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Abstract: Analytical database management systems offer significant advantages for organizations practicing data-
driven decision-making. ADBMSs rely on massively parallel processing for performance improvement, 
increased availability and other computation related resources, and improved scalability and stability. In this 
position paper, we argue that (1) Gustafson-Barsis' Law aligns well with use cases suitable for Cloud-based 
ADBMS, still, neither Amdahl's law nor Gustafson's law is sufficient in guiding us on answer the question 
"how many processors should we use to gain better performance economically", and (2) ADBMS’s capability 
of utilizing parallel processing does not translate directly into easy scaling, specially scaling horizontally by 
adding more instances or nodes to distribute the workload at will, so when costs are somewhat controllable, 
allowing easy scaling should be by far the most critical consideration for choosing an ADBMS. 

1 INTRODUCTION 

The proliferation of big data and the increasing 
demand for real-time analysis has put a spotlight on 
the need for efficient analytical database management 
systems (ADBMSs). In the cloud era, these systems 
are expected to be able to handle large amounts of 
data, provide fast query performance, and be highly 
available and scalable to discover useful insights and 
distribute the finding to stakeholders.  

Naturally, all ADBMSs rely on massively parallel 
processing for performance improvement, increased 
availability and other computation related resources, 
and improved scalability and stability (Chaiken 
2008). Historically, we were using both Amdahl's law 
and Gustafson's law to guide us in decisions on 
whether we should utilize more processors to gain 
better performance for our parallel algorithms. 
Clearly, ADBMSs execute our database queries using 
some form of parallel algorithms; therefore, these two 
laws still apply.  

Based on our studies on parallel processing, data 
engineering, and our experiences using several 
different ADBMSs, we would like to argue, in this 
position paper, (1) despite the fact that Gustafson-
Barsis' Law aligns well with use cases suitable for 

Cloud-based ADBMS, neither Amdahl's law nor 
Gustafson's law is sufficient in guiding us on answer 
the question "how many processors should we use to 
gain better performance cost-effectively", and (2) 
ADBMS’s capability of utilizing parallel processing 
does not translate directly into easy scaling, specially 
scaling horizontally by adding more instances or 
nodes to distribute the workload at will, so when costs 
are somewhat controllable, allowing easy scaling 
should be by far the most critical consideration for 
choosing an ADBMS. The second argument is our 
main argument.  

In the next section, we will briefly discuss 
Amdahl’s Law and Gustafson-Barsis’ Law. We will 
then present our opinion that Gustafson-Barsis' Law 
is more suitable in guiding us with using more 
processors to realize performance gain for queries 
running on Cloud-based ADBMS However, neither 
Amdahl's law nor Gustafson's law is sufficient in 
guiding us on cost efficiency. In section 3, we will 
discuss scaling in a few well known ADBMSs, such 
as Snowflake, Redshift, Databricks, and BigQuery. 
We will also present our opinion that allowing easy 
scaling should be by far the most critical 
consideration for choosing an ADBMS because that 
really is the main reason organizations are using 
ADBMSs. Understanding cost control is important, 
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we present our best practices in balancing the trade-
offs between costs and performance. We conclude 
our paper in section 5.  

2 AMDAHL'S LAW AND 
GUSTAFSON-BARSIS' LAW 

Amdahl's Law (Amdahl, 1967), provides a theoretical 
framework for analysing the potential speedup of a 
parallel algorithm when a portion of the computation 
remains serial. It helps in understanding the 
fundamental limitations of parallelization and 
emphasizes the importance of optimizing the 
sequential portion of a program. Following Amdahl's 
law, let s be the fraction of operations in a 
computation that must be performed sequentially, 
where 0≤ s ≤ 1. The maximum speedup ψ achievable 
by a parallel computer with p processors performing 
the computation is  

 

(1)

However, Amdahl's law assumes a fixed problem 
size and workload. This is not really realistic in 
today’s analytical related use cases, especially in the 
context of big data and cloud computing. For 
example, one of our clients has seen an ETL job of 
theirs grows by forty times as big, in terms of record 
count, in 3 years. 

On the other hand, Gustafson-Barsis' law 
Gustafson, (Gustafson, 1988), proposed by John 
Gustafson and R. Eric Barsis in 1988, presents a 
contrasting perspective. It suggests that the scalability 
and performance of parallel algorithms can be 
improved by increasing the problem size as the 
number of processors increases. Following 
Gustafson-Barsis' law, given a parallel program 
solving a problem using p processors, let s’ denote the 
fraction of the total execution time performed 
sequentially. The maximum speedup ψ achievable by 
this program is  𝜓 ≤ 𝑝 + (1 − 𝑝) ∗ 𝑠′ (2)

Gustafson-Barsis' law emphasizes that larger 
problem sizes can benefit greatly from increased 
parallelism and can effectively harness the additional 
computing resources to solve bigger problems within 
a reasonable amount of time. 
 

2.1 Gustafson-Barsis' Law Aligns Well 
with Use Cases Suitable for  
Cloud-Based ADBMS 

Considering the evolving landscape of big data and 
cloud computing, our recommendation would be to 
prioritize Gustafson-Barsis' Law over Amdahl's Law 
when making decisions regarding the allocation of 
computing resources. Here are a few reasons for this 
preference: 

Scalability: Gustafson-Barsis' Law acknowledges 
the potential benefits of scaling up the problem size 
and workload, aligning well with the demands of 
processing large volumes of data in modern 
applications. By increasing the problem size, more 
processing units can be effectively utilized to keep the 
overall query execution time to be reasonable. 

Real-World Scenarios: In practical scenarios 
involving big data processing and analytics, the size 
and complexity of the problems tend to grow 
significantly over time. Gustafson-Barsis' Law 
provides a more realistic and applicable approach by 
considering the benefits of scaling up the workload to 
fully utilize parallel resources. 

Cloud Computing: Cloud-based ADBMSs often 
allow their users to scale resources based on workload 
demands or allocate more processors to their users 
tasks. Clearly, Gustafson-Barsis' Law aligns well 
with this approach of leveraging the elasticity of 
cloud platforms. 

While Gustafson-Barsis' Law offers a more 
relevant framework for modern computing 
environments, it does not invalidate Amdahl's Law. 
Amdahl's Law still holds value in understanding the 
impact of sequential portions of an algorithm and 
optimizing performance within those constraints. Just 
that, in the context of requesting computing resources 
to manage overall query time, Gustafson-Barsis' Law 
provides a more suitable guiding principle. 

2.2 Both Laws Ignore Costs 

Neither Amdahl's law nor Gustafson's law is 
sufficient in guiding us to answer the question "how 
many processors should we use to gain better 
performance economically," the key word here is this 
economically. Generally speaking, adding processors 
reduces overall execution time of the same exact 
query (let’s disregard result caching for a moment). 

𝜓 ≤ ( )/  <  
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However, some ADBMSs have a minimum charge 
policy. For example, Snowflake has a minimum 
charge policy of 1 minute, even if your query only 
takes 10 seconds. Other systems require their users to 
pay upfront, such as Redshift, regardless whether 
users are running queries or not. So, the pricing model 
requires their users to consider the economic 
implications of resource allocation and query 
execution time, which may not support using more 
processors to keep on reducing the overall execution 
time. That is, such a minimum cost structure 
introduces an economic constraint that needs to be 
considered when determining the optimal allocation 
of computing resources. 

Gustafson-Barsis' Law focuses on maximizing the 
benefits of scaling up to improve performance. 
However, in the presence of a minimum cost, it 
becomes crucial to strike a balance between the 
desired performance gains and the associated costs. 
When deciding on the allocation of computing 
resources, it is essential to consider the cost 
implications at different scales. Scaling up resources 
may lead to better performance, but it also increases 
costs proportionally.  

For some systems. underutilization of resources 
leads to unnecessary waste and drives up costs, while 
other system overutilization may result in 
diminishing returns in terms of the costs. Gustafson-
Barsis' Law only tells us adding more processors to 
reduce overall execution time. Just, we have to keep 
in mind that adding processors results in additional 
costs. However, when problem size increases, not 
adding more processors may also incur unnecessary 
additional costs due to the impact of storage 
limitations on query execution time. This is primarily 
because smaller warehouses or smaller processor 
count have less storage capacity, which can lead to 
data spillage into secondary storage, which comprises 
lower-cost, higher-capacity, higher latency and 
slower read/write speeds storage options. Such a 
spillage can significantly degrade query performance, 
even crashing the entire ADBMS server. 

When deciding on the allocation of computing 
resources, it is essential to consider the cost 
implications at different scales. We need to evaluate 
the cost-effectiveness of different resource allocation 
strategies. This evaluation should be performed on a 
case-by-case basis, making informed choices to 
maximize performance while minimizing costs. The 
bottom line is that neither Amdahl's law nor 
Gustafson's law is sufficient in guiding us to answer 
the question "how many processors should we use to 
gain better performance economically." 

3 POPULAR ADBMSs 

The authors have been exposed to ADBMSs for more 
than 10 years, started with Vertica, an ADBMS runs 
either on-premises or in an enterprise’s own Virtual 
Private Cloud, that is, it does not deliver database 
functionalities as a service. ADBMSs are not 
designed to support OLTP operations. Instead, they 
provide super-fast response times for aggregated 
queries known as OLAP queries (Heavy.AI, 2023). 
ADBMSs are generally more scalable, distributed, 
columnar in data stores, and heavily compressing 
their data. In addition, because the data is distributed, 
they naturally utilize concurrency for performance 
improvement (Heavy.AI, 2023).  

In this section, we briefly discuss three extremely 
popular cloud based ADBMSs: Google’s BigQuery, 
Amazon’s Redshift, and Snowflake, all are fully 
managed cloud service, which means their vendors 
handle the underlying infrastructure, such as 
hardware provisioning, software patching, and 
backup management. We select these three because 
we have either used them in the past or are still using 
them. Performance and cost related discussions and 
analysis are available (Fraser, 2022), so we will not 
repeat the same experiment. Instead, we will provide 
our position on selecting an ADBMS at the end of the 
section. 

All the three ADBMSs discussed here, and most 
of the other systems on the market, leverage columnar 
storage and Massively Parallel Processing (MPP) to 
deliver high-performance analytics capabilities. This 
columnar storage approach offers advantages for 
analytical workloads as it enables efficient 
compression, improves query performance, and 
reduces I/O requirements. By storing columns 
together, ADBMSs can read and process only the 
necessary columns and utilize special algorithms that 
take advantage of compression type, which leads to 
faster query execution. ADBMSs utilize MPP 
architecture to distribute query processing across 
multiple computing nodes to be processed. This 
parallel processing capability allows ADBMSs to 
handle large datasets and complex analytical queries 
efficiently. Combining columnar storage and MPP, 
ADBMSs can achieve faster query performance, 
efficient data compression, and scalability to handle 
large volumes of data. These features make ADBMSs 
well-suited for analytical workloads that require 
complex queries, data aggregations, and ad-hoc 
analysis. 

 
 

Easy Scaling: The Most Critical Consideration for Choosing Analytical Database Management Systems in the Cloud Era

375



 

3.1 Snowflake 

Snowflake is a cloud-native ADBMS known for its 
flexibility, scalability, and ease of use. It was one of 
the first decoupled storage and computing 
architectures, making it the first to have nearly 
unlimited compute scale and workload isolation, and 
horizontal user scalability. It separates storage and 
compute, allowing users to scale resources 
independently based on their needs. This architecture 
enables elastic scalability and efficient resource 
allocation, resulting in high performance for 
analytical workloads. Snowflake’s strengths also 
include its automatic query optimization, support for 
structured and semi-structured data, and the ability to 
seamlessly integrate with various data processing and 
analytics tools. It provides a true SaaS and is designed 
to address the challenges of handling large-scale data 
analytics and offers a range of features to support data 
warehousing, querying, ETL, and analysis tasks.  
Snowflake operates on a shared-nothing but data and 
MPP architecture, where data is stored and processed 
across multiple compute clusters, enabling high-
performance query execution for many users 
simultaneously and independently without interfering 
with each other’s performance. Users access 
Snowflake databases using a browser based online 
UI.  

When creating a virtual warehouse in Snowflake, 
users can specify the initial size of the warehouse, 
which determines the amount of compute resources 
allocated to the warehouse. The size options range 
from X-Small (1 credit per hour) to 6X-Large (512 
credits per hour), a total of 10 levels, indicating the 
relative compute capacity of the warehouse. Our 
rough understanding is that each credit is equivalent 
to a computing node, which is defined by a CPU, plus 
a predefined amount of RAM and SSD. The compute 
capacity remains constant unless manually adjusted 
by the user. If the workload exceeds the capacity of 
the virtual warehouse, it can result in performance 
degradation or increased query times. However, users 
can select and start using a larger warehouse with just 
a few clicks and experience faster query execution. 
Depending on the type of services and security 
requirements, each credit is mapped into a fixed 
dollar amount. Data storage has separate charges. The 
best part is that users can easily select to increase the 
warehouse size to reduce the overall query execution 
time.  

It is important to note that using smaller 
warehouses does not translate to saving cost because 
the query cost is processor count times execution 
time. A smaller warehouse generally takes longer 

time to execute the same query because computing 
nodes come with RAM and SSD. In the few extreme 
cases, if the data required to complete the query is too 
large to completely fit into the primary storage, users 
may notice a drastic increase in overall execution 
time.  

3.2 Google’s BigQuery  

BigQuery is also a fully managed ADBMS provided 
by Google Cloud Platform. It is not a typical data 
warehouse in part because it started as an on-demand 
serverless query engine, which determines how many 
virtual CPUs a query requires. BigQuery is not really 
relational. Instead, it allows nested tables as an 
attribute. BigQuery's integration with other Google 
Cloud services, such as Cloud Storage and Cloud 
Machine Learning Engine, allows users to build end-
to-end data pipelines and incorporate advanced 
analytics capabilities seamlessly. Like Snowflake, 
users access BigQuery databases using a browser 
based online UI.  

BigQuery works either in a “flat-rate pricing 
model” where virtual CPUs are reserved in advance 
or in an “on-demand pricing model”, where virtual 
CPU assignment is completely in the hands of 
BigQuery and the state of the shared resource pool. 
The reserved slots model allows users more control 
over compute resources and costs. BigQuery’s “on-
demand pricing model,” which has been our 
experience using BigQuery, scales relatively well to 
process large data volumes. It automatically assigns 
more compute resources when needed behind the 
scenes. In this case, users are charged on a $/TB 
scanned basis. However, in this model, users are not 
able to scale up or down at all. We often find this 
being undesirable.  

3.3 Amazon Redshift 

Amazon Redshift, based on PostgreSQL, is “…a fully 
managed, petabyte-scale data warehouse service in 
the cloud” (Amazon, 2023). It is widely used by 
organizations for their data warehousing and 
analytics needs. Its combination of high performance, 
scalability, and seamless integration with the AWS 
ecosystem makes it a popular choice for handling 
large-scale data analytics workloads. Amazon 
Redshift Spectrum is an optional service that enables 
you to query all types of data stored in Amazon S3 
buckets. The data in S3 does not need to be loaded 
into the Redshift data warehouse first to be able to be 
queried by Redshift if you have spectrum enabled. 
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We access Redshift using SQL Workbench or 
Dbeaver.  

Pricing model of Redshift can be complicated. 
Amazon provides several pricing choices, including a 
serverless model similar to that of BigQuery. Still, 
our management selected Compute Node Pricing 
where our organization’s cost is primarily based on 
the type and number of compute nodes provisioned 
for our Redshift cluster. In our situation, we have 
many different users with very different expectations. 
It is almost impossible to accommodate all requests. 
For example, with Redshift, users can select 
computing nodes that are emphasizing on compute or 
accentuating storage. However, we have users who 
need to run complex queries that do not process large 
volumes of data; but, we also have many users who 
run mostly straight-forward queries that process very 
large amounts of data. Also, scaling up and down can 
be done in minutes if we are doubling or halving the 
number of computing nodes. One time, it took the 
system several hours to scale down from 16 to 10. 
Suffers similar to this negatively affected our 
experience using Redshift. Another limitation on 
Redshift is introduced by its bundling of compute and 
storage services. As the data volume increases, users 
have to reserve more nodes to have a bigger storage 
capacity to accommodate the increase in data.  All 
that said, we know plenty of teams that are happy with 
Redshift.  

3.4 Keep It Simple and 
Straightforward 

Security, Governance, ease of use etc. aside, most 
organizations pay attention to performance and cost. 
Fortunately, there are many reputable companies that 
have published their experimental results for us to 
refer and to study.  The CEO of Fivetran has recently 
published their comprehensive report “Warehouse 
Benchmark: Redshift vs. Snowflake vs. BigQuery” 
(Fraser, 2022). The article compares the performance 
and cost of Amazon Redshift, Snowflake, and Google 
BigQuery in some benchmarking studies. An 
unofficial summary of the article is: 

1. All three ADBMSs improved their systems in 
terms of performance. Still Snowflake enjoys 
the best performance, even the gap among the 
three is very insignificant.  

2. The cost of a system can be difficult to 
compare, but the differences under “normal” 
condition and usage are generally 
insignificant. It is worth noting that for a small 
amount of data, Google’s BigQuery can be 
free.  

3. The chart that plots the cost and execution 
time for different systems with different 
computing capability (aligned mostly with 
overall costs) is very informative.  

The key take-away based on our experiences and 
research is that most ADBMSs on the cloud are 
similar in performance, costs, support, security. The 
main difference is their business model. It is our 
opinion and our position that BigQuery’s “we will 
take care of everything” is too simple and takes too 
much control away from the users; Redshift’s “you 
have many options to choose from” and pay upfront 
is too complicated because it is just hard to know what 
will come to you; Snowflake’s “keep the important 
thing, using computing node count as a way to 
balance between cost and performance, simple and 
straightforward” is the best approach.  

That is, with all other characteristics roughly 
equal, allowing easy scaling should be by far the most 
critical consideration for choosing an ADBMS 
because that really is the main reason organizations 
are using ADBMSs. 

4 TOO SMALL A COMPUTING 
NODE COUNT COSTS MORE 

One of the counter intuitive views is to use a smaller 
number of computing nodes, which translate into 
smaller warehouse size in Snowflake, to save cost 
because it costs less. Actually, often, selecting too 
small a computing node count may cost more.  

 
Figure 1: Statistics of executing an SQL statement on an 
extra small Snowflake warehouse. 

Figure 1 shows statistics of in the middle of 
executing a costly SQL statement on an extra small 
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Snowflake warehouse the first time. Snowflake’s 
extra small warehouse has only one computing node. 
The node’s actual configuration is not public 
information. The details of the figure show that (1) 
since this is the first time the SQL statement is 
executed, none of the tables referred in the statement 
is in the cache, (2)  a large amount of data is spilled 
into local storage because the warehouse’s main 
storage is too small to hold the data needed to run the 
SQL statement, and (3) some data even get stilled into 
remote storage, which will drastically increase the 
overall execution time of the SQL statement.  

The execution of the SQL statement, with its 
snapshot of execution shown in Figure 1 was 
eventually cancelled after more than five hours of 
execution. When using a 6xLarge warehouse, which 
is 512 times more powerful, the spilling of data 
disappeared and the query was done within three 
minutes.   

Using less CPUs does not save money because the 
query cost is processor count times execution time. 
Less CPUs may translate into much longer overall 
query execution time because "CPUs" come with 
storage. However, finding the most cost optimal size 
of warehouse is not easy because there are a lot of 
factors that can affect that.  

5 CONCLUSIONS 

By studying three extremely popular ADBMSs 
(Google’s BigQuery, Amazon’s Redshift, and 
Snowflake), we show that (1) users may not always 
have the options of easily and cheaply adding more 
processing units to improve query performance, (2) 
when they do have the option,  Gustafson-Barsis' Law 
provides a better guidance than Amdahl's Law does, 
and; however, we argue that neither Amdahl's law nor 
Gustafson's law is sufficient in guiding us on answer 
the question "how many processors should we use to 
gain better performance economically", and (3) with 
all other characteristics roughly equal, allowing easy 
scaling should be by far the most critical 
consideration for choosing an ADBMS because that 
really is the main reason organizations are using 
ADBMSs . Finally, using less CPUs does not reduce 
costs because query cost is calculated by processor 
count times execution time. Less CPU may take 
longer time to execute because "CPUs" come with 
storage. 
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