), White House, 2013). 
CIs are interdependent – a malfunction in one can 
lead to cascading failures in the components of others. 
For example, a cyberattack on the power grid could 
impact communication networks, transportation 
systems and healthcare services. And the most recent 
COVID-19 pandemic brings to light the devastating 
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paralyzing cascading impacts stemming from 
healthcare and public health disruptions to the supply-
chain, education, emergency services, food and 
agriculture, transportation systems, and government 
and commercial facilities. This makes ensuring the 
resilience and security of critical infrastructures 
crucial for maintaining overall societal functioning.  

The communication sector is a unique critical 
infrastructure due to its central role in facilitating the 
flow of information, enabling communication, and 
supporting all the other CIs and other components of 
the economy and society. Communication services 
are available across diverse environments, including 
urban, suburban, and rural areas. They are essential 
for connecting individuals and organizations, 
regardless of their geographic location. (National 
Infrastructure Protection Plan 2015).  

Within the communication sector, the cellular 
base station network serves as its physical foundation 
backbone. During a crisis, if cell towers in the 
network stop functioning or are damaged, the service 
load of the associated users will have to be transferred 
to other nearby towers, potentially causing congestion 
and cascading effects of overload service outages and 
vulnerabilities.  

This paper presents a linear-threshold influence 
network to model the cellular base station network. 
By maximizing the spread of influence, the system 
returns a set of critical nodes that asserts the 
maximum cascading effects. Computationally, a two-
stage approach is proposed to investigate the 
cascading effects. The first stage involves performing 
geographical clustering on all nodes to form sub-
networks. The second stage constructs a linear-
threshold influence network for each sub-network. 
The construction of the sub-networks is only 
necessary when the problem scale is too large, 
rendering the instance computationally intractable. 
We also demonstrate its generalizability for 
interdependencies and cascading analyses on early 
COVID transmission via air transportation.  

2 RELATED WORK 

Critical infrastructure interdependency was first 
investigated in 2001 (Rinaldi et al., 2001). The paper 
provides physical, cyber, geographical, and logical 
classifications for CI interdependency. Their 
subsequent paper summarizes the likely methods for 
interdependency analysis (Rinaldi, 2004).  
 
 

2.1 Modeling Interdependency 

Modeling critical infrastructure interdependency is 
essential for proactively managing and safeguarding 
critical systems that underpin modern societies. It 
enables governments, organizations, and 
communities to identify and assess vulnerabilities, 
enhance resilience, prepare, and train emergency 
response, conduct scenario planning, allocate 
resources, and develop effective strategies for 
maintaining the stability and security of these vital 
systems (Atef & Bristow, 2022; Brown et al., 2004; 
Delamare et al., 2009; Dudenhoeffer et al., 2006; 
Eusgeld et al., 2011; Heracleous et al., 2017; Islam et 
al., 2023; Jiwei et al., 2019; Johansson & Hassel, 
2010; Lin & Pan, 2022; Nan & Sansavini, 2017; 
Ouyang, 2014; Rinaldi, 2004; Santella et al., 2009; 
Trucco & Petrenj, 2023; Wang et al., 2022; Yabe et 
al., 2022).  

There are three methods for modeling 
interdependency: simulation-based, analytics-based, 
and data-based (Ouyang, 2014; Aung & Watanabe, 
2009; Cimellaro et al., 2019; Galbusera et al., 2020; 
Robert et al., 2008; Sharma et al., 2021; Tasic et al., 
2019). Among the simulation-based approaches, 
Dudenhoeffer designed an agent-based approach to 
simulate interdependencies and used a genetic 
algorithm to select the CI components to 
protect/restore (Dudenhoeffer et al., 2006). In 
Johansson and Hassel, the CI interdependency is 
modeled as a network and the flows are simulated 
when removing edges to find the strains added to the 
network (Johansson and Hassel, 2010). Zio and 
Sansavini modeled the interdependency as load 
transfers where failed nodes would transfer their 
loads to adjacent nodes; however, no realistic 
experiments were conducted to test how well the 
model works (Zio and Sansavini 2011).  

Using analytics-based approaches, Wallace et al. 
and Lee II et al. modeled the provision 
interdependency as a multi-commodity network flow 
problem and formulated it as a mixed-integer 
program (MIP) (Wallace et al., 2001; Lee II et al., 
2007). Svendsen and Wolthusen designed another 
multi-commodity flow formulation but assigned a 
response function for each arc and each resource 
where some of the resources can be buffered 
(Svendsen and Wolthusen, 2007). A drawback of 
using network flow problems for this is that it can 
only model the provision interdependency and not the 
other types.  

Data-based models are typically designed based 
on specific data forms. For instance, Ramachandran   
summarizes the geospatial data to find the CI 
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components that would affect most other CI 
components geographically (Ramachandran et al., 
2015). Reilly assumes that each CI sector is managed 
by a specific governmental or private department and 
explores the externality of the policy taken by some 
departments as an interdependency (Reilly et al., 
2015). 

2.2 Influence Network 

Influence networks have proven suitably robust for 
investigating the relationships between people and 
objects (Calio et al., 2018; Chen et al., 2022; Goyal et 
al., 2011; Kempe et al., 2003; Kim et al., 2018; Lee 
& Wang, 2017; Palos-Sanchez et al., 2018; Peng et 
al., 2018).  

The concept of an influence network was first 
introduced by Kempe (Kempe et al., 2003). The 
authors formulated two influence network models, 
proved the submodularity of the influence function, 
and the NP-hard complexity of the problem. They 
also proposed a Greedy-based Monte-Carlo 
algorithm to solve the problem. However, the 
network models have two major sources of 
inefficiency. First, finding the expected spread of a 
node set is NP-hard. Second, the basic greedy 
algorithm is quadratic in the number of nodes.  In later 
years, some researchers attempted to improve the 
computational scalability of this approach. Leskovec 
discussed the original cost-effective lazy-forward 
(CELF) algorithm, and Goyal and Leskovec proposed 
CELF++ that utilized the submodular properties of 
the influence function to reduce the number of 
influence function simulations and the running time 
by over 80% (Leskovec et al., 2007;  Leskovec et al., 
2009; Goyal et al., 2011). Goyal et al. designed a 
faster heuristic solution method known as Simpath to 
evaluate the influence function (Goyal et al., 2011). 
Simpath does not use Monte-Carlo simulation and 
thus improves the running time significantly. 

3 MATERIALS AND METHODS 

3.1 Modeling the Cellular Base Stations 

The modern cellular network consists of several key 
components (cellular base stations, mobile devices, 
radio access network, core connectivity network, 
backhaul network, service providers, and standards 
and protocols) that work together to provide the 
infrastructure and technology necessary for wireless 
communication services. Cellular base stations, also 
known as cell towers, are the physical structures that 

transmit and receive signals to and from mobile 
devices. They are strategically placed to cover 
specific areas called cells. Each cell tower is equipped 
with antennas and transceivers to communicate with 
mobile devices within its coverage range. The cellular 
base stations exchange information when 
communication is made. When a physical or cyber-
attack paralyzes a cellular base station, users relying 
on its coverage need to seek other nearby working 
stations, thus asserting extra load burdens to these 
locations. 

Our model seeks to answer the following 
question: Given a number K, which represents the 
number of cellular base stations to which our 
resources (e.g., additional layer of countermeasures) 
can be allocated, determine which K stations, if 
attacked, could impact the largest number of stations 
in the network. By answering this question, we can 
uncover the set of stations that would lead to 
maximum protection if strengthened or that would 
produce the most severe loss if attacked. Thus, the 
extra protective strengthening of this set would lead 
to a robust and efficient level of CI security and 
resiliency.  

Consider a geographical region that is divided 
into small cells (calling areas). The modern cellular 
network consists of many small calling areas where a 
cellular base station serves each area. These base 
stations are interconnected using a high-speed 
wireless network (Figure 1).  

 
Figure 1: The modern cellular network consists of many 
small calling areas where a cellular base station serves each 
area. Base stations are interconnected using a high-speed 
wireless network. 

3.1.1 Choice of Influence Network 

Let  𝐺 = (𝑉, 𝐴) be a directed graph and  𝑆 ⊆ 𝑉 be an 
initial node set. Let 𝑁 (𝑣) denote the in-node set of 
node v. Two major influence network models have 
been proposed in various applications: (Calio et al., 
2018; Chen et al., 2013;  Chen et al., 2022; Goyal et 
al., 2011; Kempe et al., 2003; Kim et al., 2018; Lee 
& Wang, 2017; Palos-Sanchez et al., 2018; Peng et 
al., 2018). 
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Independent Cascade Influence Network (IC-IN): 
Each arc 𝑒 ∈ 𝐴 has a probability 𝑝(𝑒). At time 𝑡 ≥ 1, 
for every inactivated node 𝑣 , every 𝑢 ∈ 𝑁 (𝑣) ∩(𝑆 \𝑆 ) would try to activate 𝑣 with a probability 𝑝(𝑢, 𝑣) independently. The resulting set is denoted by 𝑆 . 𝑣 can be activated only once. 𝑆 = ∅. 

Linear Threshold Influence Network (LT-IN):  
Each arc 𝑒 ∈ 𝐴  has a weight 𝑤(𝑒) . For every 
inactivated node 𝑣 , it will choose a threshold 𝜃 ~𝑈[0,1] , where 𝑈  is a uniform distribution. At 
time 𝑡 ≥ 1 , for every inactivated node 𝑣 , if ∑ 𝑤(𝑢, 𝑣)∈ ( )∩ ≥ 𝜃 , 𝑣  is activated. The 
resulting set is denoted by 𝑆 . 𝑣 can be activated only 
once.  

Since the cardinality of 𝑆  is monotonously 
increasing and bounded, there exists 𝑆  where 
cardinal (𝑆 ) = cardinal (𝑆 ) and the cardinality 
plateaus and does not change anymore. The influence 
function σ(𝑆 ): 𝑆 → 𝑅  is defined as the expectation 
of the cardinality of the final activated set 𝑆 .  For 
both IC-IN and LT-IN models, the influence 
networks are submodular.  

The influence maximization problem is defined as 
max   σ(𝑆 ) , 𝑠. 𝑡.  |𝑆 | = 𝐾 , where 𝐾  is a given 
positive integer.  By submodularity, a greedy 
algorithm can be used to find the set 𝑆  whose 
influence function is at least 1 −1 𝑒  𝑚𝑎𝑥| | σ(𝑆 ) for a given 𝐾 , where 𝑒 is the 
base of the natural logarithm (Nemhauser et al. 1978; 
Kempe et al. 2003).  

In the IC-IN model, each node attempts to 
independently activate the adjacent inactivated node, 
meaning that for any inactivated node, any activated 
node in its in-node set could succeed in activating it. 
However, this contradicts the fact that the load 
transfer is cumulative in a cellular base station 
network. The incoming signal must exceed a certain 
threshold (max power) for the base stations to stop 
taking new users. Hence the LT-IN model fits the 
cellular base station network much better since the 
threshold 𝜃  can be interpreted as           of node 𝑣. 

3.2 Learning the Parameters of LT-IN 

After choosing the influence network model, the next 
step would be defining the network elements. 
Naturally, we let each node denote a base station in 
the cellular network. To find the arc set A, without 
loss of generality, we define a maximum reach 

distance 𝑅 for all base stations as the distance from 
the most distant user to the base station. For any base 
stations 𝑤 and 𝑣, if their distance is less than 2𝑅, we 
assume that there might exist a user who initially uses 𝑤 but must use 𝑣 when 𝑤 is paralyzed. Thus, an arc 
should go from 𝑤 to 𝑣 and vice versa. For a 
heterogeneous design, we can associate a maximum 
reach distance 𝑅  for each base station 𝑣. 

The final step is to assign weights to the arcs. 
Theoretically, for each node 𝑣, let 𝐿  be the maximal 
load, 𝐿  be the current load and 𝐿( , )  be the load 
going from 𝑢  to 𝑣  when node 𝑢  is down. Then the 
fraction of the residual load for node 𝑣  can be 
expressed as 𝜃 = 𝐿 − 𝐿∑ 𝐿( , )( , )∈  

Notice that 𝜃 , as defined, is a U[0,1] random 
variable. This is because the values 𝐿  and 𝐿( , ) 
change constantly. Meanwhile, we assume that  ∑ 𝐿( , )( , )∈ ≥ 𝐿 − 𝐿 , which means that if all the 
adjacent nodes around 𝑣 are down, 𝑣 would also be 
down due to high loads. With these assumptions, we 
let the weight on arc (𝑢, 𝑣)  be  𝑤(𝑢, 𝑣) = 𝐿( , )∑ 𝐿( , )∈ ( )  

so that for any 𝑣 , ∑ 𝑤(𝑢, 𝑣)∈ ( ) = 1 . 𝜃 <∑ 𝑤(𝑢, 𝑣)∈ ( ) = 1 corresponds to the assumption 
that 𝑣 is down if all the adjacent nodes around 𝑣 are 
down.   

Thus, to calculate 𝑤(𝑢, 𝑣), we only need 𝐿( , ).  
In the model, while the geographical positions of the 
base stations are known, the users’ locations are 
generated uniformly across the target area. For each 
user, we associate it with the nearest station as its 
primary base station. In addition, we also assign the 
second nearest station for each user as the station that 
the user would connect to when its primary station is 
down. In this way, 𝐿( , ) is the number of users who 
use 𝑢  as their primary station and 𝑣  as their 
secondary station. For   𝑤(𝑢, 𝑣) , we are not 
concerned with the absolute value of 𝐿( , ), but rather 
the percentage it represents within ∑ 𝐿( , )∈ ( ) . 
Thus, the number of virtual users does not matter as 
long as it is sufficiently large.  

3.3 Two-Stage Framework to Analyze 
the Influence Network 

When base station A is down, its associated users 
must turn to other nearby stations, which will increase 
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the burden on those base stations. Although the 
maximum power for the base stations nowadays is 
high, when multiple base stations nearby are down, it 
is still possible that the load becomes dangerously 
high. Suppose that base station B takes many users 
associated with broken base stations and reaches its 
maximum capacity load. New users must turn to other 
base stations except A or B, causing cascading effects. 

Given a network of base stations, if there are some 
resources and countermeasures that can be used and 
taken to improve the protection of κ  stations from 
potential attacks (wireless or physical) which κ 
stations are the most critical. 

We are interested in uncovering the set of κ base 
stations that maximizes the cascading of influence on 
the overall network (i.e., the cascading effect on the 
maximum number of base stations). One major hurdle 
in influence network modelling involves 
computational challenge. For large networks, the 
MC-Greedy method requires a long running time to 
solve.  As for the Simpath method, although it is 
scalable, it does not have a theoretical lower bound 
and often performs poorly on large and complex 
networks. For this study, we design a two-stage 
framework using these two algorithms (along with 
submodularity to reduce the number of iterations) to 
analyze the cellular base station problem. 

Stage 1. Forming Sub-Networks by Clustering 

To speed up the solution time, we partition the large 
complex network into smaller sub-networks. Since 
the influences cannot spread over long ranges, we use 
the K-means++ clustering method (Arthur and 
Vassilvitskii, 2007) to cluster geographically. Once 
the nodes are clustered, the arcs (interdependencies) 
between nodes that belong to different clusters will be 
removed.     

Stage 2.  Optimizing to Uncover the Most 
Influential Node-Set 

Suppose Stage 1 returns 𝑛  sub-networks. Given a 
positive integer κ, we want to determine the set of κ  
critical nodes from the entire network that asserts the 
maximum influence. In the simplest approach, we 
solve this problem on each sub-network by 
uncovering  or  critical nodes that asserts the 
maximum influence. While one can estimate the 
number of critical nodes that need to be selected 
based on the size of each sub-network, the simple 
decomposition could ensure that the final node-set 
distribution is generally uniform across the target 
area. It is worth noting that the choice of 𝑛 implies a 

trade-off between fewer artificial restrictions on the 
original network versus higher solution precision and 
faster solution time on each sub-network. Policy 
makers should experiment with various choices of 𝑛 
to contrast the quality and practical implications of 
the resulting solutions.  

4 EXPERIMENTS AND 
SENSITIVITY ANALYSIS 

4.1 Data and Experiments 

We test our model using the cellular station data set 
on Homeland Infrastructure Foundation-Level 
databases provided by the U.S. Department of 
Homeland Security (DHS Cellular tower data, 2018). 
The dataset includes the geographical locations of 
23,498 cell towers in the United States.  

We set the maximum reach distance 𝑅 = 5 km to 
formulate the LT-IN for the cellular base station 
network. When applying the two-stage framework to 
analyze the LT-IN, we choose 𝐾=100, i.e., we want 
to uncover the 100 most influential nodes that assert 
maximum influence across the entire dataset of 
cellular base stations. We implement in-house 
Simpath and MC-Greedy algorithms in Python. For 
network partitioning, we choose the grid size to be 
factors of 10 to generate the number of clusters n.  We 
also attempt the scenarios where 𝑛 equals 25 and 33 
(they lead to 4 and 3 critical nodes in each cluster). 
This results in the number of clusters with n = [10, 
20, 25, 33, 40, 50, 60, 70, 80, 90, 100] for 
experimentation. In the MC-Greedy approach, every 
MC simulation is set for 1000 runs.     

The results are presented in Figures 2 and 3. 
Figure 2 plots the final number of influenced/affected 
nodes against various cluster values 𝑛 . For each 
algorithm, when 𝑛  increases, the number of final 
affected nodes is not monotone, but contains several 
turning points. For Simpath, the maximal number 
appears at 𝑛 = 33; for MC-Greedy it appears at 𝑛 =60.  

When the number of clusters is less than 40, 
Simpath returns solutions that assert more influence 
than the solutions from MC-Greedy, while MC-
Greedy outperforms Simpath when the number of 
clusters is over 40. This is potentially because when 
the sub-network is large (i.e., a small value of n), the 
number of critical nodes to be chosen in each cluster 
is large; as a result, the MC-Greedy simulation 
requires more simulation rounds to be accurate, thus 
returning poor results. In general, the number of 
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influenced nodes obtained by Simpath lies within [-
7%, +11%] of those by MC-Greedy. 

 
Figure 2: The number of final affected nodes when 
choosing 100 base stations. 

 
Figure 3: Running time to uncover the 100 most influential 
base stations. 

Figure 3 shows the running time for the two 
approaches. As a scalable and heuristic approach, 
Simpath is much faster for all values of n. 
Specifically, Simpath manages to solve the entire 
network in 8,704 CPU seconds; it requires 341 CPU 
seconds when n = 10, and under 150 CPU seconds for 
all other instances. We can observe that the 
computational performance of MC-Greedy worsens 
(i.e., requires a longer solution time) when the 
number of nodes in each cluster increases due to 
interdependencies in the network. It fails to solve any 
instances when n < 10 and requires over 100 CPU 
hours to solve when n = 10.   

 
 
 
 

4.2 Sensitivity Analysis 

Similarities Between Solutions Obtained by the 
Two Methods 

After obtaining the results from both algorithms, a 
natural question is to examine whether they return 
similar results, e.g., how many of the chosen stations 
overlap? Table 1 shows that on average about 20% of 
the chosen nodes overlapped.   

Table 1: Number of overlapped critical nodes across two 
methods. 

Number of Clusters Overlapped Critical Nodes 
10 23 
20 15 
25 14 
33 13 
40 15 
50 24 
60 20 
70 16 
80 18 
90 23 

100 22 

We next examine how close geographically the 
non-overlapping nodes are. Figures 4, 5, and 6 
compare the nodes chosen by the two methods when 
the number of clusters are 33, 50, and 100, 
respectively. From the figures, it is observed that 
when there are 100 clusters (i.e., one critical node is 
chosen), the chosen nodes by the two methods are not 
geographically close. On the other hand, for the 50 
and 33 clusters, even though the number of 
overlapping nodes is not much higher than 22% (24% 
and 13% respectively) as in the 100 clusters, the non-
overlapping nodes chosen by the two methods are 
rather close to each other.  

 
Figure 4: Critical nodes chosen by two methods when the 
base stations are partitioned into 100 clusters. 
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Figure 5: Critical nodes chosen by two methods when the 
base stations are partitioned into 50 clusters. 

 
Figure 6: Critical nodes chosen by two methods when the 
base stations are partitioned into 33 clusters. 

Similarities Among Different Partitioning 

We are interested in learning how critical nodes are 
selected among different partitions. Figure 7 and 8 
contrast critical nodes obtained via the 33, 50, and 
100 clusters using the MC-Greedy algorithm and 
Simpath algorithm respectively. We observe that for 
both methods, the critical nodes selected from 33 and 
50 clusters are close to each other, while the nodes 
from the 100 clusters are further apart. 

 
Figure 7: Critical nodes chosen by the 33, 50, and 100 
clusters respectively, obtained by the MC-Greedy 
algorithm. 

 
Figure 8: Critical nodes chosen by the 33, 50, and 100 
clusters respectively, obtained by the Simpath algorithm. 

5 WEIGHTED  
LINEAR-THRESHOLD 
INFLUENCE NETWORK 

5.1 Investigating Risks/Biological 
Intelligence 

Airport Risk Assessment  

We illustrate the generalizability of our model by 
reporting a prospective analysis carried out during the 
early period of COVID-19 in March 2020.  

Herein, our single-layer influence model was 
applied to the air transportation component of the 
transportation CI sector. We are interested in 
identifying the set of critical airports that maximize 
risk and the associated cascading effects on 
transportation, the population, and the economy.  

From U.S. Census Bureau data, the 12 major 
metropolitan areas include New York, Los Angeles, 
Chicago, Dallas, Houston, San Francisco-San Jose, 
Washington D.C., Miami, Atlanta, Philadelphia, 
Boston, and Seattle. And the five minor metropolitan 
areas which have population over three million are 
Phoenix, Detroit, Minneapolis, San Diego, and 
Tampa. 

Let matrix F denote the number of flights between 
each pair of 216 major U.S. airports.  

Let W denote the initial weights (216*1). The 
airport weights in the network are calculated by 𝑊 ∙ (𝐹𝑊) , where the operation “∙” represents the 
element-wise product. 

FW is the weighted sum of outbound flows for 
each airport, and W∙ (FW) couples the origin airport 
weights to the outbound flows.  

Herein, we contrast results with W chosen in three 
different ways: 
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W1: Uniform weights: W = 1, W∙ (FW) = F, the 
unweighted sum of flow. 

W2: Weight by population: For major 
metropolitan areas, w = 3, for minor metropolitan 
areas, w = 2 and for others, w = 1. 

W3: Weight by annual average daily volume of 
each airport. 

Table 2: Critical airport selected when K = 5 (blue), 10 
(blue+red), and 15 (all three colors), respectively.  

 W1 W2 
 MC-

Greedy Simpath 
MC-

Greedy 
MC-

Greedy Simpath
MC-

Greedy
LAS X X X X X X
PHX X X X X X X
DEN X X X X X X
ATL X X X X X X
MCO X X X X X X

LAX X X X X X X
ORD X X X X X X
FLL X X X X X X
DFW X  X X X X
OGG X    
SFB  X  X X
TPA  X X X  X

MSP X X X X X X
DTW X X X X X X
SEA X X X X X
BWI X X X  X
SFO X  X   
JFK  X X X X 
STT   X   
DAL     X  

Table 2 shows the selected critical airports when 
K = 5, 10, and 15 and under different weights. Blue 
indicates the first selection of five; Red is the next five 
and black is subsequently five more. We observe that 
the two approaches are quite consistent in selecting 
the airports and that the weights offer some variants 
in the resulting solutions. For example, when 
population (W2) and annual daily volume (W3) 
weights are involved, multiple international airports 
are selected from Florida (MCO, FLL, SFB, TPA) 
due to its theme parks and extensive cruise ports. The 
cascading effect here corresponds to the impact on the 
transportation functions, economy, and local 
population. These critical nodes can offer guidelines 
on countermeasure allocations to various airports for 
maximum protection. It also reflects the 
vulnerabilities they face. Hence our solutions offer 
both defensive and offensive knowledge. 
 

Biological Intelligence on COVID Spread 

During COVID-19, we used the airport results 
obtained in 2019 to prospectively validate the 
vulnerabilities of disease cases identified at the 

airports. In the early stage of COVID-19 in the U.S., 
on March 6, 2020, we had the following facts: 

 *LAS (Las Vegas), *PHX (Phoenix).  *DEN 
(Denver), *ATL (Atlanta), *MCO (Orlando) 

 *LAX (Los Angeles), *ORD (Chicago), *FLL 
(Fort Lauderdale), DFW (Dallas), OGG 
(Hawaii) 

 *MSP (Minneapolis), DTW (Detroit), *SEA 
(Seattle), *BWI (Baltimore-Washington), SFO 
(San Francisco), *JFK (New York).  

The pink star denotes airports with confirmed 
cases. The blue star represents reported travellers 
with direct contact to a confirmed COVID-19 
individual not allowed to board the plane back to the 
U.S. that self-quarantined but was not tested. San 
Francisco had COVID-19 at the time but it was not 
reported to be travel-related. Dallas and Hawaii did 
not have reported air travellers with COVID-19 at the 
time.  

This illustrates that our model, which features 
maximum influence optimization, is flexible and 
adaptable for modeling the interdependencies and 
connectivity of CIs and provides a good systems-risk 
framework for a broad spectrum of scenario 
predictions. Early intervention could include 
prioritization of diagnostic test resources or self-
quarantine recommendations at those critical airports.  

From this airport analysis, we can observe that the 
LT-IN influence maximization problem is very 
adaptable to a diverse type of CIs and their 
components, rather than specific to the functioning 
nature of one particular CI. Such a modeling construct 
is very appealing; however, it remains important to 
set up the model properly with meaningful arcs and 
parameters for interpretable and insightful outcomes.   

The airport analyses utilize the concept of 
weighted linear-threshold influence network, which 
we formally introduce in Section 5.2. We also prove 
that the weighted influence function is monotone and 
submodular. 

5.2 Submodularity in Weighted LT 
Influence Network 

Weighted LT Influence Network: The graph 
G=(V,A,W) has weights 𝑤(𝑒) ∈ (0,1]  for each arc 𝑒 ∈ 𝐴 and positive weights 𝑊(𝑣) for each node 𝑣 ∈𝑉  . For every inactivated node 𝑣 , it will choose a 
threshold 𝜃 ~𝑈[0,1] , where 𝑈  is a uniform 
distribution. Let 𝑁 (𝑣)  denote the in-node set for 
node 𝑣. At time 𝑡 ≥ 1, for every inactivated node 𝑣, 
if ∑ 𝑤(𝑢, 𝑣)∈ ( )∩ ≥ 𝜃 , 𝑣  is activated. The 
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resulting set is denoted by 𝑆 . 𝑣 can be activated only 
once.  

The influence function 𝑓(𝑆 ): 𝑆 → 𝑅 , is 
defined as 𝐸(∑ 𝑊(𝑣))∈  when the initial active set 
is 𝑆 , where 𝐸() is the mathematical expectation.  𝑆  exists since 𝑆  is monotonically increasing 
and bounded. 

The influence maximization problem is 
max   𝑓(𝑆 ) , 𝑠. 𝑡.  |𝑆 | = 𝐾 , where 𝐾  is a given 
positive integer. 

Theorem: The influence function 𝑓()  in the 
weighted LT influence network is monotone and 
submodular. 

Proof: The live-arc graph for regular LT influence 
network is applied here. Let L denote the set of all 
live-arc graphs of this network. The influence 
function for the initial set 𝑆  can be represented as: 𝑓(𝑆 ) = 𝑃(∈ 𝐺 ) 𝑊(𝑣)∈ ( )  

where 𝑅 (𝑆 ) is the node set connected to the initial 
set in live-arc graph 𝐺 . 

We know that the linear combination of 
monotone (resp. submodular) functions with non-
negative coefficients is also monotone (resp. 
submodular). It is sufficient to show that for any live-
arc graph 𝐺 ,  ∑ 𝑊(𝑣)∈ ( )  is monotone (resp. 
submodular) w.r.t 𝑆 .  

Monotonicity is trivial so we will only prove 
submodularity. By theorem 2.13 in Chen et al. (2013), 
for any 𝑆 ⊆ 𝑇 ⊆ 𝑉 and 𝑢 ∈ 𝑉\𝑇, we have: 𝑅 (𝑇 ∪ {𝑢})\𝑅 (𝑇) ⊆ 𝑅 (𝑆 ∪ {𝑢})\𝑅 (𝑆) 

Since 𝑊(𝑣) is positive, we have: 𝑊(𝑣)∈ ( ∪{ }) − 𝑊(𝑣)   ≤∈ ( )  

            𝑊(𝑣) − 𝑊(𝑣)∈ ( )∈ ( ∪{ })  

which means ∑ 𝑊(𝑣)∈ ( )  is submodular and 
thus 𝑓(𝑆 ) is submodular.                    

6 CONCLUSIONS 

Critical infrastructures are fundamental facilities and 
services that are necessary for the functioning of a 

society and its economy. Analyzing the 
interdependency and cascading effect in critical 
infrastructure is crucial for building a more resilient, 
secure, and sustainable society. It enables better 
planning, risk management and response efforts to 
safeguard essential services and ensure the continuity 
of daily life, especially in the face of numerous 
modern challenges and emergencies. 

In this paper, we present a method to model 
interdependency and cascading effect for critical 
infrastructures. Our model utilizes the linear-
threshold influence network and influence 
maximization to determine critical nodes in the CI 
that have the most influence when disrupted. We 
designed a two-stage framework to analyze the LT-
IN.  

Applying it to the cellular base station network 
within the U.S., the results identify the optimal 
partition in the network. The two algorithms, MC-
Greedy and Simpath, enable comparison, sensitivity 
analysis and cross-referencing on the solution quality. 
The critical nodes and their influence correspond to 
the most connected / inter-dependent node structure 
in the entire network. Such knowledge sheds light on 
the network’s vulnerabilities and enables the 
development of effective resilience plans. By 
identifying areas with the greatest potential impact 
and vulnerabilities, it offers a good reference for 
policy makers on how to allocate (limited) resource 
strategically to ensure that investments are made 
where they are most needed, and that it protects the 
overall communication infrastructure most 
efficiently.  

During a crisis or disaster, results from our model 
can provide a basis for predicting how events would 
unfold and disrupt and impact others, helping 
authorities to understand trade-offs and make quick 
and informed decisions. Governments and regulatory 
bodies can work with communication sector 
businesses to develop policies and regulations that 
ensure the security and stability of communication 
CI. For example, the models can inform regulations 
regarding scope of disruption and cost-effectiveness 
of redundancy plans in secondary/backup base station 
assignment, or measures to mitigate the impact of 
disruptions. Users can explore various scenarios and 
"what-if" analyses, which can be beneficial for 
understanding the consequences of different types of 
disruptions and planning accordingly. 

We extend the LT-IN model to the weighted LT-
IN model and prove that the associated influence 
function is monotone and submodular. Applying it to 
airport risk influence maximization analysis 
demonstrates the diverse usage of the WLT-IN model 

Interdependencies and Cascading Effects of Disasters on Critical Infrastructures: An Analysis of Base Station Communication Networks

149



in risk assessment and the evaluation of potential 
consequences. For COVID-19, it reflects disease 
spread and its scope of impact to transportation, the 
economy, and population health. The critical nodes 
and their manifesting influence can help decision 
makers prioritize resources and investments to 
address the most critical vulnerabilities and reduce 
the overall impact of potential incidents. For example, 
public health officials can establish guidelines on 
diagnostic testing and quarantining strategies based 
on airport vulnerabilities and overall cascading 
impact. Understanding interdependencies can help 
businesses and government to develop effective 
continuity plans and contingencies to minimize 
disruptions during crises.  

Because we can and have identified these critical 
airports before disasters/pandemics strike, plan-ahead 
operations can be carried out for more effective 
containment. Furthermore, when the cascading 
disruption is better understood and communicated to 
the public, it can lead to increased awareness and 
preparedness among individuals and communities. 
This can be particularly important for disaster 
planning and response.  

Currently, we are extending the network 
formulation and analysis framework to other critical 
infrastructures. We are also developing a multi-layer 
influence network model to analyze the 
interdependencies across multiple CI sectors 
(preliminary results reported in Chapter 5 in Wang,  
2020). 
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