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Abstract: The expansion of large-scale distributed renewable energy drives the emergence of networked microgrids
systems, necessitating the development of an efficient energy management approach to minimize costs and
maintain energy self-sufficiency. The use of smart systems that are based on deep learning algorithms has be-
come prevalent while addressing the energy management problem due to its real-time scheduling capabilities.
However, training deep-learning algorithms requires substantial energy operation data from these microgrids,
which raises concerns regarding privacy and data security when collecting data from various microgrids. To
address this challenging problem, this article proposes a decentralized federated learning architecture for net-
worked microgrids. The architecture incorporates a distributed federated learning (FL) mechanism to guaran-
tee data privacy and security and prevent the system from signle point of failure. A decentralized networked
microgrids model is constructed, where each participating microgrid has an energy management system re-
sponsible for managing its energy. The goal of the EMS is to minimize economic costs and maintain energy
self-sufficiency. Initially, MGs independently undergo self-training using local energy operation data to train
their individual models. Subsequently, these local models are regularly exchanged, and their parameters are
aggregated to create a global model. This approach allows sharing of experiences among the microgrids with-
out transmitting energy operation data, thereby safeguarding privacy and ensuring data security and preventing
from single point of failure.

1 INTRODUCTION

Efficient energy management plays a crucial role in
mitigating environmental impacts and addressing the
growing demand for energy, even in the face of in-
creasing energy consumption (Rehman et al., 2021).
To achieve a balance between demand and supply, es-
tablish robust power infrastructure, optimize gener-
ation schedules, and minimize the repercussions of
renewable energy production, a smart energy man-
agement should be addressed (Chouikhi et al., 2019),
(Naidji et al., 2019). Utility providers can now mea-
sure and record energy usage for buildings or indi-
vidual residences within an hour or less, thanks to
advanced metering infrastructure and the widespread
adoption of smart meters (Naidji et al., 2018). This
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technology has gained significant traction in the UK,
where over 15 million smart meters are currently em-
ployed in homes and businesses. As a result for the
large adoption for smart meters, different research
work were published discussing the utilization of ma-
chine learning in smart grids (Massaoudi et al., 2021).
The work in (Feng et al., 2020) detect real-time build-
ing occupancy from Advanced Metering Infrastruc-
ture (AMI) data based on a deep learning architec-
ture. The developed deep learning model consists
of a convolutional neural network (CNN) and a long
short-term memory (LSTM) network. The simulation
results show that the developed model outperforms
the existing state-of-the-art ML classifiers and other
deep learning architectures with around 90% occu-
pancy detection accuracy.

A deep learning load prediction model is proposed
in (Zhu et al., 2020). A daily time step-by-step load
prediction method is employed where a deep cycle
neural network (DCNN) model is established for the
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total daily load and hourly load of users. The sim-
ulation results show the superiority of the proposed
model.

The work in (Li et al., 2022) presents a novel ap-
proach for detecting FDIA (False Data Injection At-
tacks) by leveraging the concepts of federated learn-
ing, secure federated deep learning, and the Trans-
former model. The proposed method combines the
multi-head self-attention mechanism of the Trans-
former, which is deployed as a detector in edge nodes,
to explore the intricate relationships among individual
electrical quantities. By adopting a federated learning
framework, our approach allows collaborative train-
ing of a detection model using data from all nodes
while ensuring data privacy by keeping the data lo-
cally during the training process. To enhance the se-
curity of federated learning, we have designed a se-
cure federated learning scheme that incorporates the
Paillier cryptosystem into the federated learning pro-
cess.

The work proposed in (Jithish et al., 2023) intro-
duces a smart grid anomaly detection scheme that uti-
lizes Federated Learning (FL). The scheme involves
training machine learning (ML) models locally within
smart meters, without the need to share data with a
central server. Initially, a global model is obtained
from the server and deployed on the smart meters for
on-device training. Following local training, the up-
dated model parameters are transmitted to the server,
contributing to the enhancement of the global model.

The work in (Wen et al., 2022) proposes a novel
privacy-preserving federated learning framework for
energy theft detection, namely, FedDetect. In this
framework, the authors consider a federated learning
system that consists of a data center (DC), a control
center (CC), and multiple detection stations. In this
system, each detection station (DTS) can only ob-
serve data from local consumers, which can use a lo-
cal differential privacy (LDP) scheme to process their
data to preserve privacy. To facilitate the training of
the model, the authors design a secure protocol so that
detection stations can send encrypted training param-
eters to the CC and the DC, which then use homomor-
phic encryption to calculate the aggregated parame-
ters and return updated model parameters to detection
stations. In this study, the authors prove the security
of the proposed protocol with solid security analy-
sis. To detect energy theft, a deep learning model
based on the state-of-the-art temporal convolutional
network (TCN) is designed.

However, none of the above studies consider the
potential single point failure of the server which can
block the entire process. To address this challenge,
we propose a decentralized federated learning archi-

tecture for networked microgrids which consists of a
decentralized model exchange and a decentralized ag-
gregation model.

2 SYSTEM MODEL

2.1 Problem Formulation

Energy management in networked microgrids system
requires a real-time control and monitoring of renew-
able energy sources which is intermittent and need to
be predicted. For this reason, load forecasting and en-
ergy price forecasting should be addressed in order to
reduce energy cost and improve energy availability.

2.2 Distributed Federated Learning

The optimization problem of federated learning for K
devices can be formulated with objective function as
follows:

min l(w) =
K

∑
K=1

nk

n
Lk(w) (1)

Where
Lk(W ) =

1
nk

∑
i∈pk

li(w) (2)

l(w) is the loss function of the global model, LK(x)
is the loss of the kth device, and li(w) is the loss for
sample i ∈ pk

Decentralized federated learning builds upon the
principles of federated learning but takes the con-
cept a step further by removing the need for a cen-
tral server or coordinator. Instead, it distributes the
model training process across multiple devices or en-
tities in a peer-to-peer manner. This approach further
enhances privacy and eliminates the single point of
failure introduced by a central server.

Here’s an overview of how decentralized feder-
ated learning works:

2.2.1 Network Formation

A network of microgrids is established in a decen-
tralized manner. These microgrids can communicate
with each other directly or through a peer-to-peer
network infrastructure. Here in our case, we con-
sider the mechanism of coalition formation between
networked microgrids developped in (Naidji. et al.,
2019), (Naidji et al., 2020). This mechanism allow
the network to autonomously self organize in coali-
tions to achieve better performance in terms of energy
exchange.
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Figure 1: Network Formation.

Figure 1 shows the process of network formation
which is based on an merge and split coalition for-
mation algorithm (MSCF) proposed in (Naidji. et al.,
2019). The microgrids autonomously self-organize in
coalitions in order to achieve an optimal energy man-
agement. Note that, here in our case, decentralized
federated learning is conducted for every coalition.
The reason behind that is that microgrids belonging to
the same coalition shares multiple features, and thus,
sharing their learning models will bring more benefits
for each one.

2.3 Model Initialization

Initially, each microgrid initializes its local model pa-
rameters, either randomly or based on a pre-trained
model.

2.4 Local Model Training

Each microgrid independently trains its local model
using its local data. This process is similar to tradi-
tional federated learning, where each device performs
local computations on its data to update the model.

2.5 Model Exchange

After local training, microgrids exchange model up-
dates with their neighboring microgrids. The ex-
change can be performed directly between microgrids
or through a decentralized network infrastructure.

2.6 Model Aggregation

Each microgrid receives model updates from its
neighbors and aggregates them with its own local
model to create an updated model. The aggregation
process can involve averaging the models. Here we
use the decentralized federated averaging algorithm
proposed in (Sun et al., 2021).

To begin, we provide a brief overview of the
this algorithm. This algorithm follows the following
steps:

1) Each microgrid, denoted as microgrid i, pos-
sesses an approximate copy of the parameters, x(i).

2) Communication takes place among the micro-
grids. During this phase, microgrid i updates its lo-
cal parameters, x(i), by taking a weighted average of
its neighboring microgrids’ parameters. The updated
value is denoted as x(i) = ∑l∈N(i) wi,l .x(l).

3) The training process starts. Microgrid i up-
dates its parameters using the expression x(i) = x(i)−
αg(i), where α is a positive learning rate.

Microgrid 1

Microgrid  n

Coalition

Figure 2: Model aggregation.

Figure 2 shows the process of model aggregation
in each microgrid that belongs to a given coalition.
The microgrid receives multiple model parameters
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that will be aggregated to form its final model.

2.7 Iterative Process

Steps 3-6 are repeated for multiple rounds or itera-
tions. In each round, microgrids train their models
locally, exchange model updates with neighbors, ag-
gregate the updates, and broadcast their updated mod-
els.

2.8 Convergence

Over iterations, the models on each microgrid be-
come more refined as they learn from the combined
knowledge of neighboring microgrids. The decen-
tralized federated learning process continues until the
desired performance or convergence is achieved. De-
centralized federated learning allows for collaborative
model training across multiple microgrids in a peer-
to-peer manner, without relying on a central server. It
enables microgrids to exchange information directly
with their neighbors, reducing latency and potential
privacy risks associated with transmitting data to a
central authority.

It’s important to note that decentralized federated
learning can take various forms depending on the spe-
cific network architecture, communication protocols,
and consensus algorithms used. These aspects can
vary based on the requirements and constraints of the
decentralized system being implemented.

3 CONCLUSION

In this paper, we have proposed a decentralized fed-
erated learning architecture for networked microgrids
system to improve energy management. The pro-
posed architecture guarantees the data privacy and se-
curity of microgrids by exchanging only their models.
Furthermore, the proposed decentralized architecture
prevents from signle point of failure by eliminating
the central server and exchanging models in a peer-
to-peer manner.
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