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Abstract: Fuzzy Regression Trees (FRTs) are widely acknowledged as highly interpretable ML models, capable of
dealing with noise and/or uncertainty thanks to the adoption of fuzziness. The accuracy of FRTs, however,
strongly depends on the polynomial function adopted in the leaf nodes. Indeed, their modelling capability
increases with the order of the polynomial, even if at the cost of greater complexity and reduced interpretability.
In this paper we introduce the concept of Heterogeneous FRT: the order of the polynomial function is selected
on each leaf node and can lead either to a zero-order or a first-order approximation. In our experimental
assessment, the percentage of the two approximation orders is varied to cover the whole spectrum from pure
zero-order to pure first-order FRTs, thus allowing an in-depth analysis of the trade-off between accuracy and
interpretability. We present and discuss the results in terms of accuracy and interpretability obtained by the
corresponding FRTs on nine benchmark datasets.

1 INTRODUCTION

In recent years, systems based on Artificial Intelli-
gence (AI) and Machine Learning (ML) are rapidly
changing the way new services are conceived and de-
veloped in the public and private sectors. The impact
of the current applications is so significant that it is
reflected, almost daily, by a worldwide media cover-
age discussing both the promises and the risks of an
AI-powered society (Cath et al., 2018), (Fontes et al.,
2022), (Leikas et al., 2022). The discussions mainly
focus on how different stakeholders can trust the de-
cision of AI: the need is to avoid violations of what
are perceived as fundamental human rights, while in-
creasing the welfare of the society as a whole. One
component of trust is the capability to understand how
an AI system works, so as to be able to understand and
justify its outcome. This is of paramount importance
in specific sectors such as health, defence, finance,
and law, where the discussion is more intense given
the high stakes involved. Thus, since recent years,
legislators have started to take into account the topic
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of the trustworthiness of AI-systems, resulting in rec-
ommendations (for example, the “Ethics Guidelines
for Trustworthy AI” (High-Level Expert Group on AI,
2019)) and in law proposals (as in the recent European
“Artificial Intelligence Act” proposal (AIA, 2021)).

Explainable AI (XAI) is a research field focused
on devising AI-systems understandable to the differ-
ent stakeholders involved. Following the terminology
in (Barredo Arrieta et al., 2020), there are two differ-
ent strategies for achieving explainability: i) post-hoc
strategies, which aim to describe a posteriori how an
AI system works, and ii) ante-hoc strategies, which
directly design models that are inherently explainable.
Post-hoc explanations are typically applied to Neural
Networks (NNs) and ensemble methods. Such fam-
ilies of models are generally referred to as opaque
or “black-box”, as opposed to transparent models,
whose operation is inherently understandable for a
human (Barredo Arrieta et al., 2020). Decision Trees
(DTs), Regression Trees (RTs) and rule-based sys-
tems (RBSs) are considered among highly transparent
and interpretable models.

Generally speaking, a distinction should be made
between global and local interpretability. Global in-
terpretability refers to the structure of the model: for
example, in rule-based and tree-based models, the
higher the number of rules and nodes, respectively,
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the lower the global interpretability. Local inter-
pretability, on the other hand, refers to the explana-
tion of a specific decision taken by a model for any
single input instance and is indeed related to the infer-
ence process. Local interpretability of DTs and RTs is
high, in general, because they can be transformed into
a set of “if-then” rules, which are consistent with a
reasoning paradigm familiar to human beings. Specif-
ically, the lower the number of antecedent conditions
and parameters in the consequent of the activated rule,
the higher the local interpretability for the specific de-
cision.

In this paper, we focus on regression tasks and in-
vestigate the adoption of a highly interpretable tree-
based ML model, namely an RT. Leaf nodes of RTs
are characterized by an approximation polynomial
function defined over the input variables. Different
polynomial functions have been used in the litera-
ture. For instance M5 (Quinlan, 1992) employs first-
order polynomials using the overall set of input vari-
ables. CART (Breiman et al., 1984), which is one of
the most known algorithms for generating RTs, uses
zero-order polynomials, leading to simpler and usu-
ally more robust models.

When first-order polynomial functions are
adopted, two main approaches can be used (Bertsi-
mas et al., 2021): the most straightforward approach
consists in first growing the tree assuming constant
predictions and then estimating a linear model in the
leaves. On the one hand this strategy avoids the cost
of repeatedly fitting linear models during training;
on the other hand, decoupling the growing and the
leaves regression estimate steps results in trees which
are typically larger than what is actually needed. A
popular alternative approach (Chaudhuri et al., 1995;
Torsten Hothorn and Zeileis, 2006) relies on hypothe-
sis testing to choose the variables for the splits: albeit
computationally efficient, it is shown to produce trees
with a limited generalization capability (Bertsimas
et al., 2021). Some recent works (Bertsimas and
Dunn, 2017; Dunn, 2018; Bertsimas and Dunn, 2019)
have discussed the concept of Optimal Regression
Tree (ORT), conceived to pursue greater predictive
power. ORTs utilize mixed-integer optimization and
local heuristic methods to find near-optimal trees
both for axes-aligned splits and for splits with generic
hyperplanes (i.e., not necessarily aligned with the
axes). In the latter case, evidently, the interpretability
is reduced.

In general, zero-order polynomials are simpler
and easier to interpret compared to higher order ones.
When using a higher order polynomial (typically first-
order) in leaf nodes, modelling capacity increases at
the cost of increased complexity and, in turn, de-

creased interpretability.
An extensive literature has focused on the integra-

tion of fuzzy set theory with decision and regression
trees (Suárez and Lutsko, 1999), (Chen et al., 2009),
(Segatori et al., 2018), (Cózar et al., 2018), (Renda
et al., 2021), (Bechini et al., 2022). The adoption of
fuzziness is typically meant to bring a higher accuracy
in scenarios characterized by vagueness and/or noise.

In this paper, we report on an in-depth analysis of
the performance of a Fuzzy Regression Tree (FRT) on
several benchmark datasets exploiting the novel con-
cept of heterogeneity: in a heterogeneous FRT, the
order of the polynomial to be used as approximation
is selected on each leaf node. In this paper, we fo-
cus on zero-order and first-order approximations and
therefore some leaf nodes will have zero-order regres-
sion models and some others will have first-order re-
gression models. By exploring the whole spectrum
(from purely zero-order to purely first-order approxi-
mations) we investigate several trade-offs between ac-
curacy and interpretability and derive insights about
the viability of intermediate, heterogeneous, solu-
tions.

This work stems from a previous work presented
in (Bechini et al., 2022), where we compared the per-
formance of pure FRTs with only zero-order approx-
imators against pure FRTs with only first-order ap-
proximators. Indeed, this paper entails the following
contributions:

• we introduce the concept of heterogeneous FRT,
allowing for leaves with polynomial models of
different orders;

• we assess the performance of the proposed ap-
proach on several benchmark regression datasets;

• we investigate the trade-off between accuracy and
interpretability for different degrees of hetero-
geneity.
The paper is organized as follows: in Section 2 we

provide some background on the FRT model adopted
in this paper. In Section 3 we present the concept of
heterogeneous FRT. In Section 4 we report the experi-
mental setup and results. Finally in Section 5 we draw
our conclusions.

2 BACKGROUND: FUZZY
REGRESSION TREE

Let X = {X1, . . . ,XF} be the set of input variables.
A regression tree is a directed acyclic graph, where
each internal (non-leaf) node represents a test on an
input variable and each leaf is characterized by a re-
gression model. Each path from the root to one leaf
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corresponds to a sequence of tests. The format of the
tests depends on the type of the input variables. In
the case of numerical variables, tests are in the form
X f > x f ,s and X f ≤ x f ,s, where x f ,s ∈ R. This type of
test results in binary trees, in which each internal node
has at most two child nodes. In the case of categor-
ical variables, tests are in the form X f ⊆ L f ,s, where
L f ,s is a subset of possible categorical values for X f ;
as a consequence, each test may result in more than
two branches, thus originating the so-called multi-
way trees.

Our work stems from the proposals for building
FRTs presented in (Cózar et al., 2018) and revisited in
(Bechini et al., 2022). We assume that each real input
variable X f is partitioned by using Tf fuzzy sets. Let
P f = {B f ,1, . . . ,B f ,Tf } be the partition of input vari-
able X f . The tests in the internal nodes use these fuzzy
sets in the form of “X f is B f , j”. Since fuzzy sets gen-
erally overlap, an input instance may activate more
than one leaf node. We employ multi-way trees and
use all the Tf fuzzy sets for the tests on input variable
X f in one node, thus generating Tf branches.

In the case of a zero-order polynomial regression
model, the value φ(K)(X) assigned to each leaf node
LN(K) is a constant, which is computed as a weighted
average of the output values yi of all the instances in
the training set that activate such leaf node, where the
weight wLN(K) is the strength of activation of the path
R(K) from the root to the leaf node LN(K). More for-
mally, given an input pattern xi corresponding to the
output value yi, value φ(K)(X) is computed as:

φ
(K)(X) = c(K) =

∑(xi,yi)|wLN(K) (xi)>0
(
yi ·wLN(K) (xi)

)
∑(xi,yi)|wLN(K) (xi)>0

(
wLN(K) (xi)

)
(1)

where

wLN(K) (xi) =
K

∏
k=1

µ f (k)(xi, f (k)) (2)

The term µ f (k)(xi, f (k)) is the membership degree of
xi, f (k) to the fuzzy set B f (k), j of the partition of each in-
put variable X f (k) chosen in each node N(k) in the path
from the root (k = 1) to the leaf node LN(K) (k = K).

A first-order polynomial regression model em-
ploys a linear model in any leaf node. The model is
defined as follows:

φ
(K)(X) = γ

(K)
0 +

F

∑
f=1

γ
(K)
f ·X f (3)

The coefficients Γ(K) =
{

γ
(K)
0 ,γ

(K)
1 , ...,γ

(K)
F

}
can be

estimated by applying a local weighted least-squared
method. Specifically, in the estimation of the param-
eters, each training sample (xi,yi) with a membership

value greater than 0 to the specific leaf is weighted by
its strength of activation of the rule. Notably, for any
given rule, the linear regression model considers the
whole set of F input variables, even if typically only
a subset of them appears in the antecedent part.

2.1 Partition Fuzzy Gain, Fuzzy
Variance and Fuzzy Mean

In regression problems, the sequence of tests aims to
partition the input space into subspaces that contain
subsets of the training set with output values as close
as possible to each other. In the learning phase, the
choice of the input variable to be used in a decision
node is generally performed based on the variance of
the output values.

Similar to (Cózar et al., 2018), in our FRT the
splitting criterion is based on the Partition Fuzzy
Gain (PFGain) index, which in turn hinges on the
concept of Fuzzy Variance. Formally, let N(k) be
a generic node in FRT. The quantity wN(k)(xi) =

∏
k
t=1 µB

f (k), j
(xi, f (k)) is the strength of activation of

instance (xi,yi) ∈ T R to node N(k) computed along
the path R(k) from the root to N(k), where T R =
{(x1,y1), ...,(xZ ,yZ)} is the training set of Z in-
stances. In the root, wN1(xi) = 1 for all the instances
in T R. Let SN(k)

= {(xi,yi) ∈ T R | wN(k)(xi) > 0} be
the set of instances with non-null strength of activa-
tion to node N(k). In the following, we first intro-
duce the fuzzy mean and the fuzzy variance for the
instances in SN(k)

. Then, we define the fuzzy mean
and the fuzzy variance of the instances in the support
of a generic fuzzy set B f (k), j when the instances in

SN(k)
are partitioned by using P f (k) . Finally, we intro-

duce the definition of PFGain.
The Fuzzy Mean FMN(k)

of node N(k) is defined
as the mean of the output values yi of the instances
(xi,yi) in SN(k)

, weighted by the strength of activation
wN(k)(xi):

FMN(k)
=

∑
(xi,yi)∈SN(k)

(
yi ·wN(k)(xi)

)
∑
(xi,yi)∈SN(k)

(
wN(k)(xi)

) (4)

The Fuzzy Variance FVarN(k)
of node N(k) is de-

fined as follows:

FVarN(k)
=

∑
(xi,yi)∈SN(k)

(
yi −FMN(k)

)2
·
(
wN(k)(xi)

)2

∑
(xi,yi)∈SN(k)

(
wN(k)(xi)

)2

(5)
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Let SN(k)

f ,1 , ...,SN(k)

f ,TF
be the subsets of points in

SN(k)
, contained in the supports of the fuzzy sets

B f (k),1, ...,B f (k),Tf
of the partition Pf tested for split-

ting node N(k).
The fuzzy mean FMN(k)

(B f (k), j) of the output val-
ues computed for the instances of the support of fuzzy
set B f (k), j in the node N(k) is defined as the mean of
the yi weighted by the product between the strength
of activation of xi, f (k) to the node N(k) and the mem-
bership degree of xi, f (k) to B f (k), j:

FMN(k)
(B f (k), j) =

∑
(xi ,yi)∈SN(k)

f (k), j

(
yi·wN(k) (xi)·µB

f (k), j
(x

i, f (k)
)

)

∑
(xi ,yi)∈SN(k)

f (k), j

(
w

N(k) (xi)·µB
f (k), j

(x
i, f (k)

)

)
(6)

The fuzzy variance FVarN(k)
(B f (k), j) of the output

values computed for the instances of the support of
fuzzy set B f (k), j in the node N(k) is defined as follows:

FVarN(k)
(B f (k), j) =

∑
(xi ,yi)∈SN(k)

f (k), j

(
yi−FMN(k)

(B
f (k), j

)

)2
·
(

w
N(k) (xi)·µB

f (k), j
(x

i, f (k)
)

)2

∑
(xi ,yi)∈SN(k)

f , j

(
w

N(k) (xi)·µB
f (k), j

(x
i, f (k)

)

)2

(7)
Finally, let WSN(k)

(B f (k), j) be the following quan-
tity:

WSN(k)
(B f (k), j) = ∑

(xi,yi)∈SN(k)
f , j

wN(k)(xi) ·µB
f (k), j

. (8)

The Partition Fuzzy Gain PFGainN(k)
(P(k)

f ) ob-

tained by adopting the fuzzy partition P(k)
f over the

input variable X (k)
f is defined as follows:

PFGainN(k)
(P(k)

f ) =

FVarN(k) −∑
Tf
j=1 FVarN(k)

(B f (k), j) ·W
N(k)

(B f (k), j)

(9)
where:

W N(k)
(B f (k), j) =

WSN(k)
(B f (k), j)

∑
Tf
j=1 WSN(k)

(B f (k), j)
(10)

Let X f̂ be the input variable with the highest

PFGainN(k)
. Fuzzy sets B f̂ , j are used to split the

instances in node N(k) into T f̂ child nodes N(k+1)
j ,

j = [1, ...,T f̂ ]. The strength of activation w
N(k+1)

j
(xi)

of a generic instance xi to child node N(k+1)
j is com-

puted as w
N(k+1)

j
(xi) = wN(k)(xi) ·µB f̂ , j

(xi, f̂ ).

2.2 Tree Construction and Inference
Process

Let N(k) be a generic node at depth k. Let ZN(k)
=

{(xi,yi) ∈ T R | wN(k)(xi) ≥ 0.5k} be the set of in-
stances that strongly activate the node, i.e., having a
activation strength higher than 0.5 raised to the tree
level at which N(k) is located (in other words, we are
assuming that at each level of the path the instances
belong to the corresponding fuzzy set with a mem-
bership degree higher than 0.5). In the proposed algo-
rithm the following criteria are employed to stop the
tree growth at a generic node N(k):

• when the cardinality of ZN(k)
is lower than a frac-

tion (min samples split) of the cardinality of the
training set T R;

• when the highest PFGain computed for N(k) is
lower than a fixed threshold (min PFGain);

• when the set of input variables available for split-
ting N(k) is empty.

The tree growing procedure terminates when there
exist no nodes that can be considered for possible
splitting. Once the tree has been generated, a re-
gression model is assigned to each leaf node. In our
proposal, we employ both zero-order and first-order
polynomial regression models (see Equations 1 and
3).

The path pr from the root to a generic leaf node
LN(K) at the Kth level corresponds to the following
rule Rr:

Rr : IF Xr(2) is Br(2), j
r(2)

AND . . . AND Xr(K) is Br(K), j
r(K)

THEN Y = φr(X)
(11)

where Xr(k) and Br(k), j
r(k)

are, respectively, the input

variable and the fuzzy set of the corresponding par-
tition which allow reaching the node at the kth level
of path pr and contribute to the strength of activation
for this node (we recall that (k = 1) identifies the root
node).

Given an input pattern x̂, the inference process
generates an output based on the maximum match-
ing strategy: only the rule with the highest strength of
activation is used for estimating the output value.

The strength of activation of the rule Rr is com-
puted as:

wr(x̂) =
K

∏
k=1

µB
r(k), j

r(k)
(x̂r(k)) (12)

It has been shown that the adoption of a maximum
matching approach does not particularly degrade the
modelling power compared to the weighted average
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strategy, yet ensuring a higher level of interpretability
(Bechini et al., 2022).

The use of the product as a T-norm operator (see
Eq. 2) for the computation of the strength of acti-
vation has an obvious implication on the inference
process: since the terms µB

r(k), j
r(k)

(x̂r(k)) are in the

range [0,1], the maximum matching approach in gen-
eral prioritizes short rules, i.e., those associated with
leaf nodes closer to the root of the FRT. To compen-
sate for this phenomenon, we consider the normalized
strength of activation w̃r(x̂), which is defined as fol-
lows:

w̃r(x̂) =
wr(x̂)

w̄r(T R)
(13)

where w̄r(T R) is the average strength of activation for
all instances xi in the training set with wr(xi)> 0.

3 HETEROGENEOUS FRT

The implementation of linear regression models in the
leaf nodes enhances the modelling capability of the
FRT but it is not without drawbacks.

First of all, the adoption of a linear model reduces
both local and global interpretability. From a local
perspective, which refers to how a prediction is car-
ried out during the inference process, in the linear
model the effect of each input variable on the out-
put value is expressed by the corresponding coeffi-
cient; the zero-order model, on the other hand, pro-
vides the output value directly. From a global per-
spective, which refers to the structural properties of
the model, the number of parameters increases with
the order of the polynomial: in general, the complex-
ity of the model can be considered as a proxy for its
interpretability.

Second, a more complex model is more prone to
the phenomenon of overfitting, whereby an increased
modelling capability is not matched by an increased
generalization capability.

In this paper, we introduce the concept of hetero-
geneous FRT, in which the choice of the order of the
model to be used is evaluated on each individual leaf
node. The basic idea is to assess on each leaf node
whether the first-order model is needed or whether the
zero-order model can be used.

The criterion for the model selection is based on
the concept of Fuzzy Variance, as reported in Eq.
5. In particular, once the tree structure is generated,
the FVar associated with all the leaves is evaluated
and the selection of the model is based on a thresh-
old thorder ∈ [0,100]: specifically, a percentage of the

leaves equal to thorder, those with lower FVar values,
employ zero-order models, while the others employ
first-order models. Indeed, it is reasonable to assume
that a zero-order model is sufficient where the value
of FVar is lower, whereas a more complex model is
needed where the FVar is higher.

4 EXPERIMENTAL ANALYSIS

This section reports on the experimental setup and re-
sults obtained with our heterogenouos FRT on several
regression datasets. We first describe the datasets and
the model parameters. Then, we discuss the numeri-
cal results.

4.1 Experimental Setup

The regression datasets employed in our experimental
analysis are publicly available within the Keel (Al-
calá-Fdez et al., 2011) (Anacalt, Elevators, House,
Weather Izmir, Treasury, Mortgage) and Torgo’s1

(Puma8NH, California, Kinematics) dataset reposito-
ries. The number of samples and input variables for
each of the datasets are reported in Table 1.

Table 1: Datasets description.

Dataset # Input Variables # Samples
Puma8NH (PU) 8 8192

ANACALT (AN) 7 4052
Elevators (EL) 18 16599
House (HO) 16 22784

Weather Izmir (WI) 9 1461
Treasury (TR) 15 1049

Mortgage (MO) 15 1049
California (CA) 8 20460
Kinematics (KI) 8 8192

In our preliminary experimental assessment, the
following configuration parameters are considered for
FRT induction:

• a strong uniform fuzzy partition based on five tri-
angular fuzzy sets is employed on each input at-
tribute. The five fuzzy sets can be labelled with
the following linguistic terms: VeryLow, Low,
Medium, High and VeryHigh.

• min samples split = 0.1;

• min PFGain = 0.0001.
Furthermore, a robust scaling (using 2.5 and 97.5 per-
centiles) is applied to the input variables to remove
outliers and clip the distribution in the range [0,1].

1https://www.dcc.fc.up.pt/∼ltorgo/Regression/DataSet
s.html
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In order to assess the performance of the pro-
posed heterogeneous FRT and investigate the trade-
off between accuracy and interpretability we car-
ried out an experimental analysis by consider-
ing the following values for the threshold thorder:
{0,5,10,20,40,60,80,100}. We recall that thorder = i
implies that i% of the leaves with the lowest variance
use a zero-order model and (100 − i)% use a first-
order model. For thorder = 0 and thorder = 100 we
have purely first-order and purely zero-order FRTs,
respectively.

The predictive capability of the heterogeneous
FRTs is evaluated through the Mean Squared Error
(MSE):

MSE =
1

Ntest

Ntest

∑
i=1

(yi − ŷi)
2 (14)

where Ntest is the number of samples considered for
the evaluation, yi and ŷi are the ground truth value and
the predicted value associated with the i-th instance
of the test set, respectively. Results are evaluated in
terms of average values over 5-fold cross-validation:
at each iteration of the cross-validation, the same split
is used for the different values of thorder.

4.2 Experimental Results

Table 2 reports the average results obtained by the het-
erogeneous FRTs for different values of the thresh-
old thorder. Best values of MSE, averaged over 5-fold
cross-validation, are highlighted in bold.

It is worth noticing that, for any dataset, the over-
all number of leaves (evaluated as the sum of the num-
ber of leaves employing zero- and first-order models)
is constant, regardless of the thorder value. This is
expected, since the choice of the model order takes
place after the tree growing procedure and has no im-
pact on the number of leaves. Furthermore, it can be
observed that the pre-pruning strategies, implemented
by the stop conditions based on min samples split and
min PFGain, allow obtaining FRTs with a limited
number of leaves (generally lower than 100). Ob-
taining trees with a relatively low number of leaves,
which corresponds to the number of rules, is crucial
for the global interpretability of the models.

As for the accuracy of the FRTs (measured in
terms of MSE on the test sets), it can be observed that
FRTs featuring only first-order regression models in
the leaves (thorder = 0) always outperform FRTs fea-
turing only zero-order models (thorder = 100). First-
order models entail both a higher modelling capabil-
ity (lower MSE values on the training set) and gen-
eralization capability (lower MSE values on the test
set) compared to the zero-order ones. Furthermore,

the quality of the predictions of FRTs is compara-
ble to that measured in previous relevant works (An-
tonelli et al., 2011), (Bechini et al., 2022). It can
be observed, however, that first-order models can be
prone to the overfitting phenomenon: on Mortgage
and Treasury datasets, in particular, the MSE on the
test set is higher than the MSE on the training set by
a factor around 2, with thorder = 0. Such factor de-
creases with increasing values of thorder. This phe-
nomenon is probably explained by the low numeros-
ity of the two datasets.

Expectedly, the heterogeneity of the models em-
ployed in the leaves allows for intermediate results be-
tween those achieved by purely zero-order and purely
first-order FRTs. The only exception occurs for the
Puma8NH dataset, where modelling few leaves (2 or
3 out of around 26) with zero-order models entails a
minimal gain in accuracy (MSE on the test set de-
creases from 10.16 to 10.15). Otherwise, in gen-
eral, heterogeneous FRTs perform gradually worse as
thorder increases. It is worth pointing out, however,
that adopting a zero-order model in a small fraction of
leaves with the lowest variance (thorder ∈ [5,10,20])
does not entail a significant degradation of test accu-
racy. At the same time, the resulting models are sim-
pler than in the case of thorder = 0. To quantify the
gain in complexity and thus in interpretability, we ex-
tend the definition of FRT complexity (CFRT ) adopted
in (Bechini et al., 2022):

CFRT = IN +LN0 +LN1 × (F +1) (15)

where IN, LN0 and LN1 represent the number of in-
ternal nodes, the number of leaves implementing a
zero-order model and the number of leaves imple-
menting a first order model, respectively. In other
words, the formulation of CFRT captures the overall
number of parameters of an FRT, noting that each
zero-order model has only one parameter (i.e., the
constant value) whereas a first-order model has F +1
parameters (i.e., the vector of coefficients Γ of the lin-
ear model).

To better illustrate the trade-off between accuracy
and complexity (and indeed interpretability) of het-
erogeneous FRTs, in Fig. 1 we report the values of
MSE and CFRT for each dataset and for each value of
thorder. Plots confirm the observation that MSE values
tend to increase with thorder: the performance degra-
dation is more evident for high value of the threshold,
but is less evident for lower values.

By the analysis of the experimental results, we can
conclude that the use of zero-order regression mod-
els in the 10-20% of leaf nodes characterised by the
lowest fuzzy variance does not affect considerably the
performance of the FRTs, but produces considerably
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Table 2: Experimental results: average MSE results obtained by varying the thorder parameter, together with the respective
number of leaves implementing a zero-order and first-order regression model. Best values of MSE are highlighted in bold.

train test 0-ord. 1-ord. train test 0-ord. 1-ord. train test 0-ord. 1-ord.
thorder Puma8NH Anacalt (×10−2) Elevators (×10−6)

0 9.80 10.16 0.0 25.8 1.23 1.41 0.0 13.8 6.73 7.24 0.0 75.8
5 9.81 10.15 2.0 23.8 1.23 1.41 3.0 10.8 6.74 7.25 4.4 71.4
10 9.82 10.15 3.0 22.8 1.23 1.41 3.0 10.8 6.77 7.28 8.2 67.6
20 9.98 10.30 6.0 19.8 1.23 1.41 3.4 10.4 6.94 7.54 16.0 59.8
40 10.30 10.57 11.2 14.6 1.84 2.02 6.2 7.6 7.41 8.01 31.0 44.8
60 10.92 11.13 16.4 9.4 2.34 2.50 8.8 5.0 8.51 9.19 46.2 29.6
80 11.72 11.89 21.6 4.2 3.08 3.35 11.6 2.2 10.85 11.46 61.2 14.6

100 12.62 12.64 25.8 0.0 6.58 6.76 13.8 0.0 24.16 24.39 75.8 0.0
thorder House (×109) Weather Izimir Treasury (×10−2)

0 1.33 1.46 0.0 91.8 1.00 1.68 0.0 93.8 2.51 5.40 0.0 54.0
5 1.33 1.46 5.0 86.8 1.00 1.70 5.2 88.6 2.51 5.64 3.2 50.8
10 1.33 1.46 9.6 82.2 1.01 1.72 9.8 84.0 2.58 5.69 6.0 48.0
20 1.34 1.47 18.8 73.0 1.09 1.84 19.4 74.4 3.01 6.26 11.4 42.6
40 1.38 1.50 37.4 54.4 1.62 2.54 38.2 55.6 4.81 8.06 22.2 31.8
60 1.47 1.59 55.6 36.2 2.81 4.03 56.8 37.0 8.25 12.61 32.8 21.2
80 1.70 1.78 74.2 17.6 4.75 5.85 75.6 18.2 11.98 15.18 43.6 10.4

100 2.06 2.08 91.8 0.0 7.11 8.15 93.8 0.0 34.42 36.62 54.0 0.0
thorder Mortgage (×10−2) California (×109) Kinematics (×10−2)

0 0.95 1.92 0.0 100.4 3.34 3.45 0.0 87.8 3.67 3.81 0.0 25.0
5 0.95 1.92 5.8 94.6 3.35 3.45 4.8 83.0 3.69 3.82 2.0 23.0
10 0.95 1.92 10.4 90.0 3.36 3.47 9.0 78.8 3.71 3.84 3.0 22.0
20 1.02 1.98 20.6 79.8 3.42 3.53 18.0 69.8 3.77 3.90 6.0 19.0
40 2.13 3.24 40.8 59.6 3.69 3.79 35.6 52.2 3.95 4.07 11.0 14.0
60 3.68 4.63 60.8 39.6 4.29 4.42 53.4 34.4 4.26 4.38 16.0 9.0
80 6.58 9.01 81.0 19.4 5.21 5.32 71.0 16.8 4.45 4.53 21.0 4.0

100 18.48 20.33 100.4 0.0 5.88 5.95 87.8 0.0 4.59 4.62 25.0 0.0

advantages in terms of both global and local inter-
pretability.

5 CONCLUSION

In this paper, we have introduced the concept of het-
erogeneity in Fuzzy Regression Tree (FRT), allow-
ing for different polynomial approximators (i.e., ei-
ther zero- or first-order models) in different leaf nodes
of an FRT. The model selection criterion is based on
the concept of Fuzzy Variance of the leaf nodes. We
investigate the trade-off between interpretability and
accuracy (expressed as Mean Squared Error) for dif-
ferent degrees of heterogeneity on nine benchmark re-
gression datasets. The results showed that, in general,
the heterogeneous FRTs achieve intermediate perfor-
mance between the pure zero-order and the pure first-
order FRTs. In detail, first-order models entail higher
predictive capability (i.e., lower MSE values) com-
pared to zero-order ones, but this comes at a cost of
an increased complexity and reduced interpretability.
Interestingly, heterogeneous FRTs with a small quota
of leaves employing zero-order models (i.e. from 5%

to 20%) provide a gain in interpretability compared
to purely first-order FRTs, without significant loss in
terms of MSE. In conclusion, the proposed heteroge-
neous FRT has proven its effectiveness in scenarios
where, given a performance constraint, it is necessary
to optimize the model’s explainability by reducing the
number of model parameters. Future works will in-
vestigate the sensitivity of Heterogenous FRTs with
respect to its main hyperparameters and will com-
prise comparative experiments with other classical
and state-of-art ML approaches, in terms of accuracy
and explainability.
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Figure 1: Plots of the average MSE on the training and test sets and average complexity (i.e., overall number of parameters)
of the FRTs for different values of thmodel, as reported in the annotations within the figures.
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