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Abstract: Gesture recognition systems have gained popularity as an effective means of communication, leveraging the

simplicity and effectiveness of gestures. With the absence of a universal sign language due to regional varia-

tions and limited dissemination in schools and media, there is a need for real-time translation systems to bridge

the communication gap. The proposed system aims to translate American Sign Language (ASL), the predomi-

nant sign language used by deaf communities in real-time in North America, West Africa, and Southeast Asia.

The system utilizes SSD Mobilenet FPN architecture, known for its real-time performance on low-power de-

vices, and leverages transfer learning techniques for efficient training. Data augmentation and preprocessing

procedures are applied to improve the quality of training data. The system’s detection capability is enhanced

by adapting color space conversions, such as RGB to YCbCr and HSV, to improve the segmentation for vary-

ing lighting conditions. Experimental results demonstrate the system’s Accessibility and non-invasiveness,

achieving high accuracy in recognizing ASL signs.

1 INTRODUCTION

Sign language is a crucial mode of communication for

the deaf and hard-of-hearing community. It enables

these individuals to express their thoughts and engage

in fruitful interactions, giving a complete knowledge

representation system. However, there are signifi-

cant challenges to effective communication between

sign language users and those who do not understand

sign language (Wadhawan and Kumar, 2021; Rast-

goo et al., 2021). Gesture recognition technology,

an essential field within computer vision and machine

learning, has the potential to bridge this gap. It can

achieve this by precisely interpreting sign language

gestures in real-time. Gesture recognition in sign lan-

guage involves developing sophisticated systems that

can analyze and comprehend complex hand move-

ments, facial expressions, and body postures that con-

stitute sign language. These systems use cutting-edge

a https://orcid.org/0000-0002-4761-4443
b https://orcid.org/0000-0001-7003-4781
c https://orcid.org/0000-0002-8732-1733
d https://orcid.org/0000-0001-9763-8745

algorithms and machine learning techniques to recog-

nize and interpret the rich visual cues in sign language

gestures. Gesture recognition technology can facili-

tate seamless communication between sign language

users and the broader community by accurately cap-

turing and understanding these gestures (Mitra and

Acharya, 2007; Khan and Ibraheem, 2012).

However, precise recognition of sign language

gestures can pose significant challenges, especially

under varied lighting and exposure conditions. Varia-

tions in lighting, such as harsh sunlight or dim envi-

ronments, can impact the quality and visibility of the

gestures. This makes it difficult for recognition sys-

tems to interpret them accurately. Furthermore, dif-

fering exposure levels, such as overexposed or under-

exposed images, can add complexity to the recogni-

tion process, leading to possible errors or misinterpre-

tations. It is crucial to address the impact of lighting

and exposure conditions on sign language recognition

to develop robust and reliable gesture recognition sys-

tems. Acknowledging these challenges will allow re-

searchers and practitioners to create algorithms and

techniques resilient to varying lighting conditions and

exposure levels. This will ensure accurate recognition
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regardless of the environmental constraints (Suarez

and Murphy, 2012). Furthermore, variations in ex-

posure and lighting conditions can significantly affect

the contrast, color, and texture of sign language ges-

tures. Shadows, reflections, and uneven illumination

can introduce noise and distortions, making the ex-

traction of meaningful features from the visual data

challenging. These variations may also affect the

recognition of subtle nuances and fine-grained move-

ments that are essential for the accurate interpreta-

tion of sign language (Suarez and Murphy, 2012).

In order to tackle the challenges presented by var-

ied lighting and exposure conditions, our solution fo-

cuses on examining different color spaces to enhance

the accuracy of the gesture recognition system. Tradi-

tional color spaces, such as RGB (Red-Green-Blue),

may not be robust enough to handle variations in

lighting conditions effectively. As a result, we pro-

pose investigating alternative color spaces, such as

HSV (Hue-Saturation-Value) or YCbCr (Luminance-

Blue Chrominance-Red Chrominance), which offer

distinct advantages in separating color information

from variations in illumination. By utilizing alterna-

tive color spaces, we aim to boost the system’s ability

to differentiate between sign language gestures and

their backgrounds under different lighting conditions.

These color space transformations can help mitigate

the effects of lighting variations, enabling more accu-

rate feature extraction and gesture recognition. Addi-

tionally, by exploring multiple color spaces, we can

tailor the system to different environments and light-

ing scenarios, ensuring robust performance across di-

verse real-world settings. In our experimental eval-

uation, we will compare the performance of the ges-

ture recognition system using different color spaces

under varied exposure and lighting conditions. We

will assess metrics such as recognition accuracy, ro-

bustness to lighting variations, and computational ef-

ficiency. By thoroughly investigating the impact of

color space transformations, we aim to provide in-

sights into the most effective color space choices for

improving gesture recognition accuracy in different

environments. Through our research, we want to con-

tribute to advancing gesture recognition systems for

sign language. We specifically aim to tackle the chal-

lenges posed by varied exposure and lighting con-

ditions. By investigating different color spaces, we

hope to enhance the system’s accuracy, enabling ef-

fective communication between sign language users

and non-sign users across a variety of real-world sce-

narios. This research has the potential to significantly

improve Accessibility and inclusivity for the deaf and

hard-of-hearing community, empowering them to en-

gage more seamlessly in a wide range of environ-

ments and lighting conditions. The remainder of the

paper is organized as follows: Section 2 provides an

overview of the related works, Section 3 introduces

our proposed approach, Section 4 presents the results

obtained from our experiments, and finally, Section 5

provides conclusions and discusses future works.

2 RELATED WORKS

Gesture recognition, particularly in the context of sign

language, has been extensively researched in com-

puter vision and machine learning. Researchers have

explored various approaches and techniques to inter-

pret sign language gestures accurately. This section

provides an overview of the related works in ges-

ture recognition for sign language, highlighting sig-

nificant contributions and advancements in the field.

One approach focuses on utilizing 3D models for ges-

ture recognition, which provides precise results but

can be computationally expensive and less efficient

for real-time systems. For example, in video surveil-

lance, facial recognition based on 3D face model-

ing has shown a 40% improvement in performance

when reconstructing 3D facial models from non-

frontal frames (Park and Jain, 2007). However, the

computational complexity of 3D modeling techniques

makes them less suitable for real-time applications.

Simplified versions of volumetric models rely on the

representation of the human skeleton, analyzing the

position and orientation of its constituent segments.

These skeleton-based systems focus on key parame-

ters, resulting in faster processing times while main-

taining satisfactory recognition performance. Such

approaches have found practical applications in var-

ious human-computer interaction interfaces. Bidi-

mensional models, on the other hand, extract low-

level features such as color, shape, and contour di-

rectly from images, making them suitable for ges-

ture classification systems. Researchers have exten-

sively employed these models to classify and inter-

pret sign language gestures accurately. Another ap-

proach to gesture recognition involves electromyogra-

phy (EMG)-based models, which classify gestures by

analyzing the electrical impulses generated by mus-

cles. This technique allows for a broader range of mo-

tion, enabling more natural and expressive gestures.

Segmentation is a crucial step in the gesture recog-

nition pipeline, involving dividing images into rele-

vant parts for analysis. Various methodologies have

been proposed to address this process. Region-based

segmentation methods have been explored, including

region growing and region splitting. Region grow-

ing involves selecting seed pixels representing dis-
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tinct areas and expanding them until the entire image

is covered, verifying the homogeneity of each sec-

tion. Region splitting adopts a top-down approach,

recursively dividing the image into sub-images un-

til only homogeneous regions remain. Thresholding,

a commonly used technique, categorizes pixels into

“object” or “background” based on a predetermined

threshold value, resulting in a binary image. Ad-

vanced thresholding techniques handle noise and im-

prove segmentation accuracy under challenging light-

ing conditions. Clustering techniques have also been

applied to gesture recognition, which groups elements

with similar characteristics within an image. The

level of similarity is determined through distance cal-

culations. Shape descriptors play a vital role in recog-

nizing objects, including gesture recognition. These

descriptors offer a collection of features that describe

a specific shape and can be utilized for efficient im-

age retrieval and comparison, even in the presence of

transformations such as scaling, rotation, or transla-

tion. Various methodologies for shape description and

representation, such as region-based or contour-based

approaches, have been proposed. Edge direction his-

tograms are essential tools for detecting objects when

color information is unavailable, describing an im-

age’s texture. The input image is divided into blocks,

and variables representing vertical, horizontal, diago-

nal, or isotropic edge nature are associated with each

block. The Harris corner detector, an operator for

corner detection, identifies important points for ob-

ject description and can reduce the amount of data

used in processing. However, its sensitivity to scale

changes limits its applicability to images of different

sizes. The Scale-Invariant Feature Transform (SIFT)

descriptor extracts and describes many features from

images, minimizing the influence of local variations

on object detection. The angular partitioning-based

approach (ARP) is conducted on grayscale images,

where circular sections surround the edge to ensure

scale invariance, and angles generated are measured

for information extraction. Despite progress in ges-

ture recognition technologies, limitations persist, par-

ticularly related to the equipment used and image

noise. Factors such as camera distance, resolution,

and lighting conditions can affect the quality of ges-

ture detection. Additionally, user fatigue, known as

“gorilla arm” fatigue, has been observed, particularly

in mid-air gestures, where users experience arm fa-

tigue when performing gestures over extended peri-

ods.

Gesture recognition has witnessed significant ad-

vancements with the application of artificial neu-

ral networks, which are computational models in-

spired by biological systems (Abiodun et al., 2018).

Machine-based feature extraction has proven effective

in several domains (Russo et al., 2020; Rinaldi and

Russo, 2020; Rinaldi et al., 2021). In fact, different

types of architectures and purposes exist in the field

of neural networks, each catering to specific require-

ments. Convolutional neural networks (CNNs) have

been widely used for image and pattern recognition

tasks (Madani et al., 2023; Rinaldi et al., 2020). Their

architecture comprises convolutional layers, pooling

layers to reduce input parameters, and fully connected

layers for classification based on information derived

from previous layers. Object detection algorithms can

be categorized based on the approach employed (Gir-

shick et al., 2014). Models like R-CNN and Fast

R-CNN adopt a two-stage approach: the first stage

identifies possible regions of interest, and the second

stage employs CNNs to detect objects within those

regions. Conversely, models like YOLO and SSD uti-

lize a fully convolutional approach, enabling single-

pass detection. The former achieves higher accuracy,

while the latter exhibits superior speed, making it

more suitable for real-time applications. Given the

need for prompt response in gesture recognition sys-

tems, single-stage approaches are favored in their im-

plementation. Region-based convolutional networks

excel in object detection tasks, distinguishing fore-

ground objects from the background based on a re-

gion of interest. These networks aim to produce

bounding boxes containing objects and specify their

categories. Earlier models utilized selective search

algorithms to extract regions of interest (ROIs) and

subsequent convolutional operations to classify ob-

jects within the identified regions, followed by sup-

port vector machines (SVMs) for object region clas-

sification and linear regressors for bounding box re-

finement. However, these architectures suffered from

time-consuming training due to the large number of

regions identified. Subsequent advancements in ob-

ject detection have led to the evolution of these mod-

els, resulting in more efficient techniques. The Fast

R-CNN architecture (Girshick, 2015) directly gen-

erates feature maps from the input image, eliminat-

ing the need for region proposal stages and improv-

ing speed. Faster R-CNN (Ren et al., 2015)intro-

duces a Region Proposal Network (RPN) that effi-

ciently and accurately identifies regions of interest,

sharing convolutional features with downstream de-

tection networks. Region-based Fully Convolutional

Networks (R-FCN) (Dai et al., 2016) further enhances

detection speed by sharing computations for all re-

gion proposals. Mask R-CNN (He et al., 2017) effi-

ciently detects objects while simultaneously generat-

ing segmentation masks for each instance. This ap-

proach replaces RoIPooling with RoIAlign for more
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accurate pixel-level segmentation. Single Shot Multi-

Box Detector (SSD) combines object classification

and bounding box prediction in a single pass, utiliz-

ing predefined bounding boxes of varying sizes. By

evaluating object categories and adapting the boxes

to their shape, SSD handles objects of different scales

effectively. MobileNet SSD v2 (Sandler et al., 2018),

designed for real-time applications on mobile devices,

achieves high-speed processing. YOLO (You Only

Look Once) (Redmon et al., 2016) proposes a novel

object detection approach by recognizing image re-

gions with high probabilities of containing objects,

enabling single-pass evaluation. YOLO is a global

reasoning network that reasons about the entire im-

age and all objects within it, dividing the input image

into an S×S grid. Each grid cell is responsible for

detecting an object if its center falls within that cell.

The approach is extremely fast, capable of processing

45 frames per second, with a faster version reaching

155 frames per second. However, YOLO may exhibit

more localization errors compared to other detection

systems. YOLOv7 (Wang et al., 2022), introduced in

2022, outperforms previous detection models in terms

both speed and accuracy. It requires significantly

less expensive hardware compared to other neural net-

works and is trained solely on the MS COCO dataset

without the use of pre-trained models. The cited

study (Bharati and Pramanik, 2020), conducted in

2020, provides a detailed performance comparison

of various object detection models. It is important

to note that performance depends on factors such as

input image resolution, dataset, and training config-

urations. Model accuracy is measured using mean

average precision (mAP). From the reported data, it

can be inferred that SSD and R-FCN are among the

fastest models but do not match the precision and ac-

curacy of Faster R-CNN. While SSD is less affected

by the choice of feature extractors, it is less accurate

in detecting small objects. YOLO remains the fastest

architecture, with a speed of approximately 21-155

frames per second, while Mask R-CNN exhibits the

highest accuracy, with an average precision of 47.3.

3 SIGN LANGUAGE

TRANSLATION SYSTEM

Our approach targets developing a real-time Ameri-

can Sign Language (ASL) translation system. ASL

stands as the principal sign language for deaf commu-

nities in America, Canada, and various countries in

West Africa and Southeast Asia. The system captures

visual input from a camera, executes gesture detection

and recognition, and then exhibits the corresponding

textual translation along with a reliability score.

Figure 1 showcases the architecture of our system,

which is composed of the following key modules:

• Capture Module: This module represents the

eyes of the system. It uses the webcam to cap-

ture a video frame, which becomes the initial raw

data for the entire translation process. The ability

to effectively capture frames in different lighting

conditions and at varying distances underpins its

functionality.

• Preprocessing Module: This module transforms

the raw video frame into a format that the system

can more efficiently analyze. This includes im-

age transformations like gamma correction, which

can adjust the brightness of the image and im-

prove visibility. Noise reduction and normaliza-

tion might also occur at this stage to improve

the accuracy of subsequent detection and clas-

sification tasks. Additionally, the prepossessing

pipeline also applies image resizing to dimensions

of 320x320.

• Detection Module: This is where the actual sign

detection happens. This module analyzes the pre-

processed frame and identifies the presence of any

signs. The output of this module is a set of regions

in the frame where a sign is likely present, often

represented by bounding boxes.

• Classification Module: The identified signs are

then fed into this module. Here, a class is assigned

to each detected sign based on the trained model.

The Classification Module’s role is to translate the

identified signs into their equivalent meanings in

spoken or written language.

• Visualization Module: The final module takes

the classified signs and presents them to the user

in an easy-to-understand format. This involves

displaying the corresponding textual translation

and the screen’s reliability score. This mod-

ule provides critical feedback to users, allowing

them to understand how the system interprets their

signs.

Each module plays a critical role in the system, con-

tributing to the overall goal of effective and efficient

real-time ASL translation.

3.1 Sign Detection Implementation

We implemented our system using Python 3.8, draw-

ing from the power of the TensorFlow 2 Object Detec-

tion API and the OpenCV library. The training pro-

cess embraces a supervised learning approach, lever-

aging labeled data that we created with the open-

source software LabelImg. Once we load the trained
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Figure 1: System Architecture.

model, we start the detection process. The system

captures the video stream from the webcam with the

help of the OpenCV library and starts displaying real-

time detections on the screen. Each detection comes

defined with bounding boxes, class labels, and con-

fidence scores. We have set up the system to dis-

play a maximum of two detections simultaneously.

We have established a confidence threshold that dic-

tates the minimum score for reliable predictions. This

threshold essentially functions as a filter, discarding

results that lack sufficient confidence. Experiments in

different visual conditions have set the value of the

threshold. To ensure robust performance, we put the

system through rigorous testing using a variety of we-

bcams, each with different resolutions. We experi-

mented with several color spaces and altered the po-

sitioning distance between the webcam and the tar-

get objects. We ran these tests under an array of

lighting conditions and with both simple and com-

plex backgrounds to mimic real-world scenarios. In

the forthcoming section, we will delve into the results

of these tests. Capitalizing on the trained model and

real-time video input, our system strives to accurately

detect and identify the specified signs across a multi-

tude of situations. The bounding boxes and class la-

bels serve as intuitive visual feedback, giving users in-

sights into how the system interprets their signs. Con-

fidence scores, on the other hand, offer a measure of

the system’s prediction certainty. These scores em-

power users to evaluate the reliability of the sign in-

terpretations.

4 EXPERIMENTAL RESULTS

In this section, we present our experimental strategy,

report the results, and go into deep related discus-

sions.

To evaluate our approach, we constructed our

dataset, recognizing that the phase of dataset creation

plays a crucial role in achieving pleasing results. In

this study, we selected a restricted set of signs. Such

a strategy initially allows the model to learn essen-

tial sign recognition before gradually expanding the

training set. This approach can be useful when deal-

ing with complex sign language systems, providing

a stepping stone to incorporate more signs into the

model progressively.

After all, the quality and volume of input data

directly steer the detector’s accuracy. We harnessed

four different webcam models to capture images for

each sign. To boost system robustness, we portrayed

each sign with slight variations in hand poses and in-

terchangeably used hands in each image.

Following the data collection, we annotated each

image using the LabelImg software (Tzutalin, 2015).

During this annotation process, we matched each sign

with its appropriate label and highlighted the region of

interest with a bounding box. Consequently, we gen-

erated an XML file specifying the image information,

the assigned label, and the bounding box coordinates.

Constructing the dataset required us to engage in

careful labeling to depict the nuances in sign expres-

sions accurately. This variation in the dataset helps

ensure that our model learns to recognize and gener-

alize different instances of the same sign effectively.

Additionally, we optimized the size of the dataset,

striking a balance between the requirement for ample

samples and the practical limitations of data collec-

tion.

We use the annotated dataset to train the sign lan-

guage translation model. By exposing the model to a

wide array of sign variations, we aim to enhance its

generalization capabilities and its accuracy in recog-

nizing signs in real-world scenarios. By constructing

an effective dataset, we set the stage for training a re-

silient and dependable sign language translation sys-

tem.

Figure 2: Loss trend over epochs.
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4.1 Training

To augment the efficiency of the training procedure,

we leveraged the well-established technique of trans-

fer learning (Cook et al., 2013). This approach

enables adapting a pre-trained artificial intelligence

model to a task distinct from its initial training objec-

tive. Specifically, we extracted the lower layers from

the pre-trained network for reuse within our newly

designed network to recognize a set of five distinct

signs.

We elected to use the SSD MobileNet V2 FPN

Lite model, with an input size of 320x320 pixels pre-

trained on the COCO 2017 dataset (Lin et al., 2014).

The rationale for this selection is the neural network’s

impressive processing speed of 22ms and a COCO

mAP of 22.2. These performance metrics, coupled

with the simplicity of the network’s architecture that

facilitates its operation even on low-power devices,

deemed it an apt choice for our application.

In the training phase, we employed augmentation

techniques, specifically random cropping and hori-

zontal flipping, to enhance the network’s generaliza-

tion capabilities. The model’s training leverages a

momentum optimizer (Ruder, 2016), featuring a co-

sine decay learning rate strategy (Loshchilov and Hut-

ter, 2016). This optimizer initiates with a base learn-

ing rate of 0.08, diminishing gradually per a cosine

decay schedule, thereby promoting smoother conver-

gence and limiting the risk of overshooting. A warm-

up phase within the initial 1000 steps gradually es-

calates the learning rate from 0.026, a measure that

mitigates the risk of premature divergence. A momen-

tum optimizer value of 0.9 encourages the optimizer’s

acceleration in the correct direction and dampens os-

cillations, proving beneficial in complex optimization

landscapes. We employ a loss function that is a linear

combination of localization and classification losses,

represented in Equation 1.

L = w1 ·Lloc +w2 ·Lclass (1)

In our configuration, we deemed it appropriate to as-

sign equivalent importance to both components lo-

calization loss (Lloc) and classification loss (Lclass),

thus setting w1 = w2 = 1.0. We specifically utilize

Smooth-L1 as the localization loss, whereas Focal

Loss, with a gamma of 2 and alpha of 0.25, serves

as our classification loss. We conducted the training

phase over 20,000 epochs.

As illustrated in Figure 2, both the training and

validation data exhibit a decrease in loss functions,

signaling the system’s excellent adaptation to the new

data.

4.2 Evaluation

One of the goals of this study is to obtain a system for

sign recognition that gives robust predictions under

different environmental conditions, such as brightness

variations and background complexity. In low-light

conditions, HSV (Hue, Saturation, Value) color space

is often considered more advantageous compared to

YCbCr (Luma, Chroma Blue, Chroma Red) color

space due to the distinct characteristics of their re-

spective components. The Value component in HSV

directly represents the brightness or intensity of a

color, making it particularly suitable for object detec-

tion in low-light environments. Despite reduced over-

all illumination, the Value component still exhibits

distinguishable variations in brightness, enabling ef-

fective differentiation of objects. Conversely, YCbCr

separates the color information from the brightness

information, with the Luma component representing

the brightness. However, the Luma component may

not provide sufficient contrast for robust object detec-

tion in low-light conditions. This discrepancy arises

from the fact that the Luma component is less sensi-

tive to variations in brightness under low-light con-

ditions, potentially leading to decreased detection ac-

curacy. Consequently, HSV, emphasizing the Value

component, is generally favored over YCbCr for im-

proved object detection performance in low-light con-

ditions. We observed that predicted classes were cor-

rect during tests conducted in non-optimal environ-

mental conditions for RGB input frames. However,

their probability scores were not predominant con-

cerning other classes. For these reasons, we compared

RGB against HSV under bright environment condi-

tions and RGB against YCbCr under low-light envi-

ronment conditions.

The results of tests conducted for each sign are

presented in Table 1 and Table 2 and summarized

graphically in Figure 3 and Figure 4.

For example, in tests carried out in brightly lit en-

vironments, an improvement in confidence scores was

observed when converting to the HSV color space,

as demonstrated in the examples shown in Figure 5

where the confidence score for the “Hello” sign in-

creases from 56.08% to 99.24%. Similarly, in tests

conducted in low-light conditions, detection quality

was improved by using the YCbCr color space, as

shown in Figure 6 where it can be observed that the

confidence score increases from 51.45% to 93.29%

for the “No” sign.

KDIR 2023 - 15th International Conference on Knowledge Discovery and Information Retrieval

400



Table 1: Comparison of Probability Scores for RGB and
HSV in low-light environments.

Sign RGB (%) HSV (%)

“Yes” 46.46 99.39

“No” 50.01 96.02

“Hello” 54.05 99.42

“I Love You” 49.89 96.72

“Thank You” 68.39 97.14

Table 2: Comparison of Probability Scores for RGB and
YCbCr in bright environments.

Sign RGB (%) YCbCr (%)

“Yes” 52.09 92.95

“No” 58.30 95.9

“Hello” 50.43 99.81

“I Love You” 56.70 99.01

“Thank You” 59.92 99.03

Figure 3: Accuracy comparison between each sign’s RGB
and HSV color spaces.

Figure 4: Accuracy comparison between each sign’s RGB
and HSV color spaces.

Figure 5: Sign recognition comparison between RGB and
HSV color spaces in a bright environment. HSV outper-
forms RGB in this condition.

Figure 6: Sign recognition comparison between RGB and
YCbCr color spaces in low-light environment. YCbCr out-
performs RGB in this condition.

5 CONCLUSIONS

Gestures provide a simple and effective method of

communication, which is why gesture recognition

systems are gaining popularity. Depending on the

application domain, it is important to consider the

choice of technologies and training architectures care-

fully. While more sophisticated sensors can provide

more accurate detections, they are often less afford-

able and accessible.

Our proposed system is capable of real-time trans-

lation of five symbols from American Sign Language

(ASL), which is the predominant language among

deaf communities in America, Canada, West Africa,

and Southeast Asia. By analyzing the data stream

from the webcam, the system displays the detection

on the screen, providing bounding boxes, classes,

and confidence scores. It is based on the SSD Mo-

bilenet architecture, designed to deliver real-time per-

formance on low-power devices while achieving high

levels of accuracy under optimal conditions. In chal-

lenging lighting conditions, the detection quality has

been significantly improved through color space con-

versions, enabling better image segmentation. The

implemented technology demonstrates Accessibility

and non-invasiveness.

Overall, this research contributes to advancing

gesture recognition systems, particularly for sign lan-

guages, by leveraging Deep Learning techniques. The

proposed system shows promise in real-time trans-

lation and has the potential to facilitate communica-

tion between deaf individuals and the wider commu-

nity. Future work may focus on expanding the vocab-

ulary using other knowledge sources (Caldarola et al.,

2015; Muscetti et al., 2022) and improving the sys-

tem’s robustness under various environmental condi-

tions, ultimately aiming to make gesture recognition

more accurate, efficient, and inclusive.
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