
Supporting the Automated Generation of Acceptance Tests of
Process-Aware Information Systems

Tales M. Paiva1 a, Toacy C. Oliveira1,3 b, Raquel M. Pillat2 c and Paulo S. C. Alencar3

1Computer and Systems Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2Software Engineering Program, Universidade Federal do Pampa, Alegrete, Brazil
3Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

Keywords: Test Automation, RPA, BPMN, Model-Based Testing.

Abstract: Software quality assurance is a crucial process that ensures software products meet specified requirements
and quality standards. Achieving an exhaustive test coverage is essential for quality assurance, particularly in
complex and dynamic Process-Aware Information Systems (PAIS) built upon the Business Process Model and
Notation (BPMN). Manual testing in such systems is challenging due to many execution paths, dependencies,
and external interfaces. This paper proposes a model-based testing strategy that uses BPMN models and build
specifications as input to generate a Robotic Process Automation (RPA) script that automates a comprehensive
User Acceptance Test procedure. Leveraging on Robotic Process Automation (RPA) to automate user interac-
tions allows for reducing the need for testers to manually input PAIS-related information when handling user
forms. We also present a Case Study to demonstrate the feasibility of our approach.

1 INTRODUCTION

Software quality is a systematic process that ensures
software products meet specified requirements and
quality standards. In a more aspirational definition,
it is ”an ideal toward which we strive” (Lawrence-
Pfleeger and Atlee, 1998). The number and the type
of failures detected are a proxy to the assessment of
software quality, being an internal direct measure of
the testing process and an external indirect measure
of the attribute of software quality itself. Therefore,
having a proper testing strategy, with a high test cov-
erage, can contribute to the quality assurance of the
software developed.

According to (Dumas et al., 2005), a Process-
Aware Information System (PAIS) is ”a software sys-
tem that manages and executes operational processes
involving people, applications, and/or information
sources on the basis of process models”. PAISs are
based on business process models such as the Busi-
ness Process Model and Notation (BPMN) (OMG,
2014). Test coverage in PAIS is challenging due to the
inherent complexity and dynamism of these systems.

a https://orcid.org/0000-0003-2036-3442
b https://orcid.org/0000-0001-8184-2442
c https://orcid.org/0000-0002-5420-6966

A process typically features multiple execution paths,
options, and dependencies among activities, includ-
ing decision points, parallel execution, and synchro-
nization. The sheer volume of potential combinations
makes it challenging for a human to test exhaustively
all scenarios, as well as functional and non-functional
requirements. Furthermore, these systems often in-
terface with external systems and human interactions,
introducing further variability. Maintaining high test
coverage becomes increasingly difficult as the system
evolves, requiring significant time and resources to
keep test suites up-to-date and effective.

This paper proposes a model-based testing strat-
egy that uses BPMN models and build specifications
as input to generate a Robotic Process Automation
(RPA) script that automates a comprehensive User
Acceptance Test procedure. In other words, this work
presents a solution that generates RPA scripts to sup-
port the execution of the Acceptance Tests, covering
all the possible paths within the BPMN of the PAIS
under test. We also present a Case Study to demon-
strate the feasibility of our approach.

Given a PAIS is fundamentally architected upon
process models (Dumas et al., 2005), in this case
BPMN (OMG, 2014), it is possible to employ a
model-based strategy for test case generation (Utting
et al., 2016; de Moura et al., 2017). This systematic

128
Paiva, T., Oliveira, T., Pillat, R. and Alencar, P.
Supporting the Automated Generation of Acceptance Tests of Process-Aware Information Systems.
DOI: 10.5220/0012211400003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 128-139
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



technique can ensure comprehensive test coverage,
meticulously accounting for all conceivable paths and
dependencies among the activities within the model.
By doing so, it could effectively mitigate the afore-
mentioned challenge of ensuring exhaustive test cov-
erage in such complex and dynamic environments.

Considering that the BPMN standard is very ex-
plicit about the human interactions within a process,
it is feasible to compile a comprehensive set of hu-
man interactions in the generated test cases. These
interactions can serve as valuable guidance for testers,
allowing for increased test coverage and subsequently
enhancing the efficiency and effectiveness of the ac-
ceptance testing process. Moreover, by strategically
implementing Robotic Process Automation (RPA), it
is feasible to automate the execution of these user in-
teractions (Enrı́quez et al., 2020). This strategic de-
ployment of RPA further amplifies the efficiency and
consistency of the overall testing procedure, provid-
ing added benefits to the testing process as a whole.

A model-based approach can automate the genera-
tion of acceptance tests (Ramler and Klammer, 2019),
increasing the test coverage of a PAIS based on the
business process models. The automated generation
of such tests can improve the quality of tests by re-
ducing the possibility of human errors, improving its
reliability and consistency.

Continuous delivery (CD) is an evolving software
engineering paradigm that refers to the iterative prac-
tice of delivering software to end-users in frequent
and regular cycles (Makki et al., 2016). (Humble and
Farley, 2010) states that adopting acceptance criteria-
driven tests in the CD strategy is seen as a progressive
step to further improve software quality. According to
(Gmeiner et al., 2015), numerous companies are em-
bracing automated testing within their pipelines as an
enabler to CD, for it is seen as a strategic capability
that offers a competitive advantage.

Automating software tests provide three key ben-
efits: repeatability, leverage, and accumulation (Few-
ster and Graham, 1999). Automated test generation
and execution can significantly reduce the time and
effort required to create test cases manually, freeing
up the tester’s time, allowing them to focus on more
complex and higher-value tasks, while enabling a re-
gression testing strategy.

The remainder of this paper is organized as fol-
lows: Section 2 presents the background of this re-
search. The proposed solution is presented in Sec-
tion 3, and a case study is demonstrated in Section 4
and discussed in Section 5. Related work is shown
in Section 6, while Section 7 concludes the paper and
presents future work.

2 BACKGROUND

The Software Development and Testing are vast do-
mains of software engineering, with several different
frameworks and approaches. Given the focus of the
present work on automated generation and execution
of acceptance tests of BPMN-based PAIS through the
usage of RPA, it is instrumental that these concepts
are well defined within its scope.

The use of MBT-related techniques in a BPMN-
based PAIS allows for the derivation of the User Ac-
ceptance Test (UAT) suite from the process model,
since it encapsulates the expected interactions be-
tween end-users and the system within process. These
generated test cases in the test suite then facilitate
the UAT, allowing users to validate whether the sys-
tem aligns with their expectations and fulfills the
requirements, while also presenting a good oppor-
tunity for the automated testing of the user inter-
faces through the use of Robotic Process Automation
(RPA) (Enrı́quez et al., 2020).

2.1 Software Development and Testing
Life Cycles

The Software Development Life Cycle (SDLC) and
Software Testing Life Cycle (STLC) are integral pro-
cesses in software development. The SDLC is a
methodological framework employed within the do-
main of software engineering that encompasses the
systematic stages involved in developing software, in-
cluding requirements gathering, design, coding, test-
ing, deployment, and maintenance.

The SDLC framework aims to maximize the qual-
ity of software products, manage project timelines
and costs effectively, and minimize the potential risks
associated with software development. By employing
SDLC, organizations strive to deliver software prod-
ucts that meet specified requirements, ensure func-
tional precision, and provide value to end-users.

On the other hand, the STLC focuses specifically
on testing activities within the SDLC, involving plan-
ning, designing, executing, and evaluating tests to ver-
ify software functionality and quality. Both processes
work hand in hand, with STLC ensuring that software
meets requirements through comprehensive testing.
Together, they facilitate structured and efficient soft-
ware development, resulting in high-quality products
that meet stakeholder expectations.

According to (Leung and Wong, 1997), software
testing consists of:

• Unit Test: testing new functionalities for correct-
ness, usually tested against function and code cov-
erage requirements;

Supporting the Automated Generation of Acceptance Tests of Process-Aware Information Systems

129



• Integration Test: designed to test the unit inter-
faces and the interactions among the units;

• System Test: checks for defects in the function-
alities of the system, typically using a black-box
approach;

• Acceptance Test: test the software against the user
requirements, both functional and non-functional,
to demonstrate the software readiness for opera-
tional use.

In the STLC, although testing consists on an im-
portant aspect (Padmini et al., 2016), most of the ex-
isting testing strategies are focused on the developer
rather than the final user (Leung and Wong, 1997).

2.1.1 Acceptance Testing

As defined in (IEEE, 2017), Acceptance Testing is
”testing conducted to determine whether a system sat-
isfies its acceptance criteria and to enable the cus-
tomer to determine whether to accept the system”.

In that context, Acceptance Tests, also referred
as User Acceptance Tests (UAT) when conducted
with the presence of or even by the customer, assess
whether a feature is working from the customer’s per-
spective and ensuring the customer’s satisfaction with
the final product (Melnik et al., 2004), while enhanc-
ing their confidence to accept the system (Padmini
et al., 2016).

One key difference between the test modalities is
that Unit and Integration Tests are modeled and writ-
ten by developers, System Tests are modeled and writ-
ten by developers or testers, while the Acceptance
Tests, specially UATs, are usually modeled by the
customers, and possibly even written by them, with
the aid of a developer or tester (Melnik et al., 2004).
Conventionally, the end-users enumerate a set of ac-
ceptance test cases, covering the ”major functions,
user interface, and capabilities in handling invalid in-
put and exceptions in operation”, with the main ob-
jective of evaluating the system readiness for opera-
tional use (Leung and Wong, 1997).

2.1.2 Model-Based Testing

Model-based testing (MBT) constitutes a specialized
testing approach predicated on the utilization of ex-
plicit behavior models. These models encapsulate the
projected behaviors of the system under test (SUT)
or potentially, its corresponding environment. Test
cases originate from either one of these behavioral
representations or a synthesis of them, and are sub-
sequently deployed for execution on the designated
SUT (Utting et al., 2011).

MBT embodies a testing paradigm in which test
cases are wholly or partially generated from a model.
For the successful deployment of this approach, it
necessitates that the software’s behavioral or struc-
tural characteristics are explicitly delineated by mod-
els crafted with well-defined rules. These models may
take the form of formal models, finite state machines,
UML diagrams, among others (Utting and Legeard,
2006).

The benefits of MBT, according to (Dias-Neto and
Travassos, 2010):

1. Lower cost and effort for testing plan-
ning/execution and shorter testing schedule;

2. Improvement of the final product quality, because
the models are used as an oracle for testing;

3. Testing process can be automated;

4. Ease of communication between the development
and testing teams;

5. Capacity of automatically generating and run-
ning large sets of useful and non-repetitive (non-
redundant) tests;

6. Ease of updating the test cases set after the soft-
ware artifacts used to build the software model
changes;

7. Capacity of evaluating regression testing scenar-
ios.

2.2 Process-Aware Information Systems

Process-Aware Information Systems (PAIS) are soft-
ware systems that automate and support business pro-
cesses, integrating process modeling, execution, mon-
itoring, and analysis (Dumas et al., 2005; Aalst,
2009). PAIS enable organizations to streamline work-
flows, track progress, handle exceptions, and improve
operations. They provide a framework for aligning
information systems with business processes, enhanc-
ing efficiency, and facilitating effective management
of complex workflows.

Various providers offer PAIS solutions, includ-
ing commercial vendors and open-source platforms
(Telemaco et al., 2022). Among them, Camunda1

stands out as an open-source provider with compre-
hensive PAIS capabilities. Camunda offers a flexible
and scalable platform for modeling, executing, and
monitoring complex processes. It is known for its ex-
tensive feature set and robust integration capabilities,
making it a popular choice for organizations seeking
an open-source PAIS solution.

1https://camunda.com/platform-7/

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

130



The AKIP Process Automation Platform2 is
an open source project devoted to facilitate Pro-
cess/Workflow Automation initiatives based on code
generation techniques, aiming to promote the con-
struction and dissemination of PAISs utilizing estab-
lished technologies such as BPMN, Java, Javascript
and Camunda, enabling the creation of modern web
applications which are named KIPApps (Telemaco
et al., 2022).

2.3 Business Process Model and
Notation

Business Process Model and Notation3 (BPMN) is
a standardized graphical notation used for modeling
business processes, developed by the Object Manage-
ment Group (OMG) and first introduced in 2004. It
provides a visual representation that enables organi-
zations to document, analyze, and communicate their
business processes effectively (OMG, 2014).

The notation incorporates symbols and elements
to represent various aspects of a process, intending
to ”standardize a business process model and nota-
tion in the face of many different modeling notations
and viewpoints” (OMG, 2014).It has become widely
adopted in the industry due to its clarity, versatility,
and ability to bridge the gap between all stakeholders
involved, providing ”a simple means of communicat-
ing process information to other business users, pro-
cess implementers, customers, and suppliers” (OMG,
2014).

In BPMN-based PAIS, such as KIPApps
(Telemaco et al., 2022), the human points of in-
teraction within a business process play a crucial
role in assessing software quality. These interactions
occur when tasks require human input or decision-
making. BPMN provides specific elements to model
these interactions. Start events have a form associated
with it, and user tasks represent activities that involve
human participants.

UATs play a significant role in BPMN-based PAIS
to ensure the quality and usability of the implemented
processes. In BPMN-based PAIS, UATs focus on val-
idating the process models and their execution within
the system. By aligning UATs with the BPMN di-
agrams, organizations can assess if the implemented
processes adhere to the intended logic and achieve the
desired outcomes. This validation process helps to
identify and address any discrepancies or issues early
on, improving user satisfaction and system reliability.

Moreover, since BPMN serves as the underlying

2https://agilekip.github.io/pap-documentation/about
3https://www.omg.org/bpmn/

model for these systems, MBT leverages this model to
automate the testing process. This approach enables
comprehensive coverage of user interactions and early
detection of potential issues. By utilizing MBT, orga-
nizations can improve the effectiveness and efficiency
of UATs, ensuring robust testing and higher software
quality within BPMN-based PAIS.

BPMN plays a crucial role in PAIS by providing
a standardized language for modeling and executing
business processes. By utilizing BPMN, PAIS can
represent complex process logic, control flow, and
data dependencies in a visual and standardized man-
ner.

(Lübke and van Lessen, 2017) states that the adop-
tion of BPMN as a universal modeling language facil-
itates effective communication among all project par-
ticipants and encourages the reuse of existing editors
and repositories. Although their work was focused
on service-based processes, the same argument can
be derived for human-oriented processes and its User-
Acceptance Tests.

2.4 Robotic Process Automation

Robotic Process Automation (RPA) refers to the use
of software robots or ”bots” to automate repetitive,
rule-based tasks within business processes. These
bots mimic human interactions with various software
systems and perform tasks such as data entry, form
filling, and screen navigation. Its roots can be traced
back to screen scraping tools and macros, which were
later refined into more advanced automation capabili-
ties.

RPA finds utility in UATs by automating repet-
itive and manual testing activities (Enrı́quez et al.,
2020). Since UATs involve end-users or stakeholders
validating a system’s functionality, user experience,
and compliance with requirements, RPA can stream-
line and accelerate this testing cycle by automating
the execution of test cases, data input, and result ver-
ification. Bots can interact with the system’s user in-
terface, simulate user actions, and compare expected
outcomes with actual results. This automation re-
duces manual effort, increases test coverage, and en-
hances the efficiency of the UAT process. However,
it’s crucial to emphasize that the current solution is
not designed to replace the end user or eliminate the
acceptance testing phase. Instead, its goal is to en-
hance test coverage and facilitate a smoother accep-
tance testing process.

When it comes to open-source RPA solutions, one
notable option is Robot Framework4 (RF). RF is a
generic test automation framework that supports not

4https://robotframework.org/

Supporting the Automated Generation of Acceptance Tests of Process-Aware Information Systems

131



only RPA but also other types of software testing. It
provides a simple and readable syntax, making it ac-
cessible for both technical and non-technical users.
RF allows the creation of test cases using keywords,
which can be extended through libraries or custom
implementations. Its open-source nature fosters a
collaborative community and provides flexibility for
customization and integration with various tools and
technologies.

3 SOLUTION OVERVIEW

Given the goal of improving the software quality as-
surance process, and that the system under test (SUT)
is a BPMN-based PAIS, which has clear definitions
about the human interactions points throughout a pro-
cess (Telemaco et al., 2022; OMG, 2014), it would be
beneficial to use an MBT approach for generating the
UAT test cases.

A scheme of the proposed solution can be seen in
Figure 1, and has the following procedure:

Figure 1: Scheme of the solution.

1. From the chosen process’ BPMN, i.e. its XML,
extract all the points within the process in which
there are human interaction according to the
AKIP’s definitions (Telemaco et al., 2022), which
are:

• the Start Event, which has a form related to it;
• the User Tasks present in the process definition,

each of which is associated with a correspond-
ing form;

2. From the AKIP entity JSONs5 that scaffold the
process forms and complex entities utilizing the
JHipster Domain Language (JDL)6, gather the
specification of the fields and data of each human
interaction point:

• the JSON related to the form present in the Start
Event;

5https://agilekip.github.io/pap-
documentation/tutorials/getting-started

6https://www.jhipster.tech/jdl/entities-fields

• the JSONs for the forms of each User Task
present in the BPMN;

3. Manipulate the aforementioned files using a
Python script;

4. Generate the RPA scripts of the Acceptance Tests
as seen in Algorithm 1;

5. Execute the automated Acceptance Tests of the
said process defined in the BPMN using the RPA
tool and generate a minimalist report of the exe-
cution;

Data: define the amount n of tests to be run.
Result: a report of all n executed tests with

their process patterns identified.
Open the browser;
Go to the platform URL;
Log in the platform;
for i = 0; i < n; i = i+1 do

Log the start of the execution of one test;
Generate mock data;
Execute the Start Form;
while there is a User Task available

within the current process execution do
Generate mock data;
Execute the User Task;
Log the User Task execution;

end
Log the end of the execution of one test;

end
Generate the tests execution log file;
Algorithm 1: Automated testing algorithm.

3.1 Implementation

The described solution implements a random execu-
tion of a given amount n of process instances, defined
by the tester, and generates a minimal report of the
process paths taken in the test cases executed, along-
side with RF’s standard thorough report. Each exe-
cution generate its own set of mock data utilizing the
Faker library7. The UI automation is implemented us-
ing the RPA.Browser.Selenium library8.

A brief overview of the relationship between the
fields declared in the AKIP entity JSONs from Step
2, and the mock data to be generated in Step 4 can be
seen in Table 1.

The steps of the algorithm generated by the
Python script can be seen in Algorithm 1. Each iden-
tified point of human interaction (Start Form and User

7https://pypi.org/project/robotframework-faker/
8https://pypi.org/project/rpaframework/

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

132



Table 1: Examples of data types relation.

JDL type Faker type
String Word or Sentence
Integer Random Int

LocalDate Date
Boolean Boolean

Many-to-one String Word or Sentence

Tasks) has it’s own interface automation implementa-
tion from the information present in the AKIP entity
JSON. The execution time of the Python script that
generates the RPA scripts is negligible.

Given the random nature of the data generated by
the Faker library, the execution of each process in-
stance is ”blind”, meaning that there’s no previous
knowledge or planning about the path that a specific
process instance will have, and the User Tasks are ex-
ecuted in a ”first come, first served” basis.

After executing n process instances, logs are pro-
vided and the tester can evaluate the executions and
make decisions regarding the results.

4 CASE STUDY

An example is given utilizing a simple Customer
Feedback Service process in a generated KIPApp
(Telemaco et al., 2022). This PAIS is a scaled down
version, for didactic purposes, of a realistic model
used in the industry. The procedures can all be ex-
ecuted by the same developer, or they can be split
throughout the team, given the following roles, for ex-
ample:

• Process Analyst: model the BPMN, as in item 1
from Figure 1;

• Developer: create the AKIP’s entity JSONs, as in
item 2 from Figure 1, and scaffold the KIPApp9;

• Tester: gather the aforementioned artifacts, feed
the Python script, generate the RPA scripts, exe-
cute the RPA and evaluate the results of the exe-
cution, as in items 3 to 5 from Figure 1.

The Customer Feedback Service is a business pro-
cess in which a customer can submit a Request Form
with a Complaint, a Suggestion or a Compliment.
The process was modeled using the BPMN standard
as seen in Figure 2, and is explained in Algorithm 2.

The web application (KIPApp) was scaffolded fol-
lowing the instructions present in (Telemaco et al.,
2022), and an example of the content of a AKIP entity
JSON, in this case the form associated with the Start
Event, can be seen in Figure 3. The resulting user

9https://agilekip.github.io/pap-documentation/about

Figure 2: A BPMN of a simple business process model rep-
resenting a Customer Feedback process.

Data: Customer feedback
Customer submits the feedback;
if feedback is Compliment or Suggestion then

Analyst reviews positive feedback;
else

Analyst reviews negative feedback and
determines its gravity;

if gravity is high then
Escalates process to supervisor;
Supervisor reviews feedback;

end
end
End of process;

Algorithm 2: A simple Customer Feedback service.

interface scaffolded by the KIPApp for the Request
Form can be seen in Figure 7.

The entity JSONs and the BPMN are fed into
the Python script as in item 3 of Figure 1, and the
Robot Framework’s .robot files are generated by
the Python script indicated in item 4. The Python
script, as well as examples of the resulting files
can be accessed in the following GitHub repository:
https://github.com/talesmp/aat4pais.

The analogous version of the Algorithm 1, gener-
ated by the Python script utilizing the Robot Frame-
work syntax can be seen in Figure 4.

From the AKIP entity JSONs, the fieldName is
used to derive the XPath Locators for the RF imple-
mentation of the UI automation, and the fieldType
is used to generate the proper mocked data through
the Faker library, as described in Table 1.

An example regarding the ”Generate mock
data” step described in Algorithm 1 is given. The
Python script manipulates the BPMN and the AKIP
entity JSONs and generates a test file with the
.robot extension, following RF’s syntax. A code
snippet related to this specific operation within the

Supporting the Automated Generation of Acceptance Tests of Process-Aware Information Systems

133



Figure 3: A snippet from the AKIP Start Event form entity
JSON.

Figure 4: The RF syntax version of the Algorithm 1.

Python script can be seen in Figure 5, and the result-
ing generated RPA script can be seen in Figure 6.

For ease of use, the robot can be executed utiliz-
ing the Visual Studio Code extension10 provided by
Robocorp. This makes the logging and debugging
clearer, as well as the management of the necessary
libraries easier.

10https://robocorp.com/docs/developer-tools/visual-
studio-code

Figure 5: A snippet from the Python script that implements
the mock data keyword in RF syntax.

Figure 6: A snippet from the Robot Framework RPA script
regarding the generation of the mock data.

The robot, mimicking a user and following the
steps described in the Algorithm 1, opens a Request
Form as a customer, fills a set of fields and submits
the process, as seen in Figure 7.

Figure 7: The form generated for the Request Form.

Given the data about the Type of Request selected
by the customer, i.e. a Complaint, a Suggestion
or a Compliment, the process is directed to an ana-
lyst to either acknowledge the suggestion or compli-
ment [Task 1], or to analyse the complaint [Task 2],
which can be seen in Figure 8, while the AKIP entity
JSON that generated the said form can be seen in Fig-
ure 9, with its specification regarding the read-only

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

134



fields, as seen in rows 06, 11 and 28, which reflect in
non-editable fields in the user interface of that specific
user task form.

Figure 8: The form generated for the [Task 2] Analyse
complaint.

When it is a Complaint, the analyst determines
its gravity, and it might get escalated to a supervisor
to review it [Task 3], as seen in Figure 10.

An example of the log obtained after the ran-
dom execution of 30 test cases can be seen in Fig-

Figure 9: A snippet from the AKIP User Task entity JSON
of the [Task 2] Analyse complaint.

Figure 10: The form generated for the [Task 3] Review
escalation.

Total process executions: 30
-17 executions: Request Form > Task 1
-10 executions: Request Form > Task 2
-03 executions: Request Form > Task 2 > Task 3

Figure 11: Example of the minimalist execution log identi-
fying the process paths.

ure 11, in which 17 times the process was either a
Compliment or a Suggestion, and executed only the
user task [Task 1] Acknowledge suggestion or
compliment. In other 13 times, the process regarded
a Complaint, and executed the user task [Task 2]
Analyse complaint, being 10 of these considered
mild, while other 3 executions were deemed grave and
required the participation of the supervisor in the user
task [Task 3] Review escalation.

The automation spent a total of 3min35s to exe-
cute all 30 process instances, with an average of less
than 10s per process instance. This is the time it takes
to navigate through the platform to fill the Start Form
and to locate and execute every User Task available
in the said process instance. An example of the time
taken to execute all the tasks and complete a single
process can be seen in Figure 12, while the data input
in the said instance can be seen in Figure 13.

Figure 12: Example of the tasks in an automated execution.

As it can be seen from Figure 13, the standard sen-
tences mocked by the Faker library are random word
tokens, with no specific meaning.

Supporting the Automated Generation of Acceptance Tests of Process-Aware Information Systems

135



Figure 13: Example of the data in an automated execution.

5 DISCUSSION

Taking the Customer Feedback Process as an exam-
ple, there are 3 different paths that the process can
take after the Request Form is submitted:

1. If it’s a Compliment or a Suggestion, [Task 1] is
executed and the process ends;

2. If it’s a Mild Complaint, only [Task 2] gets exe-
cuted and the process ends;

3. If it’s a Grave Complaint and an escalation to the
supervisor is needed, [Task 2] and [Task 3] get
executed and the process ends, like seen in Figure
14;

Figure 14: Example of the executed path in a process.

If a tester was to execute the test manually
the Customer Feedback Process, a few preparations
would have to be made:

1. Get familiarized with the business process in or-
der to derive the test suite, which the example
above are the 3 test cases;

2. Understand the business rules and where they are

applied in order to guide the executions aiming at
covering all 3 test cases;

3. Execute manually all 3 test cases, which can take
up to a few minutes per process instance, consid-
ering the tester needs to locate the buttons in the
user interface and input the data in each field of
each form (Start Form and User Tasks);

4. Annotate each execution, and compare it with the
test suite from Step 1, aiming at guaranteeing test
coverage.

In the proposed solution, Steps 1 and 2 should still
be done by the tester in order to have a better under-
standing of the logs and results from the automated
test suite. Steps 3 and 4 are done by the RPA tool,
and the only work left to the tester is interpreting the
logs and results. As the process definition increases in
complexity, the time to manually execute Steps 3 and
4 increases, and the automation can save the tester a
few minutes per process instance execution.

It is also relevant to consider that having a test
completing without errors can be deceptive (Haugset
and Hanssen, 2008), for there could have behaviors
implemented afterwards through a customized busi-
ness rule which wasn’t signaled in the original arti-
facts, i.e. the BPMN and the entity JSONs. Therefore,
if a customization is made in a given user interface,
the tester should also implement that expected behav-
ior in the automation of this interface in the Robot
Framework script.

Although identifying defect is not the main focus
of Acceptance Tests (Padmini et al., 2016), one of
the possibles uses of Acceptance Tests is as regres-
sion tests (Melnik et al., 2004), since the passing of a
suite of acceptance tests gives an objective answer re-
garding the fulfillment of the associated functional re-
quirements, ensuring that a previously working func-
tionality continues to behave as expected.

In this sense, having an automated suite of Ac-
ceptance Tests can introduce the routine of executing
regression testing at each new version of the system
or of a given process.

It is important to mention that this is a work-in-
progress with a few case studies conducted, but its by
no means a complete assessment, and therefore, it is
not representative of realistic processes executed on a
PAIS in a production environment.

6 RELATED WORK

The automated User-Acceptance Testing of BPMN-
based PAIS encompasses important crucial concepts:

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

136



Model-Based Testing (MBT), Acceptance Testing,
and Test Automation.

MBT plays a pivotal role in this strategy, as it en-
ables the automatic derivation of test cases from an
explicit abstract model of the system under test, in this
case, the BPMN. By interpreting the behavior of the
model as the intended behavior of the system, MBT
ensures comprehensive test coverage and aids in re-
quirements understanding, specification documenta-
tion, and test case generation.

Acceptance Testing is a vital component of UAT
for BPMN-based PAIS. It focuses on validating that
the system meets the specified requirements and sat-
isfies the expectations of end-users or stakeholders.
Through acceptance testing, organizations can ensure
that the implemented system aligns with the desired
functionality, user experience, and overall business
objectives. It provides an opportunity for stakehold-
ers to provide feedback, identify issues, and ensure
the system meets their acceptance criteria.

Test Automation is a key enabler for efficiency
and reliability in UAT. By automating the execution of
test cases, data input, and result verification, organiza-
tions can streamline the testing process. Test automa-
tion reduces manual effort, allows for test repeatabil-
ity, and facilitates faster feedback cycles. Leveraging
test automation in BPMN-based PAIS ensures consis-
tent and repeatable testing outcomes, enhancing effi-
ciency and reliability.

In summary, a comprehensive strategy for the au-
tomated UAT of BPMN-based PAIS involves leverag-
ing Model-Based Testing for test case derivation, con-
ducting Acceptance Testing to ensure system compli-
ance with requirements, and embracing Test Automa-
tion to streamline the testing process. By incorpo-
rating these concepts, organizations can enhance the
quality, efficiency, and reliability of UAT in BPMN-
based PAIS.

6.1 Model-Based Testing

Two systematic reviews of the literature regarding
Model-based Testing were conducted independently
around the same period by (Dias-Neto and Travassos,
2010) and (Labiche and Shafique, 2010). (Dias-Neto
and Travassos, 2010)’s work identified 219 distinct
approaches to MBT. The classification of these ap-
proaches was based on 29 different attributes, includ-
ing factors such as the utilization of UML models, the
objective of functional or non-functional testing, the
testing level (system/integration/unit/regression test-
ing), the degree of automation, and various other
attributes related to the model, test generation pro-
cess, and software development environment in which

MBT was applied. Although there was no reference
to BPMN in this review, a set of 12 risk factors that
may influence on the MBT strategy use in software
projects is presented, and it could be applied to a
BPMN-oriented MBT strategy.

(Labiche and Shafique, 2010) also failed to ac-
knowledge BPMN as a model to be utilized in MBT
approaches. This might be partially explained by the
fact that BPMN gained traction from 2011 onwards,
with the release of the BPMN 2.0 standard (OMG,
2014), and these reviews were conducted before it.

In (Utting et al., 2016)’s overview of the recent
advances in the field of MBT, it is noted that BPMN
started to emerge for modeling business applications,
and it could be further used for describing the test
cases.

(Makki et al., 2016) presents an automated re-
gression testing framework tailored to business pro-
cess models conforming to the BPMN 2.0 standard.
The framework captures execution snapshots of these
models in the production environment to achieve two
main objectives. First, it automatically generates re-
gression test cases. Second, it enables controlled
and automated isolation of business process execution
from external dependencies. By leveraging these ca-
pabilities, the framework offers an efficient solution
for conducting regression testing on BPMN-based
PAIS, in their case, jBPM, thereby enhancing the re-
liability and maintainability of the tested systems.

However, it is worth noting that the strategies
proposed by (Makki et al., 2016) and (Lübke and
van Lessen, 2017) do not specifically address UAT
in the context of BPMN-based PAIS. (Makki et al.,
2016)’s approach primarily focuses on regression
testing using mocking with jUnit, while (Lübke and
van Lessen, 2017)’s work centers around service-
based processes. Consequently, there appears to be
a research gap in the domain of UAT specifically tai-
lored to BPMN-based PAIS. Further investigation and
research are necessary to address this gap and develop
effective UAT methodologies for BPMN-based PAIS.

6.2 Acceptance Testing

Two literature reviews regarding Acceptance Testing
were found. The first is from 2008 (Haugset and
Hanssen, 2008), and it was very specific, focusing
on the automation of Acceptance Testing. Although
focused on test automation, RPA wasn’t mentioned,
most probably given the limited availability of the
technology at the time.

A total of 26 relevant papers were identified by
(Weiss et al., 2016) in a more recent paper, utilizing
the most relevant indexes. An important finding of

Supporting the Automated Generation of Acceptance Tests of Process-Aware Information Systems

137



this literature review is the prevalence of inconsistent
and incomplete acceptance tests, which are, nonethe-
less, still regarded as advantageous. Consequently,
there is a need to address and compare the outcomes
of Acceptance Test-Driven Development (ATDD) re-
search with those of traditional manual tests.

As another finding worthy of mention, according
to (Weiss et al., 2016), the open source standalone
wiki and integrated acceptance testing framework Fit-
Nesse, based on the Framework for Integrated Testing
(Fit), is the most prominent tool in the research pa-
pers. Moreover, no empirical papers were reported to
use Robot Framework for Acceptance Testing.

6.3 Test Automation

The terms ”automated software testing” and ”soft-
ware testing automation” are often used interchange-
ably, but there are subtle differences between them.

”Automated software testing” refers specifically
to the use of automation tools and scripts to perform
various types of testing, with the goal of reducing the
time and effort required to execute tasks considered
repetitive and predictable present in testing, aiming at
improving the quality of software systems. It is the
act of conducting specific sets of tests via automation
(e.g. a set of regression tests) as opposed to conduct-
ing them manually. However, in this case, the Test
Planning is still usually manually executed (Fewster
and Graham, 1999).

”Software testing automation” generally refers not
only to the use of tools and scripts to automate the ex-
ecution of test cases, but it also includes the manage-
ment of test data and test environments, with the goal
of improving the efficiency and effectiveness of soft-
ware testing, reducing the time and effort required,
while improving the accuracy and consistency of the
results (Fewster and Graham, 1999).

In other words, software testing automation is a
broader concept that encompasses all aspects related
to automating the STLC, including test execution, test
management, and test reporting. It refers to automat-
ing the process of tracking and managing the different
tests. It’s not only about the test execution itself. It’s
also about the QA process, for it comprises of various
test strategies.

In (Garousi et al., 2013), we have that test automa-
tion was a popular research activity, being addressed
by 34.2% of the literature covered in that SLR. In
that same article, 62.0% of the papers were related
to automated testing, providing full automation for
the test approaches (tools or scripts) they were pre-
senting, and other 25.3% were semi-automated, hav-
ing both manual and automated aspects. That is to

say that 87.3% of the web application testing solu-
tions listed in it involved some level of automation.
However, according to (Enrı́quez et al., 2020), auto-
mated user interface testing using RPA is still a topic
scarcely covered in the literature.

The automation of acceptance tests offers signifi-
cant potential for enhancing development efficiency.
However, as observed by (Haugset and Hanssen,
2008), it is crucial to acknowledge that there are costs
associated with writing and maintaining such tests.
Therefore, it is essential to conduct a thorough eval-
uation of the potential benefits in comparison to the
associated costs prior to implementation.

7 CONCLUSION AND FUTURE
WORK

In conclusion, the proposed solution for automated
acceptance testing in BPMN-based PAIS offers a
promising approach to enhance software quality as-
surance. By leveraging MBT and RPA, comprehen-
sive test coverage can be achieved, guided by the hu-
man interactions within the BPMN models. The au-
tomation of test case implementation and execution
streamlines the testing process, reducing manual ef-
fort and improving efficiency.

Looking ahead, several future developments have
been identified to further enhance the solution. First,
automating the implementation of test cases for all
previously known paths in a process would assist the
tester on understanding the extent of the test coverage,
increasing productivity and accuracy. Second, au-
tomating the generation and execution of data-related
test cases for each field within each form would im-
prove the thoroughness of testing data-related func-
tionalities. Third, evaluate quantitatively the useful-
ness of the tool through a meaningful metric.

To support the testing process, generating rich
documentation and reports would provide valuable
guidance to testers, facilitating their understanding
of the test coverage and results. Such documenta-
tion would serve as a comprehensive resource for ref-
erence and analysis, enabling efficient and effective
testing.

These future developments aim to further auto-
mate and streamline the acceptance testing process,
reducing human effort, enhancing reliability, and pro-
viding comprehensive test coverage. By embrac-
ing these advancements, the proposed solution can
continue to evolve and support the delivery of high-
quality software in BPMN-based PAIS.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

138



REFERENCES

Aalst, W. M. V. D. (2009). Process-aware information sys-
tems: Lessons to be learned from process mining. vol-
ume 5460 LNCS, pages 1–26.

de Moura, J. L., Charao, A. S., Lima, J. C. D., and
de Oliveira Stein, B. (2017). Test case generation
from bpmn models for automated testing of web-
based bpm applications. In 2017 17th International
Conference on Computational Science and Its Appli-
cations (ICCSA), pages 1–7. IEEE.

Dias-Neto, A. C. and Travassos, G. H. (2010). A pic-
ture from the model-based testing area: Concepts,
techniques, and challenges. Advances in Computers,
80:45–120.

Dumas, M., van der Aalst, W. M. P., and ter Hofstede, A.
H. M., editors (2005). Process-Aware Information
Systems: Bridging People and Software Through Pro-
cess Technology. Wiley.

Enrı́quez, J. G., Jiménez-Ramı́rez, A., Domı́nguez-Mayo,
F. J., and Garcı́a-Garcı́a, J. A. (2020). Robotic pro-
cess automation: a scientific and industrial systematic
mapping study. IEEE Access, 8:39113–39129.

Fewster, M. and Graham, D. (1999). Software Test Automa-
tion: Effective use of test execution tools. ACM Press.

Garousi, V., Mesbah, A., Betin-Can, A., and Mirshokraie,
S. (2013). A systematic mapping study of web appli-
cation testing.

Gmeiner, J., Ramler, R., and Haslinger, J. (2015). Auto-
mated testing in the continuous delivery pipeline: A
case study of an online company. In 2015 IEEE Eighth
International Conference on Software Testing, Verifi-
cation and Validation Workshops (ICSTW), pages 1–6.
IEEE.

Haugset, B. and Hanssen, G. K. (2008). Automated ac-
ceptance testing: A literature review and an industrial
case study. pages 27–38.

Humble, J. and Farley, D. (2010). Continuous delivery: re-
liable software releases through build, test, and de-
ployment automation. Pearson Education.

IEEE (2017). Ieee standard for system, software, and hard-
ware verification and validation. IEEE Std 1012-2016
(Revision of IEEE Std 1012-2012/ Incorporates IEEE
Std 1012-2016/Cor1-2017), pages 1–260.

Labiche, Y. and Shafique, M. (2010). A systematic re-
view of model based testing tool support evaluation
of category partition testing view project finite state
machine testing view project a systematic review of
model based testing tool support.

Lawrence-Pfleeger, S. and Atlee, J. M. (1998). Software
engineering: theory and practice. Pearson Education
India.

Leung, H. K. and Wong, P. W. (1997). A study of user
acceptance tests. Software quality journal, 6(2):137–
149.

Lübke, D. and van Lessen, T. (2017). Bpmn-based model-
driven testing of service-based processes. volume 287,
pages 119–133. Springer Verlag.

Makki, M., Landuyt, D. V., and Joosen, W. (2016). Au-
tomated regression testing of bpmn 2.0 processes: A

capture and replay framework for continuous delivery.
ACM SIGPLAN Notices, 52:178–189.

Melnik, G., Read, K., and Maurer, F. (2004). Suitability
of fit user acceptance tests for specifying functional
requirements: Developer perspective. In Conference
on Extreme Programming and Agile Methods, pages
60–72. Springer.

OMG (2014). Business process model and notation (bpmn),
version 2.0. Technical report, Object Management
Group.

Padmini, K. J., Perera, I., and Bandara, H. D. (2016). Ap-
plying agile practices to avoid chaos in user accep-
tance testing: A case study. In 2016 Moratuwa Engi-
neering Research Conference (MERCon), pages 96–
101. IEEE.

Ramler, R. and Klammer, C. (2019). Enhancing acceptance
test-driven development with model-based test gener-
ation. In 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security Companion
(QRS-C), pages 503–504. IEEE.

Telemaco, U., Oliveira, T., Pillat, R., Alencar, P., Cowan,
D., and Melo, G. (2022). Akip process automa-
tion platform: A framework for the development of
process-aware web applications. In Proceedings of
the 18th International Conference on Web Informa-
tion Systems and Technologies - WEBIST, pages 64–
74. INSTICC, SciTePress.

Utting, M. and Legeard, B. (2006). Practical Model-Based
Testing: A Tools Approach.

Utting, M., Legeard, B., Bouquet, F., Fourneret, E.,
Peureux, F., and Vernotte, A. (2016). Chapter two -
recent advances in model-based testing. volume 101
of Advances in Computers, pages 53–120. Elsevier.

Utting, M., Pretschner, A., and Legeard, B. (2011). A tax-
onomy of model-based testing approaches. Software
Testing Verification and Reliability, 22:297–312.

Weiss, J., Schill, A., Richter, I., and Mandl, P. (2016). Lit-
erature review of empirical research studies within the
domain of acceptance testing. pages 181–188. Insti-
tute of Electrical and Electronics Engineers Inc.

Supporting the Automated Generation of Acceptance Tests of Process-Aware Information Systems

139


