
Easy Scaling: The Most Critical Consideration for Choosing
Analytical Database Management Systems in the Cloud Era

Jie Liu1 and Genyuan Du2,3
1Computer Science Division, Western Oregon University, Monmouth, Oregon, U.S.A.

2School of Information Engineering, Xuchang University, Xuchang, Henan, China
3Henan International Joint Laboratory of Polarization Sensing and Intelligent Signal Processing, Xuchang, Henan, China

Keywords: Analytical Database Management Systems (ADBMSs), Performance, Cost, Scaling.

Abstract: Analytical database management systems offer significant advantages for organizations practicing data-
driven decision-making. ADBMSs rely on massively parallel processing for performance improvement,
increased availability and other computation related resources, and improved scalability and stability. In this
position paper, we argue that (1) Gustafson-Barsis' Law aligns well with use cases suitable for Cloud-based
ADBMS, still, neither Amdahl's law nor Gustafson's law is sufficient in guiding us on answer the question
"how many processors should we use to gain better performance economically", and (2) ADBMS’s capability
of utilizing parallel processing does not translate directly into easy scaling, specially scaling horizontally by
adding more instances or nodes to distribute the workload at will, so when costs are somewhat controllable,
allowing easy scaling should be by far the most critical consideration for choosing an ADBMS.

1 INTRODUCTION

The proliferation of big data and the increasing
demand for real-time analysis has put a spotlight on
the need for efficient analytical database management
systems (ADBMSs). In the cloud era, these systems
are expected to be able to handle large amounts of
data, provide fast query performance, and be highly
available and scalable to discover useful insights and
distribute the finding to stakeholders.

Naturally, all ADBMSs rely on massively parallel
processing for performance improvement, increased
availability and other computation related resources,
and improved scalability and stability (Chaiken
2008). Historically, we were using both Amdahl's law
and Gustafson's law to guide us in decisions on
whether we should utilize more processors to gain
better performance for our parallel algorithms.
Clearly, ADBMSs execute our database queries using
some form of parallel algorithms; therefore, these two
laws still apply.

Based on our studies on parallel processing, data
engineering, and our experiences using several
different ADBMSs, we would like to argue, in this
position paper, (1) despite the fact that Gustafson-
Barsis' Law aligns well with use cases suitable for

Cloud-based ADBMS, neither Amdahl's law nor
Gustafson's law is sufficient in guiding us on answer
the question "how many processors should we use to
gain better performance cost-effectively", and (2)
ADBMS’s capability of utilizing parallel processing
does not translate directly into easy scaling, specially
scaling horizontally by adding more instances or
nodes to distribute the workload at will, so when costs
are somewhat controllable, allowing easy scaling
should be by far the most critical consideration for
choosing an ADBMS. The second argument is our
main argument.

In the next section, we will briefly discuss
Amdahl’s Law and Gustafson-Barsis’ Law. We will
then present our opinion that Gustafson-Barsis' Law
is more suitable in guiding us with using more
processors to realize performance gain for queries
running on Cloud-based ADBMS However, neither
Amdahl's law nor Gustafson's law is sufficient in
guiding us on cost efficiency. In section 3, we will
discuss scaling in a few well known ADBMSs, such
as Snowflake, Redshift, Databricks, and BigQuery.
We will also present our opinion that allowing easy
scaling should be by far the most critical
consideration for choosing an ADBMS because that
really is the main reason organizations are using
ADBMSs. Understanding cost control is important,

Liu, J. and Du, G.
Easy Scaling: The Most Critical Consideration for Choosing Analytical Database Management Systems in the Cloud Era.
DOI: 10.5220/0012207600003598
In Proceedings of the 15th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2023) - Volume 1: KDIR, pages 373-378
ISBN: 978-989-758-671-2; ISSN: 2184-3228
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

373

we present our best practices in balancing the trade-
offs between costs and performance. We conclude
our paper in section 5.

2 AMDAHL'S LAW AND
GUSTAFSON-BARSIS' LAW

Amdahl's Law (Amdahl, 1967), provides a theoretical
framework for analysing the potential speedup of a
parallel algorithm when a portion of the computation
remains serial. It helps in understanding the
fundamental limitations of parallelization and
emphasizes the importance of optimizing the
sequential portion of a program. Following Amdahl's
law, let s be the fraction of operations in a
computation that must be performed sequentially,
where 0≤ s ≤ 1. The maximum speedup ψ achievable
by a parallel computer with p processors performing
the computation is

(1)

However, Amdahl's law assumes a fixed problem
size and workload. This is not really realistic in
today’s analytical related use cases, especially in the
context of big data and cloud computing. For
example, one of our clients has seen an ETL job of
theirs grows by forty times as big, in terms of record
count, in 3 years.

On the other hand, Gustafson-Barsis' law
Gustafson, (Gustafson, 1988), proposed by John
Gustafson and R. Eric Barsis in 1988, presents a
contrasting perspective. It suggests that the scalability
and performance of parallel algorithms can be
improved by increasing the problem size as the
number of processors increases. Following
Gustafson-Barsis' law, given a parallel program
solving a problem using p processors, let s’ denote the
fraction of the total execution time performed
sequentially. The maximum speedup ψ achievable by
this program is 𝜓 ≤ 𝑝 + (1 − 𝑝) ∗ 𝑠′ (2)

Gustafson-Barsis' law emphasizes that larger
problem sizes can benefit greatly from increased
parallelism and can effectively harness the additional
computing resources to solve bigger problems within
a reasonable amount of time.

2.1 Gustafson-Barsis' Law Aligns Well
with Use Cases Suitable for
Cloud-Based ADBMS

Considering the evolving landscape of big data and
cloud computing, our recommendation would be to
prioritize Gustafson-Barsis' Law over Amdahl's Law
when making decisions regarding the allocation of
computing resources. Here are a few reasons for this
preference:

Scalability: Gustafson-Barsis' Law acknowledges
the potential benefits of scaling up the problem size
and workload, aligning well with the demands of
processing large volumes of data in modern
applications. By increasing the problem size, more
processing units can be effectively utilized to keep the
overall query execution time to be reasonable.

Real-World Scenarios: In practical scenarios
involving big data processing and analytics, the size
and complexity of the problems tend to grow
significantly over time. Gustafson-Barsis' Law
provides a more realistic and applicable approach by
considering the benefits of scaling up the workload to
fully utilize parallel resources.

Cloud Computing: Cloud-based ADBMSs often
allow their users to scale resources based on workload
demands or allocate more processors to their users
tasks. Clearly, Gustafson-Barsis' Law aligns well
with this approach of leveraging the elasticity of
cloud platforms.

While Gustafson-Barsis' Law offers a more
relevant framework for modern computing
environments, it does not invalidate Amdahl's Law.
Amdahl's Law still holds value in understanding the
impact of sequential portions of an algorithm and
optimizing performance within those constraints. Just
that, in the context of requesting computing resources
to manage overall query time, Gustafson-Barsis' Law
provides a more suitable guiding principle.

2.2 Both Laws Ignore Costs

Neither Amdahl's law nor Gustafson's law is
sufficient in guiding us to answer the question "how
many processors should we use to gain better
performance economically," the key word here is this
economically. Generally speaking, adding processors
reduces overall execution time of the same exact
query (let’s disregard result caching for a moment).

𝜓 ≤ ()/ <

KDIR 2023 - 15th International Conference on Knowledge Discovery and Information Retrieval

374

However, some ADBMSs have a minimum charge
policy. For example, Snowflake has a minimum
charge policy of 1 minute, even if your query only
takes 10 seconds. Other systems require their users to
pay upfront, such as Redshift, regardless whether
users are running queries or not. So, the pricing model
requires their users to consider the economic
implications of resource allocation and query
execution time, which may not support using more
processors to keep on reducing the overall execution
time. That is, such a minimum cost structure
introduces an economic constraint that needs to be
considered when determining the optimal allocation
of computing resources.

Gustafson-Barsis' Law focuses on maximizing the
benefits of scaling up to improve performance.
However, in the presence of a minimum cost, it
becomes crucial to strike a balance between the
desired performance gains and the associated costs.
When deciding on the allocation of computing
resources, it is essential to consider the cost
implications at different scales. Scaling up resources
may lead to better performance, but it also increases
costs proportionally.

For some systems. underutilization of resources
leads to unnecessary waste and drives up costs, while
other system overutilization may result in
diminishing returns in terms of the costs. Gustafson-
Barsis' Law only tells us adding more processors to
reduce overall execution time. Just, we have to keep
in mind that adding processors results in additional
costs. However, when problem size increases, not
adding more processors may also incur unnecessary
additional costs due to the impact of storage
limitations on query execution time. This is primarily
because smaller warehouses or smaller processor
count have less storage capacity, which can lead to
data spillage into secondary storage, which comprises
lower-cost, higher-capacity, higher latency and
slower read/write speeds storage options. Such a
spillage can significantly degrade query performance,
even crashing the entire ADBMS server.

When deciding on the allocation of computing
resources, it is essential to consider the cost
implications at different scales. We need to evaluate
the cost-effectiveness of different resource allocation
strategies. This evaluation should be performed on a
case-by-case basis, making informed choices to
maximize performance while minimizing costs. The
bottom line is that neither Amdahl's law nor
Gustafson's law is sufficient in guiding us to answer
the question "how many processors should we use to
gain better performance economically."

3 POPULAR ADBMSs

The authors have been exposed to ADBMSs for more
than 10 years, started with Vertica, an ADBMS runs
either on-premises or in an enterprise’s own Virtual
Private Cloud, that is, it does not deliver database
functionalities as a service. ADBMSs are not
designed to support OLTP operations. Instead, they
provide super-fast response times for aggregated
queries known as OLAP queries (Heavy.AI, 2023).
ADBMSs are generally more scalable, distributed,
columnar in data stores, and heavily compressing
their data. In addition, because the data is distributed,
they naturally utilize concurrency for performance
improvement (Heavy.AI, 2023).

In this section, we briefly discuss three extremely
popular cloud based ADBMSs: Google’s BigQuery,
Amazon’s Redshift, and Snowflake, all are fully
managed cloud service, which means their vendors
handle the underlying infrastructure, such as
hardware provisioning, software patching, and
backup management. We select these three because
we have either used them in the past or are still using
them. Performance and cost related discussions and
analysis are available (Fraser, 2022), so we will not
repeat the same experiment. Instead, we will provide
our position on selecting an ADBMS at the end of the
section.

All the three ADBMSs discussed here, and most
of the other systems on the market, leverage columnar
storage and Massively Parallel Processing (MPP) to
deliver high-performance analytics capabilities. This
columnar storage approach offers advantages for
analytical workloads as it enables efficient
compression, improves query performance, and
reduces I/O requirements. By storing columns
together, ADBMSs can read and process only the
necessary columns and utilize special algorithms that
take advantage of compression type, which leads to
faster query execution. ADBMSs utilize MPP
architecture to distribute query processing across
multiple computing nodes to be processed. This
parallel processing capability allows ADBMSs to
handle large datasets and complex analytical queries
efficiently. Combining columnar storage and MPP,
ADBMSs can achieve faster query performance,
efficient data compression, and scalability to handle
large volumes of data. These features make ADBMSs
well-suited for analytical workloads that require
complex queries, data aggregations, and ad-hoc
analysis.

Easy Scaling: The Most Critical Consideration for Choosing Analytical Database Management Systems in the Cloud Era

375

3.1 Snowflake

Snowflake is a cloud-native ADBMS known for its
flexibility, scalability, and ease of use. It was one of
the first decoupled storage and computing
architectures, making it the first to have nearly
unlimited compute scale and workload isolation, and
horizontal user scalability. It separates storage and
compute, allowing users to scale resources
independently based on their needs. This architecture
enables elastic scalability and efficient resource
allocation, resulting in high performance for
analytical workloads. Snowflake’s strengths also
include its automatic query optimization, support for
structured and semi-structured data, and the ability to
seamlessly integrate with various data processing and
analytics tools. It provides a true SaaS and is designed
to address the challenges of handling large-scale data
analytics and offers a range of features to support data
warehousing, querying, ETL, and analysis tasks.
Snowflake operates on a shared-nothing but data and
MPP architecture, where data is stored and processed
across multiple compute clusters, enabling high-
performance query execution for many users
simultaneously and independently without interfering
with each other’s performance. Users access
Snowflake databases using a browser based online
UI.

When creating a virtual warehouse in Snowflake,
users can specify the initial size of the warehouse,
which determines the amount of compute resources
allocated to the warehouse. The size options range
from X-Small (1 credit per hour) to 6X-Large (512
credits per hour), a total of 10 levels, indicating the
relative compute capacity of the warehouse. Our
rough understanding is that each credit is equivalent
to a computing node, which is defined by a CPU, plus
a predefined amount of RAM and SSD. The compute
capacity remains constant unless manually adjusted
by the user. If the workload exceeds the capacity of
the virtual warehouse, it can result in performance
degradation or increased query times. However, users
can select and start using a larger warehouse with just
a few clicks and experience faster query execution.
Depending on the type of services and security
requirements, each credit is mapped into a fixed
dollar amount. Data storage has separate charges. The
best part is that users can easily select to increase the
warehouse size to reduce the overall query execution
time.

It is important to note that using smaller
warehouses does not translate to saving cost because
the query cost is processor count times execution
time. A smaller warehouse generally takes longer

time to execute the same query because computing
nodes come with RAM and SSD. In the few extreme
cases, if the data required to complete the query is too
large to completely fit into the primary storage, users
may notice a drastic increase in overall execution
time.

3.2 Google’s BigQuery

BigQuery is also a fully managed ADBMS provided
by Google Cloud Platform. It is not a typical data
warehouse in part because it started as an on-demand
serverless query engine, which determines how many
virtual CPUs a query requires. BigQuery is not really
relational. Instead, it allows nested tables as an
attribute. BigQuery's integration with other Google
Cloud services, such as Cloud Storage and Cloud
Machine Learning Engine, allows users to build end-
to-end data pipelines and incorporate advanced
analytics capabilities seamlessly. Like Snowflake,
users access BigQuery databases using a browser
based online UI.

BigQuery works either in a “flat-rate pricing
model” where virtual CPUs are reserved in advance
or in an “on-demand pricing model”, where virtual
CPU assignment is completely in the hands of
BigQuery and the state of the shared resource pool.
The reserved slots model allows users more control
over compute resources and costs. BigQuery’s “on-
demand pricing model,” which has been our
experience using BigQuery, scales relatively well to
process large data volumes. It automatically assigns
more compute resources when needed behind the
scenes. In this case, users are charged on a $/TB
scanned basis. However, in this model, users are not
able to scale up or down at all. We often find this
being undesirable.

3.3 Amazon Redshift

Amazon Redshift, based on PostgreSQL, is “…a fully
managed, petabyte-scale data warehouse service in
the cloud” (Amazon, 2023). It is widely used by
organizations for their data warehousing and
analytics needs. Its combination of high performance,
scalability, and seamless integration with the AWS
ecosystem makes it a popular choice for handling
large-scale data analytics workloads. Amazon
Redshift Spectrum is an optional service that enables
you to query all types of data stored in Amazon S3
buckets. The data in S3 does not need to be loaded
into the Redshift data warehouse first to be able to be
queried by Redshift if you have spectrum enabled.

KDIR 2023 - 15th International Conference on Knowledge Discovery and Information Retrieval

376

We access Redshift using SQL Workbench or
Dbeaver.

Pricing model of Redshift can be complicated.
Amazon provides several pricing choices, including a
serverless model similar to that of BigQuery. Still,
our management selected Compute Node Pricing
where our organization’s cost is primarily based on
the type and number of compute nodes provisioned
for our Redshift cluster. In our situation, we have
many different users with very different expectations.
It is almost impossible to accommodate all requests.
For example, with Redshift, users can select
computing nodes that are emphasizing on compute or
accentuating storage. However, we have users who
need to run complex queries that do not process large
volumes of data; but, we also have many users who
run mostly straight-forward queries that process very
large amounts of data. Also, scaling up and down can
be done in minutes if we are doubling or halving the
number of computing nodes. One time, it took the
system several hours to scale down from 16 to 10.
Suffers similar to this negatively affected our
experience using Redshift. Another limitation on
Redshift is introduced by its bundling of compute and
storage services. As the data volume increases, users
have to reserve more nodes to have a bigger storage
capacity to accommodate the increase in data. All
that said, we know plenty of teams that are happy with
Redshift.

3.4 Keep It Simple and
Straightforward

Security, Governance, ease of use etc. aside, most
organizations pay attention to performance and cost.
Fortunately, there are many reputable companies that
have published their experimental results for us to
refer and to study. The CEO of Fivetran has recently
published their comprehensive report “Warehouse
Benchmark: Redshift vs. Snowflake vs. BigQuery”
(Fraser, 2022). The article compares the performance
and cost of Amazon Redshift, Snowflake, and Google
BigQuery in some benchmarking studies. An
unofficial summary of the article is:

1. All three ADBMSs improved their systems in
terms of performance. Still Snowflake enjoys
the best performance, even the gap among the
three is very insignificant.

2. The cost of a system can be difficult to
compare, but the differences under “normal”
condition and usage are generally
insignificant. It is worth noting that for a small
amount of data, Google’s BigQuery can be
free.

3. The chart that plots the cost and execution
time for different systems with different
computing capability (aligned mostly with
overall costs) is very informative.

The key take-away based on our experiences and
research is that most ADBMSs on the cloud are
similar in performance, costs, support, security. The
main difference is their business model. It is our
opinion and our position that BigQuery’s “we will
take care of everything” is too simple and takes too
much control away from the users; Redshift’s “you
have many options to choose from” and pay upfront
is too complicated because it is just hard to know what
will come to you; Snowflake’s “keep the important
thing, using computing node count as a way to
balance between cost and performance, simple and
straightforward” is the best approach.

That is, with all other characteristics roughly
equal, allowing easy scaling should be by far the most
critical consideration for choosing an ADBMS
because that really is the main reason organizations
are using ADBMSs.

4 TOO SMALL A COMPUTING
NODE COUNT COSTS MORE

One of the counter intuitive views is to use a smaller
number of computing nodes, which translate into
smaller warehouse size in Snowflake, to save cost
because it costs less. Actually, often, selecting too
small a computing node count may cost more.

Figure 1: Statistics of executing an SQL statement on an
extra small Snowflake warehouse.

Figure 1 shows statistics of in the middle of
executing a costly SQL statement on an extra small

Easy Scaling: The Most Critical Consideration for Choosing Analytical Database Management Systems in the Cloud Era

377

Snowflake warehouse the first time. Snowflake’s
extra small warehouse has only one computing node.
The node’s actual configuration is not public
information. The details of the figure show that (1)
since this is the first time the SQL statement is
executed, none of the tables referred in the statement
is in the cache, (2) a large amount of data is spilled
into local storage because the warehouse’s main
storage is too small to hold the data needed to run the
SQL statement, and (3) some data even get stilled into
remote storage, which will drastically increase the
overall execution time of the SQL statement.

The execution of the SQL statement, with its
snapshot of execution shown in Figure 1 was
eventually cancelled after more than five hours of
execution. When using a 6xLarge warehouse, which
is 512 times more powerful, the spilling of data
disappeared and the query was done within three
minutes.

Using less CPUs does not save money because the
query cost is processor count times execution time.
Less CPUs may translate into much longer overall
query execution time because "CPUs" come with
storage. However, finding the most cost optimal size
of warehouse is not easy because there are a lot of
factors that can affect that.

5 CONCLUSIONS

By studying three extremely popular ADBMSs
(Google’s BigQuery, Amazon’s Redshift, and
Snowflake), we show that (1) users may not always
have the options of easily and cheaply adding more
processing units to improve query performance, (2)
when they do have the option, Gustafson-Barsis' Law
provides a better guidance than Amdahl's Law does,
and; however, we argue that neither Amdahl's law nor
Gustafson's law is sufficient in guiding us on answer
the question "how many processors should we use to
gain better performance economically", and (3) with
all other characteristics roughly equal, allowing easy
scaling should be by far the most critical
consideration for choosing an ADBMS because that
really is the main reason organizations are using
ADBMSs . Finally, using less CPUs does not reduce
costs because query cost is calculated by processor
count times execution time. Less CPU may take
longer time to execute because "CPUs" come with
storage.

ACKNOWLEDGEMENTS

We thank Western Oregon University’s Faculty
Development Committee and China’s Henan
provincial government projects 192102210275 and
GH201944 for their financial support for this work.

REFERENCES

Amdahl, Gene (1967). Validity of the Single Processor
Approach to Achieving Large Scale Computing
Capabilities, In AFIPS Conference Proceedings, Vol.
30 (Atlantic City, N.J., Apr. 18–20), AFIPS Press,
Reston, Va., pp. 483–485.

Amazon. (2023). What is Amazon Redshift. https://docs.
aws.amazon.com/redshift/latest/mgmt/welcome.html.
Amazon

Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib,
D., Weaver, S., & Zhou, J. (2008). SCOPE: easy and
efficient parallel processing of massive data sets. Proc.
VLDB Endow., 1, 1265-1276.

Cook, H., Adrian, M., Greenwald, R., and Gu, X. (2022).
Magic Quadrant for Cloud Database Management
Systems. https://www.gartner.com/doc/reprints?id=1-
2AIUY4M7&ct=220707&st=sb. Gartner

Du, Genyuan and Liu L (2021). On Cloud Analytical
Database Management Systems Suitable for Data
Intensive Biomedical Related Research. Am J Biomed
Sci & Res. 2021 - 11(4).

Fraser, George (2022). Cloud Data Warehouse Benchmark
https://www.fivetran.com/blog/warehouse-benchmark.
Fivetran.

Al-hayanni, Mohammed A. Noaman; Xia, Fei; Rafiev,
Ashur; Romanovsky, Alexander; Shafik, Rishad;
Yakovlev, Alex (2020). Amdahl's law in the context of
heterogeneous many‐core systems – a survey. IET
Computers & Digital Techniques. 14 (4): 133–148.

Hill, Mark D.; Marty, Michael R. (2008). "Amdahl's Law
in the Multicore Era". Computer. 41 (7): 33–38.

G2. (2023). https://www.g2.com/compare/amazon-redshi
ft-vs-snowflake-vs-google-cloud-bigquery. G2

Google (2023). What is BigQuery. https://cloud.
google.com/bigquery/docs/introduction. Google.

Liu, Jie (2017). Gustafson's law vs Amdahl's law.
https://stackoverflow.com/questions/34910585/gustafs
ons-law-vs-amdahls-law

Gustafson, John L. (May 1988). "Reevaluating Amdahl's
Law". Communications of the ACM. 31 (5): 532–3.

Heavy.AI (2023). Analytical Database. https://www.heavy.
ai/technical-glossary/analytical-database. Heavy.AI

KDIR 2023 - 15th International Conference on Knowledge Discovery and Information Retrieval

378

