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Abstract: Knowledge graphs have been used successfully to represent and acquire general knowledge and have also 
been proposed for personal knowledge representations. While general knowledge data can be modelled 
statistically as being a noisy projection of universal (and crisp) entities, categories, and relationships, personal 
knowledge data requires a more refined model: each user’s peculiarities and fluctuations in associating words 
with meanings and meanings with words should be tracked and analysed instead of being treated as noise and 
averaged out. This position paper describes a semiotic knowledge model whose primitives are the 
signification events which occur when symbols such as words and linguistic expressions are associated with 
an instantaneous meaning. Semiotic structures constructed from these primitives with users’ active 
participation, enable them to create, update, modify, organize, re-organize and curate detailed and 
comprehensive representations of their own personal knowledge by means of their own personal 
terminologies, taxonomies, and organizational schemes. 

1 INTRODUCTION 

Computer-implemented representations of 
knowledge and information of different kinds are 
widespread and underly many of our everyday 
activities, from doing a search on the internet to 
booking an airline ticket. While technologies for 
creating repositories of general knowledge have 
advanced significantly during the last few years, the 
problem of representing and exploiting personal 
information lacks an equally successful solution.  

Knowledge graphs have been proposed as a 
means for representing personal information (Balog, 
Mirza, & Skjaeveland, 2022; Montoya, & al. 2018) 
but, as it has been pointed out by (Balog & Kenter, 
2019) the particular nature of personal information 
presents unique challenges still in search of definitive 
solutions: 1) Entities of personal interest are typically 
mentioned only a few times and information about 
them can be sparse. This makes it difficult to apply 
statistical and deep-learning methods commonly used 
for general knowledge. 2) Relations in a personal 
knowledge scenario may be short-lived and common 
relation extraction methods may not applicable. 3) 
Users may be more inclined to use their own 
organization schemes based on “freely defined 
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semantic categories” rather than external ontologies 
designed by somebody else. 

To address these issues and to develop friendly 
user interfaces for knowledge repositories, this 
position paper describes a knowledge model whose 
symbolic primitives are more refined than those used 
in knowledge graphs, making it possible to build 
more powerful and more flexible symbolic 
constructs.  

The constituents of typical knowledge graphs 
(named entities, types, attributes, relationships, etc.) 
and of many other types of knowledge 
representations, are crisp and universal: their 
meanings are assumed to be well defined, constant 
over time and invariant across all users. Data is 
modeled as a noisy projection of these underlying 
universal crisp constituents and the goal of 
knowledge acquisition (harvesting) is traditionally 
viewed as one of removing this noise and of 
“cleaning” the data to recover the underlying 
constituents. Consequently, many knowledge 
acquisition methods are of a statistical nature and 
require large amount of data to counter the noise 
(Ilyas & Chu, 2019; Weikum, Dong, Razniewski, & 
Suchanek, 2021; Kejriwal, Knoblock, & Szekely, 
2021). 
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It is well-known, however, that entities, attributes, 
relationships, and especially types and categories are 
not always crisp and universal. For example, users 
think more in terms of “natural kinds” than rigid 
categories (Rusell, Norvig, & Davis, 2010). This is 
particularly important in a scenario where knowledge 
is produced by users describing what is important to 
them. Consider for example two users, Alia and 
Barouk, who maintain a list of their friends. Alia may 
want to include co-workers in the same category of 
friends, while Barouk may prefer to maintain two 
distinct categories, one for friends and one for co-
workers. Even worse, users change their mind on how 
they use vague categories such as “friends”, resulting 
in inconsistencies even within a knowledge 
repository created by a single user; for example, Alia 
may decide, down the road, that her list of friends 
(which includes initially co-workers) has grown too 
big and that she wants to redefine the meaning of 
“friends” to exclude co-workers. 

2 SEMIOTIC MODELS 

Semiotic fluctuations due to the erratic semiotic 
behavior of users, illustrated by the example above, 
should be tracked instead of being smoothed-out. A 
system that represents personal knowledge should 
adapt to the idiosyncrasies of each user rather than 
imposing an average, universal, same-for-everybody 
interpretation of vague terms such as “friends”. 

2.1 Signification Events 

This motivates the adoption of a more refined 
knowledge model, which we call a semiotic 
knowledge model, whose primitives are the 
signification events which occur when a symbol is 
paired up with a particular interpretation or 
instantaneous meaning. Knowledge is intimately 
related to representations: known things, facts, 
events, situations, rules and laws are those for which 
an agent possesses an internal representation. Internal 
representations rest still in some repository, providing 
static knowledge, until they are recruited by a 
signification event yielding a fragment of dynamic 
knowledge, which is the manifestation of the 
representational activity of the agent. 

A signification event (SE) is somewhat related to 
what semioticians call a sign, which comprises 
something, called a signifier (or symbol) which stands 
for something else (signified), the represented entity 
(Chandler, 2007).  

Speaking results in signification events. Consider 
the following example. John is at his desk chatting 
with his friend Mary over the internet. Suddenly, a 
mouse jumps on John’s desk and John tells Mary: 
“There is a mouse on my desk!”. Mary replies: 
“What’s new, there is always a mouse on your desk!”. 
The word “mouse”, a symbol, yields (at least) four 
SEs in this exchange; a first one, which is an efferent 
SE, occurs when John maps an internal mental 
representation of the rodent he has just seen to the 
word “mouse”; a second SE, which is an afferent SE, 
occurs when Mary hears “mouse” and maps this word 
to an internal mental representation of a computer 
device; a third one (efferent) occurs when Mary utters 
“mouse” and a fourth one (afferent) occurs when John 
hears “mouse”. The instantaneous meaning in the first 
SE is a rodent, whereas it is a computer device in the 
last three (assuming John understood the intended 
meaning of Mary’s sentence). 

Note that the utterance of a sentence involves a 
burst of signification events corresponding to the 
grammatical components of the sentence: “desk”, 
“my desk”, “on my desk”, “a mouse on my desk”, and 
the whole sentence “There is a mouse on my desk” all 
yield signification events. 

To better visualize a semiotic model of 
knowledge, it may be useful to assign space-time 
coordinates to SEs which identify the location of the 
agent at which the SE occurs (and perhaps even the 
specific location within an agent where the 
representation of a symbol is stored) and the time at 
which the SE occurs. A SE becomes then a semiotic 
point, where the term point indicates, in addition to 
its space-time embedding, its primitive and atomic 
nature as a constituent of signification and dynamic 
knowledge: the instantaneous co-presence of a 
signifier and a signified is the minimum requirement 
to establish a representation and a fragment of 
knowledge. The ensemble of semiotic points yields 
the semiotic field.  

The semiotic knowledge model described here 
represents semiotic points by immutable symbols 
called semiotic point representations (SPR) and uses 
these to build dynamic and adaptive semiotic 
structures, which can represent all types of 
information elements (categories, named entities, 
lists, properties, relationships, facts, facts about facts, 
etc.) by adopting and tracking over time each user’s 
terminology and organizational schemes.  

In the context of personal knowledge 
representations where several people (e.g., the 
members of a family) share the same database and 
contribute information to it, a basic SPR can be 
constructed by concatenating (1) an identifier for the 
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symbol involved in the SE; (2) an identifier of the 
information contributor; (3) a timestamp of when the 
information was entered. This basic SPR can be 
enriched by any kind of available contextual 
information to yield a more informative SPR (e.g.: the 
place where the contributor was when he/she entered 
the information, his/her mood, etc.). 

2.2 Modes of Operation 

Users enter information into the system in one of 
several ways: (1) Direct entry method: users speak or 
type information such as primitive linguistic symbols 
(words, names, etc), primal symbols (numbers, dates, 
physical quantities) and simple natural language 
expressions; (2) Compositional entry method: users 
select existing symbol by browsing the repository and 
compose them into new composite symbols, for 
example, by manipulating widgets displayed on a 
screen via a drag-and-drop interface. The 
compositional method, which produces structured 
linguistic expressions (SLEs), described later, 
minimizes and simplifies the recognition step since 
the user utilized symbols already known to the 
system. (3) Analytical method: Unstructured 
linguistic expressions, such as “It rains today”, 
entered directly into the system, must be converted 
into SLEs, either manually, or with the assistance of 
a suitable natural language processing module. 

By combining the above entry methods, users can 
introduce their own terminology into the system and 
reuse it. In addition to these entry methods, users can 
operate at the level of semiotic structures to update, 
revise, organize and re-organize their information. 
Users can also import (portions of) external 
dictionaries and ontologies and adapt them to their 
personal ones.  

2.3 Ingestion, Matching, Inference  

(Balog & Kenter, 2019) point out that entity linking, 
population of the repository and detection of new 
entities (nil-detection) are intertwined in personal 
knowledge representations: the semiotic model 
proposed here comprises a symbol matching 
component which carries out these three steps in a 
unified fashion every time the repository system 
ingests a packet of information delivered by the user. 
The repository acts like an active memory and 
attempts to recognize every symbol occurring in the 
burst of signification events (SEs) produced by the 
input data; every detected input symbol is matched 
against the symbols stored in memory. Different 
methods and data structures are used for symbol 

matching: K-nearest neighbours algorithms to search 
primal symbols embedded in metric spaces; 
“vertical” compositional hypotheses lists, obtained by 
tracking and recording the usage of symbols in 
composite symbols, to detect potential matches; 
“horizontal” relaxation, to deal with noise by 
extending the search to neighbouring symbols; and 
rule-based reasoning, which attempts to infer 
searched symbols from existing symbols.  

It is well known that there is a trade-off between 
the expressive power of a representation language and 
the mathematical computational properties of its 
reasoning capabilities (Suchanek, 2020). The 
representation language adopted here, defined by 
parametric symbols and the structured linguistic 
expressions (SLEs) described later, does not place 
any restrictions on the kind of information that users 
can try to communicate to the knowledge repository. 
Reasoning is viewed here more as a sequence of 
internal signification events than a crisp logical 
computation; its grounding is more of a statistical 
nature than an axiomatic one, so that issues of 
plausibility and defeasibility of the derived results 
take precedence over decidability. As in many 
knowledge models based for example on modal logic 
or fuzzy logic, truth is not an absolute value, and the 
goal of reasoning is more one of growing large 
regions of coherence (both logical and semiotic 
coherence) than one of deducing true facts missing 
from the repository. An inference graph method, 
which complements the search method by using rules 
to complete partial matches detected by the search 
module, will be described elsewhere.  

2.4 The Symbol Abstraction Hierarchy 

The term “symbol” is used here in a quite broad sense 
and includes both “concrete” and “abstract” symbols. 
Three abstraction levels for symbols are considered: 
materialized (or concrete) symbols, and two levels of 
abstract symbols: symbol forms and multiform 
symbols. 

Materialized Symbols are physical embodiments of 
symbols and are physically connected to the 
signification events (SEs) which they trigger, or by 
which they are created or “activated”. Materialized 
symbols occupy a region in space-time. For example, 
a road sign positioned near a road intersection triggers 
signification events whenever someone sees it; a 
neuron or a pool of neurons in the visual cortex of a 
primate is a materialized symbol which is activated 
when a particular visual stimulus is presented; a 
chunk of memory cells in a computer holding a digital 
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representation of a word triggers signification events 
whenever a computer program reads the memory 
cells and acts on it based on a meaning assigned to the 
word. Distributed representations also have 
materialized embodiments; however, they are not 
uniquely identified by space-time coordinates since 
multiple distributed representations share the same 
region in space-time. Mental representations (which 
are arguably distributed representations) also have 
materialized embodiments, even though it is not 
always clear what they are. 

Symbol Forms. It is convenient to (conceptually) 
group a collection of materialized symbols which are 
invariant under some transformation into a symbol 
form. Symbol forms are abstract symbols, where 
“abstract” means here non-physical, that is, not 
localized in space-time. Examples of symbol forms: 
(1) the equivalence class of all instances of the 
character string “mouse”, across all printed 
documents. (2) The equivalence class of all stored bit 
sequences representing the string “mouse” in a 
computer (3) The equivalence class of all visual 
representations of the string “mouse” on a computer 
screen. 

Multiform Symbols. As illustrated by the previous 
example, what is commonly called a symbol, such as 
the word “mouse”, is typically associated with 
multiple forms: printed form, digital form, displayed 
form, etc. Hence it is called a multiform symbol.  

Multiform symbols are a useful concept to build 
efficient software implementations of knowledge 
representations. Specifically, with an object-oriented 
programming language (OOPL) such as Java, it is 
possible to construct objects which provide detailed 
representations of any kind of entity. These objects 
can be quite complex, and their size can be very large; 
think for example of the list of all filenames of 
someone’s digital photos. It makes sense then to 
introduce more compact representations of these 
objects.  

The most compact representation form of a 
symbol is arguably an integer which identifies the 
memory address of a record which defines the symbol 
(this is roughly how Java represents the values held 
by variables). Composite symbols built from 
constituents can be represented by the array of integer 
identifiers of its constituents, called the compositional 
code of the multiform symbol. For example, a large 
list of file names can be represented more compactly 
by representing each file name with an integer rather 
than a string containing the file name. The full-

fledged form of the object, given by an object wherein 
all nested identifiers have been expanded, is called the 
exploitable form of the symbol. Hybrid 
compositional codes contain some constituents in 
identifier form and some in exploitable form. 
Optimized variable-complexity representations are 
obtained by cleverly managing the computational 
forms of a symbol so that only those components that 
are needed in exploitable form are expanded. 

The different forms of a multiform symbols all 
have same putative (assigned) meaning although they 
do not have the same intelligibility and exploitability: 
form conversions, which are semantically invariant, 
are needed to enable efficient computation and 
communication. 

2.5 Primal Symbols 

Semioticians distinguish between three types of 
symbols: indexical, iconic and conventional 
(Chandler, 2007). Indexical ones are those which are 
physically or causally linked to their signifiers, 
whereas for conventional symbols the link is 
established via conventions (iconic symbols are not 
discussed here). An analogous distinction can be 
made between primal and linguistic symbols. 
Whereas linguistic symbols are plagued with all the 
issues due to the conventional nature of their meaning 
(ambiguities, redundancies, context-dependence of 
the meaning, vagueness), primal symbols are those 
which are assumed to be free from these problems. 
Every symbol of a mathematical nature (numbers, 
real vectors, etc.) or issued from a formal language is 
a primal symbol. Physical quantities, such as 3kg, and 
standard-defined entities, such as GPS coordinates, 
are primal symbols.  Character strings, stripped of any 
linguistic meaning, can also be treated as primal 
symbols. 

Primal symbols usually belong to metric spaces 
whose metric structure is important for search and 
matching. For example, K-nearest-neighbours 
algorithms can be used when searching for a match to 
a primal symbol, and ad-hoc clustering algorithms 
can be used for organizing and grouping occurrences 
of primal symbols. It seems appropriate to store and 
maintain primal symbols in ad-hoc memory slices or 
databases where these operations can be carried out 
more efficiently. 

2.6 Structured Linguistic Expressions 

Natural languages are arguably the most powerful 
representation systems and can be used to represent 
all types of entities. The term “entity” is used here in 
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the broadest sense possible: anything which can be 
referred by a linguistic expression is an entity, 
whether it “exists” or not. Things, stuff, living beings, 
abstract concepts, relationships, statements, facts, 
facts about facts, rules, etc., are entities which can be 
represented (signified) by a symbol, notably by a 
linguistic expression, which is encoded here as a 
Structured Linguistic Expression (SLE). 

One simple way to obtain an SLE is to begin with 
an unstructured linguistic expression, that is, a 
character string containing a natural language 
expression, and to build a parametric linguistic 
symbol representing an n-ary predicate or relation, by 
replacing one or more fragments of this character 
string with “fillable slots”. For example, from: “There 
is a mouse on my desk”, one can build the parametric 
symbol “There is #1 on #2”, obtained by replacing “a 
mouse” and “my desk” with fillable slots denoted #1 
and #2. 

A parametric symbol can be viewed as a lambda 
expression or a function which maps tuples of 
symbols to a symbol. We use the notation <*| to 
indicate such a function, and |*> to denote the 
arguments passed to the function. We further 
associate an integer identifier to these symbols so that 
the construction of an SLE encoding for our example 
can be represented by the following “script”: 

$0< There is a mouse on my desk> 
$1< There is #1 on #2| 
$2|a mouse> 
$3|my desk> 
$4[1,2,3]< There is #1 on #2|a mouse, my desk> 
The multiform symbol with identifier $4 has a 

compositional code form [1,2,3] and an exploitable 
form <There is #1 on #2|a mouse, my desk> as 
indicated by the last line of the script.  

The symbol $4 is an SLE encoding of the original 
unstructured expression $0; note that even though 
they can be declared to be semantically equivalent, $0 
and $4 are two distinct multiform symbols.  

Unary predicates, such as <#1 is a mouse|, can be 
converted into category symbols denoted, for 
example, {#1 is a mouse|. An equivalent symbol for 
this category is {mice|. Conversely, a category can be 
converted to a predicate, for example <mice| is a 
predicate equivalent to <#1 is a mouse|. 

Samples of categories are obtained by specifying 
N arguments which are typically the names associated 
with the items in the sample; for example, two mice 
named “Jerry” and “Billy” can be represented as {#1 
is a mouse| Jerry, Billy or {mice|Jerry, Billy}. A 
category sample can also be built by specifying an 
integer which indicates the number of (unnamed) 
items in the sample; for example, “a mouse” is 

encoded as {mice|1}. Category sample can also be 
used to denote quantities of “stuff”, for example 
{water|1 litre} denotes one litre of water. 

Categories can be used to restrict the allowed slot 
fillers of a parametric symbols, for example: 

<The capital of <states|#1> is <cities|#2> |  
is a restricted parametric symbol. 

Note that SLEs can contain other SLEs as 
constituents, which gives users practically unlimited 
expressive power; facts about facts, beliefs, etc. can 
be easy expressed as an SLE, for example, “João 
believes that it will rain today” can be encoded as:   

$0<it will rain today> 
$1<#1 believes that #2 | João, $0>. 
On the other hand, unless constraints are 

introduced, it is possible to build nonsensical SLEs 
and statements such as $0<$0 is false>, which cannot 
be assigned a truth value.  

2.7 Symbol Groupings 

In addition to linguistic symbol composition 
(obtained via parametric symbols) and category 
samples (normally obtained via lists of items), 
symbols are grouped according to the following 
organizing principles. (1) Topological groupings are 
obtained by grouping symbols related by proximity or 
similarity. These groupings provide relaxation 
regions used when searching for symbol matches; for 
example, when searching for a word, a synonym 
found in a relaxation region can be returned as a valid 
potential match. Clusters in primal metric spaces are 
also topological groupings. (2) Inferential groupings 
are obtained by grouping symbols which participate 
in an inferential derivation (e.g., a syllogism). These 
groupings provide a justification for an inferred 
symbol and can be useful to assign plausibility scores 
and to compare alternative or incompatible states of 
affairs. (3) Descriptive aggregates enhance the 
description of some entity by combining, for 
example, SLEs which refer to a common entity. For 
example, $1<$0<Li> lives in Boston> and 
$2<$0<Li> likes movies> can be grouped into a 
descriptive aggregate {$1,$2}. As another example, a 
category symbol can be aggregated with restricted 
parametric symbols which use that category as a 
restricting category, so that a user can be presented 
with a list of available statement builders applicable 
to members of that category. Note that from the point 
of view of knowledge graphs, a descriptive aggregate 
can be viewed as the reification of a star-shaped 
subgraph centered at the “descripted” entity.  
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Taming Complexity. Symbol groupings play an 
important role for (1) building a flexible and 
incremental representation system; (2) representing 
the “topology” of symbols (which, in turn, is essential 
to make the system robust) and (3) making search and 
matching with relaxed compositional hypotheses lists 
more efficient by gathering an entity’s features under 
a unifying symbol identifier. However, they also 
introduce a great deal of complexity if they are 
allowed to proliferate in an uncontrolled way. One 
answer to this problem is to organize the multiple 
manifestations of an entity (including symbol 
groupings), which emerge from the interactions with 
users and their data, into semiotic structures, as 
described later in more detail.  

A second difficulty arises from the potentially 
very large size of the computational objects needed to 
represent complex symbolic constructs, such as 
symbol groupings. Think for example to a computer 
program that maintains a table to represent all the files 
or all the emails of a user: it is clearly impossible to 
hold such objects permanently in live memory. 
Multiform symbols and variable-complexity 
representations play a role here by converting each 
symbol to the most appropriate computationally 
optimized symbol form, ranging from simple integer 
identifiers to full-fledged exploitable forms (with 
hybrid compositional code in between). 

2.8 Contextualized Symbols 

In the analysis of documents, a distinction is made 
between word types and word tokens. We generalize 
this distinction by considering word types a subclass 
of de-contextualized or context-free symbols and 
word tokens a subclass of contextualized symbols. 
Words such as <mouse> and sentences such as 
<There is a mouse on my desk> are context-free 
symbols because no context is specified. 

A contextualized symbol is one for which some 
contextual information is specified.  

Plucked symbols are one type of contextualized 
symbols. They are obtained by “plucking” a 
constituent symbol from a composite symbol. For 
example, the occurrence of $0<a mouse> in  

$1<#1 ran across my desk | $0<a mouse>>,  
denoted by the symbol coordinate $1.1 ($n.k denotes 
the k-th constituent of $n) is a contextualized symbol 
because a context has been specified for the symbol 
$0, namely a sentence in which it occurs. Note that $0 
and $1.1 are quite different symbols: $0 can be either 
rodent or a device, whereas $1.1 is (most likely) a 
rodent. 

Semiotic Point Representations (SPR). Semiotic 
point representations, which represent signification 
events, are contextualized symbols. Recall that a 
signification event occurs when a materialized 
symbol gets connected to a referent or signified. The 
sequence of signification events triggered by a 
materialized symbol corresponds to a sequence of 
time samples of the spatial region occupied by it. For 
example, a road sign planted at a crossroad is 
“sampled” every time someone sees it and 
understands its meaning (and also when the sign is 
misinterpreted).   

There are different types of SPR which differ in 
the amount of information they convey about the 
signification event. A bare semiotic point identifier 
simply identifies a signification event by providing 
the space-time coordinates that uniquely identify it 
but does not convey any information about the 
meaning conveyed. For example, specifying the GPS 
coordinates of a road sign and the times at which it 
has been seen identifies a sequence of signification 
events, but does not provide any information about 
what the sign meant to those who viewed it.  

An informative SPR is one which does provide 
useful information to recover the instantaneous 
meaning of the represented signification event. A 
typical informative SPR specifies the symbol 
involved in the signification event plus some 
contextual information that restricts its possible 
interpretations. In the context of information 
extraction, word mentions, which are often associated 
with a few surrounding words, can be viewed as 
informative SPRs. A word along with the sentence in 
which it appears does not, however, specify a unique 
semiotic point since the word and the enclosing 
sentence are created once, yielding an initial semiotic 
point; and then read multiple times by different 
readers, yielding many additional semiotic points. 

2.9 Semiotic Structures 

All multiform symbols discussed in detail up to now, 
that is, primal symbols, parameterized symbols, SLEs 
(including categories and category sample), symbol 
groupings of various kinds, SPRs, are immutable 
symbols. Once created, they can be stored 
permanently in a repository and assigned an identifier 
which can be used confidently to refer to the symbol, 
with a guarantee that the symbol does not change, 
except for semantically invariant form conversions. 
For this reason, they can be called stock symbols.  

It should be noted that an immutable symbol is not 
one whose meaning is necessarily immutable (unless 
it is a primal symbol). For example, the symbols 
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<today> and <you> are immutable but their meaning 
clearly depends on the context in which they are used.  

Semiotic structures are mutable symbols. A 
semiotic structure designates a representative symbol 
which can be replaced by another representative 
symbol when the semiotic structure needs to be 
updated. An identifier of a semiotic structure 
identifies a symbol which can change over time, 
differently from identifiers of immutable symbols. 
There is a crisp and fundamental distinction between 
immutable and mutable symbols.  

We now describe some of the ways a semiotic 
structure evolves over time, usually with the active 
intervention of a user.  

State Updates. The list of my friends must be 
updated every time I meet a new friend. To enact this 
update, a new immutable symbol representing the 
new list of friends is created and the semiotic 
structure representing “my friends” is updated with 
the new list, which becomes the new representative 
symbol of the semiotic structure (the new list can of 
course be represented more efficiently as an edit to 
the old list if, for example, only one friend has been 
added). This type of update is called a state update 
because it reflects a state change in the underlying 
entity represented by the semiotic structure. As 
another example, a semiotic structure representing the 
GPS coordinates of my car must undergo a state 
update every time the car moves. 

Informative Updates. State updates should be 
contrasted with informative updates, which occur 
when new information is provided about the 
represented entity (and the underlying entity does not 
change). For example, suppose a user Xiu, while 
tagging pictures with people’s names, has quickly 
introduced a new person into the database by a simple 
keyword such as $0<Chen>. Later, Xiu realizes that 
she knows two Chen’s, so that she needs to provide a 
more informative representation of the first Chen, for 
example, by means of the more informative symbol 
$1<coworkers|Chen>. This informative update is also 
a refinement update because not only does it provide 
additional information about the entity (that is, that 
Chen is a co-worker), but it also reduces the 
ambiguity of the symbol, hence refining the set of 
objects it may refer to.  

A purely informative update which does not 
reduce ambiguity is referred to as a descriptive 
update. For example, suppose Maria knows only one 
Pablo but she wishes to enhance her representation of 
Pablo by including his phone number. In a knowledge 

graph this would be done by adding one edge; in the 
currently proposed model this could be done creating 
an SLE such as $2<The phone number of #1 is #2 | 
$0< Pablo >, (617)-123-4567> and then by plucking 
“Pablo” from this SLE, to yield the plucked symbol 
$2.1. An alternative way is to create a descriptive 
aggregate which annotates $0 with $2.  

Renaming updates are used for renaming an 
entity; for example, if Maria decides to rename Pablo 
to “Pablito”, the current representative of the semiotic 
structure, say <Pablo>, is replaced with <Pablito>. 

Consolidation Updates. Suppose that after using the 
repository for a while, Maria has mentioned Pablo 
multiple times so that the repository now contains 
multiple SLEs having <Pablo> as a constituent. 
While browsing through the repository and seeing 
multiple mentions of Pablo, Maria decides to gather 
all the information about Pablo in one place and 
creates a descriptive aggregate about Pablo: this new 
descriptive aggregate becomes the new representative 
of the semiotic structure representing Pablo. Note that 
a consolidation update is an informative update. 
Consolidation updates play a crucial role in taming 
the proliferation of symbols referring to the same 
entity and ought to be triggered automatically by the 
system when necessary. 

Splitting. An shown earlier, fluctuations arising with 
the use of vague symbols such as <friends> may lead 
to inconsistencies. Nested semiotic structures can be 
used to track these semiotic fluctuations and to 
represent the structure of vague entities. Specifically, 
an initial semiotic structure representing a vague 
symbol such as <friends> can spawn two nested 
semiotic structures by creating two refinements of 
<friends>, one which includes co-workers and one 
which exclude co-workers. These two refined 
symbols become the initial representatives of the two 
nested semiotic structures, each of which inherits one 
portion of the semiotic history of the original vague 
symbol. 

Merging. Two semiotic structures whose meanings 
are similar or overlapping can be combined into a 
coarse semiotic structure. For example, suppose that 
a group of family members has independently kept 
lists of <people> but they have (unconsciously) 
assigned slightly different meanings to the symbol 
<people>. For example, Alia has excluded fictional 
character, such as Harry Potter, from her list (she has 
a separate category for them); Elif has also excluded 
people he has never met (he has a special category 
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“celebrities” for famous people he has never met); 
Canan has instead included all speaking entities into 
his list including cartoon characters such as Tom the 
cat and Jerry the mouse, just because he was too lazy 
to create a special category for them. It is finally 
decided to consolidate the databases of all family 
members and for doing so, a coarse semiotic structure 
named <people> is created and the 3 <people> 
categories appear as nested categories within the 
coarse <people> category. The flavors of <people> 
“invented” by each family member is not lost and is 
now organized under a vague category symbol that 
acknowledges each one of three interpretations. 

Extension-by-Reference and Rewinds. A semiotic 
structure not only keeps track of the updates of its 
representative symbol but also of the references to its 
current representative symbol from other symbols. In 
other words, a semiotic structure maintains an 
historical record of all the signification events in 
which it participates. A user may use this history to 
fine-tune the meaning of a symbol. For example, the 
meaning of a symbol may drift over time and a user 
may realize that the a past usage of the symbol 
represents better its current intended meaning than the 
last occurrence of the symbol: a rewind operation is 
then executed.  

2.10 Reflection 

Semiotic structures are meta-symbols: the history of 
signification events they contain (in the form of 
SPRs) represent symbols representing something. 
The elementary operations just described, occurring 
at the semiotic structure level: state updates, 
information updates, refinements, splits, merges, 
extension-by-reference, rewinds, consolidations, etc., 
accompany every population step and curation step.  

To carry out any of these operations, an agent 
(human or machine) must engage in reflection, which 
involves recollecting or reconstructing the past 
meanings of symbols. Reflection results in a semiotic 
link being created between a current signification 
event and a past signification event which have been 
assessed by an agent to pertain to the same underlying 
entity. The two linked signification events become 
then part of the same semiotic structure. 

A linear semiotic structure is obtained when an 
agent always determines that the current meaning of 
a symbol is the same as its previous occurrence. 
Bifurcations occur when rewinds are necessary due, 
for example, to semiotic drift. 

3 CONCLUSIONS 

A knowledge representation model has been 
described which enables users to enter, modify 
organize, re-organize, and curate their own personal 
information by leveraging their own terminologies 
and organizational schemes. We believe that ideas 
discussed in this position paper can be used to 
develop an interactive repository with a user-friendly 
interface to store and recall personal information. One 
should also explore the possibility of using semiotic 
structures (and other symbolic representations 
described here) to enhance knowledge graphs in 
general, for example, to represent knowledge 
extracted from large amounts of text.  
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