
Development of Kendo Motion Prediction System for  
VR Kendo Training System 

Yuki Saigo1, Sho Yokota1 a, Akihiro Matsumoto1 b, Daisuke Chugo2 c,  
Satoshi Muramatsu3 and Hiroshi Hashimoto4 d 

1Dept. of Mechanical Engineering, Toyo University, Saitama, Japan 
2School of Engineering, Kwansei Gakuin University, Sanda, Japan 

3Dept. of Applied Computer Eng., Tokai University, Hiratsuka, Japan 
4Adv. Institute of Industrial Tech., Shinagawa, Japan 

Keywords: Sports Training, Machine Learning, Human Motion Prediction, Recurrent Neural Network. 

Abstract: In this study, we developed and evaluated a system within the system to predict the user’s Kendo (Japanese 
fencing) motions which is the function of the VR Kendo system that enables easy Kendo training at home or 
in similar settings. We utilized markerless motion capture and machine learning based on recurrent neural 
networks (RNN) to learn and predict kendo motions. As a result, the proposed system successfully predicted 
Kendo motions as it started with high accuracy.

1 INTRODUCTION 

Training is crucial for improving skills in any sport. 
Sports training typically requires a designated 
location and training partners. Depending on the sport, 
some activities are easy to train, and others are not. 
An example of a sport that is easy to train is long-
distance running. Long-distance running can be 
trained alone near one's home, such as on nearby 
roads or tracks. 

On the other hand, kendo is one of those sports 
that are not easy to train without a training partner. 
Kendo is one of the Japanese martial arts in which 
players wear protective gear and use bamboo sword 
to fight each other, namely, it is "Japanese fencing". 
The purpose of kendo is to strengthen the body and 
mind and to build moral character through continuous 
training (All Japan Kendo Federation, 2023). In the 
case of kendo, there must be at least two persons 
wearing training uniforms and protective gear and 
holding bamboo swords. Furthermore, an indoor 
facility with sufficient space to swing the bamboo 
sword is required. Therefore, it is possible to 
overcome space constraints by utilizing a virtual 
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environment (VR). Additionally, if training partners 
can be provided as virtual agents within the virtual 
space, engaging in easy kendo training at home or 
similar locations would be possible. In particular, in 
actual Kendo training, the process of players mutually 
predicting each other's motions(techniques) is crucial. 
We think more practical training is possible if the 
agent confronting the user in the virtual environment 
can predict the technique's motion when the user 
performs it. Therefore, in this study, we develop the 
Kendo motion prediction system as a first step toward 
realizing this system. In particular, this paper 
proposes a method for predicting the type of 
techniques at the moment of its execution, i.e., the 
moment when a user performs a "Men", "Kote", 
"Dou" or "Stance" motion. 

There have already been several studies on kendo 
training systems. A method for predicting kendo 
movements using GMM from body and bamboo 
sword motion capture (Y. Tanaka, K. Kosuge, 2014), 
a training system that provides feedback on kendo 
movements using IMU (M. Takata, Y. Nakamura et 
al., 2019), and a system that predicts kendo 
movements using machine learning and markerless 
motion capture from information obtained from two 
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high-speed cameras (Cao, Yongpeng, Yuji 
Yamakawa, 2022). On the other hand, this research 
aims to develop an easy and practical VR kendo 
practice system using a small bamboo sword-type 
controller and a motion acquisition system using only 
one camera in pursuit of convenience. 

2 CONCEPT OF VR KENDO 
TRAINING SYSTEM 

A concept of the proposed VR Kendo training system 
is shown in Figure 1. The user wears a Head-Mounted 
Display (HMD) and holds a small VR controller that 
resembles a bamboo sword. The user performs kendo 
motions in front of a camera that measures the user’s 
motion. Within the user's field of view in the HMD, a 
virtual opponent is standing in front of them. The user 
trains kendo with the virtual opponent in the VR 
environment. 

 
Figure 1: Concept of VR Kendo training system. 

Generally, it is desirable for the training 
environment of a sport to resemble the actual 
competition environment as closely as possible. 
However, practicing VR Kendo with a regular 
bamboo sword requires enough space to swing the 
sword freely. Therefore, a VR-specific miniaturized 
bamboo sword is required, shorter in length than a 
regular bamboo sword but still provides a similar 
sense of swing. Furthermore, in Kendo training, it is 
essential to have one-on-one training that simulates a 
real match scenario. Both players explore each 
other’s motion, predicting each other’s technique, and 
determining how to react accordingly. This training is 
crucial for enhancing skills in Kendo. Therefore, to 
conduct more practical kendo training within the VR 
environment, the virtual opponent should be able to 
predict the user's motions. This paper proposes a 
motion prediction system.  

Two essential components are required to realize 
a motion prediction system for kendo: a motion 
capturing system for player’s motions and a motion 
prediction system to predict future motions based on 
the captured data. 

2.1 Motion Acquisition System Using 
OpenPose 

One of the most effective methods to obtain human 
motion is a motion capture system using markers to 
the human body. Considering the purpose of this 
study, this motion capture method is not suitable. 
Putting markers on the body takes time and effort and 
is far from easy. Therefore, this study used OpenPose 
(Zhe Cao et al., 2017) to obtain kendo motion. 

OpenPose is a method for estimating posture by 
extracting the joints of humans using deep learning. 
Input the video images, and it can detect 25 joint 
points in 2D space. Figure 2 shows the extracted joint 
points using OpenPose. OpenPose is a markerless 
motion capture system that allows us to easily obtain 
kendo motion with only one camera. 

 
Figure 2: Extraction of joint points of a person holding a 
bamboo sword by Openpose.  

2.2 Motion Prediction System Using 
Machine Learning 

To predict Kendo motion from the user’s motion 
obtained OpenPose, it is required to recognize Kendo 
motion and the ability to process time series 
information.  

In this study, we used machine learning for these 
requirements, and we decided to use recurrent neural 
networks (RNNs), which are particularly good at 
processing time series data. In this study, we develop 
a user’s kendo motion prediction system that 
combines OpenPose and RNN to realize an easy and 
practical Kendo training system.  
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3 MACHINE LEARNING WITH 
RNN 

In this section, we explain the RNN used for machine 
learning for Kendo motion prediction and more 
details of the machine learning with data obtained 
from OpenPose as input. 

3.1 Overview of RNN (and LSTM) 

Figure 3 compares a typical feed-forward neural 
network with an RNN model. Generally, neural 
networks transmit information in only one direction, 
from input to output, however, RNNs have a loop 
structure in the middle layer that sends output results 
to itself. Figure 4 depicts an expanded loop structure. 
Where 𝒙 is the input and 𝒉 is the output, this makes it 
possible to use past information as new input to itself. 
Thus, each input can be treated as a series of input 
data rather than independently, making it possible to 
process time-series data.  

However, traditional RNNs have limitations in 
retaining long-term temporal information, leading to 
the loss of sequential patterns when processing data. 
Therefore, in this study, we use Long Short-Term 
Memory (LSTM) networks developed to improve 
RNN (Hochreiter.S, Schmidhuber. J, 1995). Since 
LSTM can retain long-term data dependencies, it is 
assumed to be able to estimate the user's unique 
behaviour patterns. Therefore, the user and agent 
interaction could be more active. As mentioned above, 
the input to LSTM is not unit data but a series of input 
data holding time-series information, i.e., a collection 
of multiple data generally represented as a three-
dimensional array, as shown in Figure 5. 

The first dimension (horizontal) represents the 
features of the data, the second dimension (vertical) 
represents the time steps of the sequence, and the 
third dimension (depth) represents the number of data. 

The larger the feature dimension, the more 
information the data will have. Similarly, the greater 
the number of time steps, the greater the processing 
capacity is required, and the greater the number of 
data the greater the amount of input data. However, 
since the third dimension is just the quantity of data, 
the first and second-dimension elements are 
computed in LSTM. Therefore, it is essential to tune 
properly the features and time steps for learning. Next, 
we will discuss the data obtained using OpenPose. 

 
Figure 3: Comparison of Neural Networks and RNNs. 

 
Figure 4: Deployment of RNN loop structure. 

 
Figure 5: Image of input data shape. 

3.2 Input Data from OpenPose 

As described in Section 2.2, OpenPose can extract 25 
joint points from a person in the input video and store 
each joint point's x and y coordinates for each frame. 
Hence, 50 points of coordinate information can be 
obtained from each frame, and the same number of 
coordinate information is stored for the video frames. 
Figure 6 shows an overview of the data available from 
OpenPose.  

The number of features in this study is 50 because 
the coordinate information in each frame may contain 
critical information. All joint coordinates are 
expressed in relative coordinates to the midpoint of 
the person's waist as origin, and 50 data points 
expressed in relative coordinates were treated as 
features. Since the information handled by OpenPose 
is two-dimensional, a simple change in the positional 
relationship between the camera and the person may 
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interfere with the acquisition of coordinate 
information for the joints in motion.  

In the time step, we used a few frames of a part of 
the video. The reason for not treating the entire video 
(meaning through start to end of motion) frames as a 
time step is that the purpose of the research is motion 
prediction, and if it can't be classified by a part of the 
motion, it is meaningless. In other words, if the entire 
video frames are used as a time step, the motion can 
be classified (predicted) only after the technique is 
completed. 

The data quantity was calculated by dividing the 
total frames of the video by the number of time steps. 
Since the number of time steps is arbitrary, the 
amount of data depends on the size of the number of 
time steps. If there are many videos, the frame 
information of all videos is combined and divided by 
the number of time steps. 

3.3 Machine Learning 

There are four kendo motions to be learned: "Men", 
"Kote", "Dou", and "Pose". Men" refers to the head 
strike, "Kote" refers to the right wrist strike, "Dou" 
refers to the right abdominal strike, and "Pose" refers 
to the stance motion. Figure 7 shows examples of 
each motion. 

There are two reasons for the addition of "Pose" 
that is not technique. The first is that in kendo, the 
time spent in stance is longer than the time spent 
performing techniques. The second reason is that the 
information that a player is not performing a 
technique is necessary to predict the start of a 
technique. 

  
Figure 6: Overview of data obtained from OpenPose.  

 
Figure 7: Examples of each Kendo motion.  

3.3.1 Train Data 

The video was captured during each motion and 
analyzed with OpenPose to obtain motion data. Table 
1 shows the number of frames and the number of data 
in the captured video. 

Because the average number of frames per video 
is short, the number of frames used as a time step was 
set to 5 frames for testing purposes. Therefore, the 
shape of each dataset used for training is shown in 
Table 2. 

Table 1: Details of videos used for training data.  

 

Table 2: Shape of each training data.  

 

3.3.2 Neural Network Model for Learning 
Kendo Motion 

Figure 8 shows a diagram of the neural network 
model used to train the kendo motions. To classify the 
input data into four motions, the shape of the output 
data is as follows (number of data, 4). The system also 
has two LSTM layers. At the same time, a one-layer 
LSTM is limited in the range of information because 
of limited time steps; layering increases expressive 
power and enables the capture of complex patterns 
within a limited time step. 

This idea is supported in natural language 
processing (Sutskever, I et al., 2014). We also 
incorporated it in this study since the time step is 
limited to five frames. However, since LSTM can 
only process two-dimensional data of time steps and 
features at a time, the model is repeated as many times 
as the number of data, with input and output at each 
time step, as shown in Figure 9. 

Men Kote Dou Pose
Number of videos 51 56 50 30

Average frames per video 86 71 112 140
Total frames 4406 3973 5613 4223
Data quantity

(Time step = 5 frames) 881 794 1122 844

Men Kote Dou Pose
Shape of train data (881, 5, 50) (794, 5, 50) (1122, 5, 50 (844, 5, 50)
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Figure 8: Entire Neural Network. 

 
Figure 9: Details of the entire Neural Network. 

The activation function used in the output layer is 
the Softmax function commonly used in multi-class 
classification problems; the values calculated from 
the Softmax function are real numbers between 0 and 
1, and the sum of the values of the four elements of 
the output array is always 1. The predicted value of 
which motion is likely can be calculated as a 
probability value, and the class of elements with the 
highest value is the predicted result. 

The teacher data has the same data shape as the 
output data and is input using one-hot encoding, 
where the relevant element is set to 1 and the others 
to 0, and the model trains using cross-entropy error. 

3.3.3 Learning Kendo Motion 

We searched for the optimal hyperparameters to be 
used in learning. There are two methods for searching 
hyperparameters: grid search and random search. 
Grid search conducting a full search is more effective 
(Bergstra, J. et al., 2012). Table 3 shows the hyper-
parameters and optimal parameters searched by grid 
search. The number of nodes in the second LTSM 
layer is half that of the first layer to suppress 
overlearning. 

Figure 10 shows the training results with the 
training data and hyperparameters presented in 
Tables 1, 2, and 3, where “Accuracy” represents the 
percentage of correct answers and “Loss” indicates 
poor performance. In learning, the model is evaluated 
in real-time using newly prepared validation data 
(data quantity is about 1/4 of the training data), which 
is separate from the training data. To control 
overlearning, we used “early stopping”, which 

automatically terminates learning if no loss of 
progress is observed in a certain epoch period. 

As Figure 10 shows,  in this learning process,  the 
learning is done accurately because similar trends are 
observed in the training data and the validation data 
as the learning progresses. 

Table 3: Parameters explored and optimal results. 

 

 
Figure 10: Learning Transition. 

4 EXPERIMENTS AND 
DISCUSSION 

We experimented to evaluate whether the LSTM 
model trained in the previous section could predict 
(classify) each of the four Kendo motions. 

Apart from the training and validation data, the 
prediction performance was evaluated using data 
obtained from joint coordinates by OpenPose from 
newly captured Kendo motions for the prediction 
experiment. In training, the motion data of four 
techniques were inputted together. In this experiment, 
data obtained from a single video showing a single 
technique being recorded is used, assuming the data 
is used in real-time. Similarly, assuming real-time 
prediction, data is inserted into the model one frame 
at a time, as shown in Figure 11, and inference is 
performed using the latest five frames as input data. 

We conducted two types of experiments. The first 
was an evaluation of each of the four kendo motions 
alone, and the second was an evaluation of motion in 
Pose in combination with the other motion. 

Input
Data LSTM

[layer_1]
LSTM

[layer_2]

Output

(Data, 4)

Correct Data

(Data, 4)

shape
(Data, 5, 50)

shape

shape

Search target Optimal combination
1st LSTM layers unit (256, 512, 1024, 2048) 1024
2nd LSTM layers unit Half of 1st layer 512

batch size (32, 64, 128) 32

epoch (100, 200, 400) 200

activation only Softmax Softmax
optimizer (SGD, Adam) Adam
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4.1 One Motion Experiment 

As in the training phase, the inferential actions were 
from the start to the end of a single technique. The 
motions of each technique were tested ten times and 
evaluated based on the percentage of correct answers 
compared to the prediction output by the model. 
Table 4 shows the accuracy of each motion. The 
accuracy is “the total number of correct responses / 
the number of input frames” per input frame. 

 
Figure 11: How to load experimental data.  

Table 4: Accuracies of each motion prediction (one 
motion). 

 
Dou, Men, and Pose all exceeded 95%, indicating 

that these motions are accurately predicted. Although 
Kote's accuracy was slightly lower than that of the 
other movements due to some mispredictions with 
Men, which have similar movements, Kote was able 
to correctly predict 89% of the movements, which can 
be considered a success in general. 

4.2 Two Motions Experiment 

The target motion was defined as the period from the 
state of Pose to Men, Kote, or Dou and the end of 
those motions. In this experiment, not only the 
accuracy of the motions but also the accuracy of the 
prediction time sequence is important because the 

target motion includes the moment when the subject 
performs the technique from the state of Pose.  

As experimental data, we prepared 15 videos for 
each motion and evaluated them the same way as in 
the previous experiment. Figures 12 to 14 show an 
example of the predicted transition for each motion. 
Table 5 shows the accuracies for each motion. 
Although the accuracies decreased compared to the 
previous experiment, the timing of the switch 
between Pose and Strike motions was predicted 
appropriately in many cases in all motions and can be 
considered a success. One of the reasons for the 
decrease in the accuracies was the misprediction 
during the striking motion, which was observed 
mainly in Men. The causes are discussed in the next 
section. 

 
Figure 12: Transition of prediction (Pose to Men). 

 
Figure 13: Transition of prediction (Pose to Kote). 

4.3 Discussion 

The causes of the mispredictions listed in the previous 
sub-section are discussed. Figure 15 shows how 
mispredictions occur in the Men and Kote motions. 

 

・・・ ・・・
Total

Frames

2 5 6

Frames 
inferred

Frames 
NOT inferred

Input frame

Men Kote Dou Pose
1 0.943 0.857 0.971 0.984
2 0.936 0.961 0.878 1.000
3 0.989 0.905 1.000 0.865
4 1.000 0.915 1.000 1.000
5 1.000 1.000 1.000 1.000
6 0.987 0.952 0.953 0.913
7 0.907 1.000 0.917 1.000
8 0.933 0.786 0.983 0.994
9 0.943 0.675 1.000 1.000

10 0.990 0.893 1.000 0.949
Ave 0.963 0.894 0.970 0.970
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Figure 14: Transition of prediction (Pose to Dou). 

Table 5: Accuracies of each motion prediction (two 
motions). 

 

 
Figure 15: Transition of prediction (Pose to Kote or Men). 

In the Pose phase, all of the predictions are made 
without any problem, but it can be seen that false 
predictions occur after transitioning to the striking 
motion. In this example, the prediction of the timing 
of the motion changeover is also far from the correct 
answer. One of these factors may be the similarity 
between Men and Kote motion. Figure 7 shows that 
Men and Kote swing bamboo swords vertically, while 
Dou swings bamboo swords slightly horizontally, so 
Men and Kote might be similar regarding player body 

motion. Dou, who uses a different shinai swinging 
motion, also achieved a very high accuracy (96%) in 
the two-motions test, suggesting that the difference in 
sword swinging motion significantly affects the 
results. 

However, the evaluation experiments of the single 
kendo motion shown in Table 4 all produced a high 
accuracy. Thus Figure 14 should also be stable during 
the striking motions. In this case, the possibility of 
overlearning due to insufficient training data cannot 
be denied. Figure 10 shows that the difference 
between Train and Validation losses widens slightly 
after epoch 100. Although not to the extent of fatal 
overlearning, overlearning should be prevented for 
versatility. 

Therefore, the improvements are to reflect the 
differences between Men and Kote motion as 
numerical values in the learning model by adding 
joint position information that represents other joint 
positions using the shoulder angle and the height of 
the right foot as the origin as feature values, and to 
increase the number of learning data and take 
measures against overlearning in the learning phase. 

5 CONCLUSION 

In this paper, we developed a motion prediction 
system for kendo motions with the aim to design a VR 
Kendo system that allows users to easily training 
Kendo at home and other places. 

The proposed system is consisted with OpenPose 
to obtain joint position information and machine 
learning using RNN (LSTM) to learn and predict 
kendo motions. 

As a result, four kendo motions were predicted 
with an accuracy rate of over 95%, while some 
incorrect predictions were observed for the Men and 
Kote motions. We consider that this is due to the 
similarity between Kote and Men motions and slight 
overlearning. Therefore, additional features and 
learning data are needed to solve this problem. 

As future works, we improve the machine 
learning and develop a VR Kendo system using a 
small controller for VR and the machine learning 
model. 
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