
A User Interface for Tuning QoS Parameters in
Recommendation-Based Business Process Scenario Adaptation

Kiriakos Sgardelis1 a, Dionisis Margaris1 b, Dimitris Spiliotopoulos2 c and Costas Vassilakis3 d
1Department of Digital Systems, University of the Peloponnese, Sparta, Greece

2Department of Management Science and Technology, University of the Peloponnese, Tripoli, Greece
3Department of Informatics and Telecommunications, University of the Peloponnese, Tripoli, Greece

Keywords: UI, Adaptation, Personalisation, Recommender Systems, Business Processes, WS-BPEL, Web Services.

Abstract: The Web Services Business Process Execution Language (BPEL) is a special-purpose language that
orchestrates web services into a high-level business process. A typical BPEL scenario contains invocations to
preselected web services, along with their parameters. However, many recent research works support dynamic
service selection, based on user-set policies and criteria. Furthermore, users may request a service
recommendation, in which case functionally equivalent service offerings by different providers will be
considered by the personalization module. Along with the recommendation request, users provide the policy
parameters, which include minimum and maximum bounds for the non-functional attributes concerning the
service, and the system exploits these bounds to select and use the optimal candidate services. However, in
many real-life cases, a person will accept/purchase a product or a service that exceeds the threshold(s) that
initially he/she has set, e.g., if the overhead is marginal or the offer is deemed appealing, or no satisfactory
service candidates are identified using the initial settings. In this paper, we present and evaluate a specialized
User Interface that allows the user to review service candidates marginally exceeding the specified bounds
and consider them while making the final service selection.

1 INTRODUCTION

The Web Services Business Process Execution
Language, mostly known as WS-BPEL or simply
BPEL, is a special-purpose programming language
suitable for designing and executing business
processes that comprise web services invocations (Fu
et al., 2004; Pasley, 2005; Ouyang et al., 2006). A
typical BPEL scenario supports direct invocations to
individual web services, along with their parameters;
invocations are organized into sequential and/or
parallel execution flows, while additionally control
flow structures (e.g., if, switch and while) can be
specified (Mukherjee et al., 2008; Deng et al., 2011).

While in the typical BPEL scenario all the
invoked web services must be known in advance,
many extensions proposed insofar allow the BPEL
execution engine to select at runtime the web services,

a https://orcid.org/0009-0008-7113-8855
b https://orcid.org/0000-0002-7487-374X
c https://orcid.org/0000-0003-3646-1362
d https://orcid.org/0000-0001-9940-1821

considering the Quality of Service (QoS) parameters
of the service, i.e., non-functional parameters that
relate to the service, such as cost, response time,
reliability, etc. (Mukherjee et al., 2008; Deng et al.,
2011). In particular, when executing a BPEL scenario,
the user provides specifications for the Quality of
Service (QoS) he wants to receive, and the
adaptation/personalization engine uses these
specifications to select and invoke services that best
match the user’s specifications (Karastoyanova and
Leymann, 2009; Christos et al., 2009; Margaris et al.,
2015a). This is highly desirable, since many services
can be supported by multiple providers (e.g., a hotel
accommodation in Rome, a flight from Athens to
Rome, etc.), where each one may have different QoS
attribute values (cost, availability, etc.). Furthermore,
to fully support the aforementioned functionality,
modern BPEL research works include a web service

414
Sgardelis, K., Margaris, D., Spiliotopoulos, D. and Vassilakis, C.
A User Interface for Tuning QoS Parameters in Recommendation-Based Business Process Scenario Adaptation.
DOI: 10.5220/0012207500003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 414-421
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

taxonomy which contains all the (sub-)categories and
web service implementations (Chan et al., 2009;
Wang et al., 2012; Margaris et al., 2021).

Regarding the web service selection policy, the
user is typically able to set (a) the minimum and
maximum values for each QoS aspect, as well as (b)
the weight/importance of each QoS attribute. This
enables the personalization/adaptation engine to (i)
exclude the services whose QoS attributes are out of
the user-specified bounds and (ii) prioritize
qualifying services to either automatically fill or
simply recommend the optimal web services for each
user. For example, in a simple BPEL scenario, where
the attributes considered are (a) cost, (b) reliability
and (c) availability, the user sets MIN=(3, 6, 8),
MΑΧ=(9.5, 9, -) and W=(0.3, 0.4, 0.3), indicating
that the minimum values for the cost, reliability, and
availability QoS attributes of the service to be
selected are 3/10, 6/10 and 8/10, respectively, while
at the same time the maximum values allowed for cost
and reliability QoS attributes are 9.5 and 9,
respectively (no maximum bound is placed for
availability). Deferring, for now, the discussion on
process of the attribute weight application to
prioritize qualifying services, let us assume that the
available services in this scenario are the following
three:
 s1 = (cost: 3.5, reliability: 6.2, availability: 8);
 s2 = (cost: 7, reliability: 5.8, availability: 9.5);
 s3= (cost: 9.5, reliability: 8.5, availability: 7.7).

All attribute values are encoded in a ‘higher value is
better’ scheme, e.g., the reliability of s1 (value: 6.2)
is lower than the reliability of s3 (value: 8.5), while
the cost of s2 (7) is higher than the cost s3 (9).

The typical recommender engine will never
recommend s2 and s3 to the user, since the reliability
of s2 and availability of s3 are lower that the user set
MIN boundaries. As a result, the service that will be
recommended to the user is s1.

However, in real life many users would observe
that s2 is marginally rejected, since its reliability is
only 0.2/10 (2%) below the boundary. Additionally,
considering the other two QoS attributes, s2 is
superior (cost +3.5, availability +1.5), when
compared to s1. As a result, many users might select
s2 over s1, despite the boundary. Furthermore, we can
observe that s3 is marginally rejected too, since its
availability is only 0.3/10 (3%) below the respective
boundary, however, based on the other two QoS
attributes, s3 is also superior when compared to s1.

It is noteworthy that service filtering according to
the QoS bounds is of high importance to protect users
from information overload (Aljukhadar et al., 2012)

and allow users to effectively select the desired
services. Nevertheless, as demonstrated above, the
strict application of filtering may eliminate choices
that are potentially desirable to the user. To
successfully address this issue, the users must be
supported by a suitable user interface, which would
inform the users about the existence of additional
candidates and would allow them to review these
candidates, while additionally it would maintain a
high level of protection from information overload.
This work (a) presents a UI which supports users to
efficiently identify and review potentially attractive
service candidates whose QoS parameters fall outside
the specified bounds, achieving more successful
personalizations and (b) evaluates the presented UI in
terms of user acceptance.

The rest of the paper is structured as follows: in
section 2 the related work is overviewed, while in
section 3 the necessary foundations for our work are
presented. Section 4 and section 5 present and analyse
the proposed functionality and the overall UI design,
as well as the results of the user evaluation, and
finally the paper conclusion and future work are
outlined in section 6.

2 RELATED WORK

The adaptation of WS-BPEL scenarios’ execution is
a field of major research interest, and numerous
publications over the recent 15 years have addressed
multiple aspects of this process.

VieDAME is a BPEL extension that enables
BPEL process monitoring, based on specific QoS
criteria, and an adaptation strategy which, based on
various selectors, is able to replace existing partner
web services, which can be either semantically or
syntactically equivalent in the BPEL process (Moser
et al., 2008). The work in (Christos et al., 2009)
introduces a framework which provides the BPEL
execution engine with functionalities which comprise
of QoS attributes restrictions and ranking criteria
definitions, dynamic service selection, based on given
user policy and exception management techniques for
automating handling of exceptions due to system
faults. The work in (Tragatschnig and Zdun, 2011)
introduces a framework that supports runtime
structural modification, both for processes and
instances, and provides adaptation support to BPEL
execution engines. The work in (Sun et al., 2012)
introduces a BPEL fault localization guideline, which
is based on the attributes of the BPEL integration-
level faults. The work in (Dionisis et al., 2013)
introduces a framework which gives the BPEL

A User Interface for Tuning QoS Parameters in Recommendation-Based Business Process Scenario Adaptation

415

designers the ability to define the qualitative
requirements for the services invocated in the BPEL
scenarios. This framework also supports the system-
level exception resolution and service selection
affinity. The work in (Margaris et al., 2013) presents
an algorithm and the relative framework, which
incorporates both QoS specifications and
personalization, and more specifically collaborative
filtering, techniques into the BPEL execution
adaptation process. The work in (Alférez et al., 2014)
presents a framework which includes runtime
variability models, artifacts and tools, in order to
support the service compositions dynamic adaptation.
The work in (Margaris et al., 2020a) introduces an
integer programming-based recommendation
optimization algorithm for the WS-BPEL scenario,
which supports user set QoS criteria. This algorithm
maintains the optimality of the computed adaptations,
while, at the same time, it can efficiently compute the
adaptations that satisfy the QoS criteria set by users.
The work in (Driss et al., 2022) introduces a Service-
Oriented Computing-based approach which supports
the discovery, selection and composition of the most
suitable services. With this approach, both non-
functional and functional requirements are specified
by the BPEL designer to satisfy the QoE, QoS and
QoBiz parameters and services are chosen.

Over the recent years research works concerning
UIs for BPEL scenario adaptation have been
introduced, as well, allowing the BPEL designer to
control adaptation tasks, in addition to specifying the
services to be invoked and their orchestration. The
work in (Liu et al., 2016) presents an approach,
namely Mobile User Interactions and Tasks, which is
implemented as a standard service that can be
included into the BPEL engines. This web service
gives the BPEL designers the ability to realize a Web-
based UI, using a domain-specific language along with
a web programming abstraction. The work in
(Yongchareon et al., 2018) presents a framework that
produces UI flow models, to support semi-automatic
creation of UIs and visualize artifact-centric processes.
The presented UI is developed by taking into
consideration the relationships among user roles, UIs,
and business processes, in an artifact-centric process.

The work in (Margaris et al., 2020b) introduces a
UI for personalized service selection in BPEL
scenarios that considers the user set QoS parameters.
Its main target is to efficiently display the appropriate
service to the BPEL user, according to his profile,
each time the user asks for a service recommendation.
Afterwards, the UI provides the user the ability to
select the exact service to be invoked, according to his
needs. The work in (Diaz et al., 2021) takes BPMN

models as input, and with the use of stereotypes and
Class Diagrams, it develops mapping rules to produce
GUIs. Furthermore, in the cases where more than one
possible option is available, it recommends the
alternative, which optimizes the user experience of
the end user. The work in (Margaris et al., 2021)
presents a UI for BPEL designers that allows web
service personalized recommendation and selection
in BPEL scenarios, according to user set criteria.
More specifically the presented work gives the BPEL
user the ability (a) to preselect the service achieving
the highest score, based on the user set criteria, for
each recommendation asked, (b) to specify non-
qualitative criteria restrictions and (c) to select the
number of the candidate (equivalent) services, which
they will be depicted for each recommendation asked.

However, none of the abovementioned works
addresses the issue of allowing the users to efficiently
consider potentially attractive service choices whose
QoS attribute values do not fall within the specified
bounds and supporting users in this task through a
suitable user interface.

The presented UI offers the aforementioned
functionality, notifying the user about the presence of
potentially attractive service candidates, allowing the
user to review these candidates and finally select the
most prominent option.

3 PREREQUISITES

The following subsections summarize concepts from
the areas of (a) service QoS attributes and (b)
representation service functionality hierarchies,
which are used in this paper, for self-containment
purposes. We will also briefly introduce the BPEL
scenario adaptation framework, which will be used to
exemplify the concepts introduced in this paper.

3.1 Web Services QoS Attributes

In business processes, the non-functional aspects of a
service are typically quantified and represented using
QoS attributes, such as cost, response time, reliability,
availability, etc. (Maximilien and Singh, 2004;
Canfora et al., 2005; Raj and Sasipraba, 2010).
Without loss of generality, in this paper we consider
the attributes of cost (c), reliability (r), and
availability (av). The extension of the models and
algorithms presented in this paper to accommodate
additional QoS attributes is straightforward.
Typically, in a BPEL scenario adaptation scheme, the
boundaries concerning the maximum and minimum
allowed values for the QoS attributes used are

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

416

provided as two vectors, denoted as MAX and MIN,
respectively. A third vector W has to be provided
also, in order to specify the importance/weight of
each QoS attribute in the adaptation, effectively
driving the prioritization of services according to the
values of their QoS attributes. Hence the vector triplet
provided along with a BPEL scenario execution
request will be the following:
 MAX: (minc, minr, minav);
 MIN: (minc, minr, minav);
 W: (wc, wr, wav).

The MAX and MIN boundaries are normalized in
the range [0, 10], using a normalization equation, and
follow the rule that higher attribute values correspond
to higher QoS levels, to avoid confusion (Christos et
al., 2009; Dionisis et al., 2013; Margaris et al.,
2015b). Furthermore, these boundaries are applied to
each service within the BPEL scenario individually,
while the W is applied to the whole composition.

Finally, in order to select the optimal service, for
each invocation, the BPEL execution engine applies a
simple weighted sum approach, considering the QoS
attributes values of the overall composition (which are
computed based on QoS attributes values of the
constituent individual services and the parallel/
sequential execution flow structures (Margaris et al.,
2015a)), and the weight (vector W) set by the user.

3.2 Service Functionality Hierarchies

When the BPEL scenario contains an invocation to
some service X providing functionality F, we can
invoke a service Y, either if Y has the exact same
functionality as X, or if Y provides a more specific
functionality than X, analogously to a superclass-
subclass relation (Margaris et al., 2020a). This
information can be represented using a taxonomy: In
this taxonomy, non-leaf nodes represent
functionalities, with the most generic ones being
placed towards the root and more specific ones
towards the leaves. Specific service implementations
are placed as leaf nodes, which may accommodate the
QoS values of the services, unifying thus the service
QoS database and the functionality relationship
taxonomy under a single repository. An example
taxonomy accommodating functionalities and service
implementations is illustrated in Figure 1.

3.3 WS-BPEL Scenario Adaptation
Framework

The WS-BPEL scenario adaptation framework
considered in this paper (Margaris et al., 2015a;

Margaris et al., 2020) allows for the designation of (a)
specific services that the user wants to explicitly
invoke and (b) services for which a recommendation
is requested. This is accomplished using the
keywords INV and REC, respectively, in the BPEL
scenario, as depicted in Figure 2.

Figure 1: Hierarchy of services implementations (white
background) and (sub-)categories (orange background)
concerning a travel service.

Figure 2: Pseudocode concerning a business trip (air travel,
accommodation, and car rental) BPEL execution request.

4 UI DESIGN

The UI presented in this paper gives the user the
ability to enter the BPEL process specification using
a simplified syntax, like the one depicted in Figure 2.
This syntax allows for (a) the specification of the
services to be invoked, (b) designation of whether
services are executed sequentially or in parallel, (c)
the use INV and REC notations to distinguish
between functionalities where specific service
implementations have been pre-chosen by the user
and functionalities for which a recommendation is
requested, respectively, and (d) the provision
adaptation-related information, in the form of the
MIN/MAX vectors (per service to be recommended)
and QoS parameter weights (globally, at scenario
level). For each functionality designated with the INV
keyword, the service explicitly listed by the user is
invoked, while for each functionality designated with
the REC keywork, the services which satisfy the
bounds set by the user are retrieved presented, in
descending order their score.

A User Interface for Tuning QoS Parameters in Recommendation-Based Business Process Scenario Adaptation

417

Figure 3: The UI applied on the business trip adaptation scenario.

Figure 4: Displaying QoS tuning options.

In Figure 3, we can see an instance of the
proposed UI, which depicts the functionality for the
adaptation of the business trip scenario introduced in
the previous section. At the upper part of the right
pane, the services retrieved for the recommendation
request (keyword “REC”) in line 4 are listed. These
services meet the criteria (bounds) set by the user, and
are listed in a highest-to-lowest score order. This
score is computed based on their QoS values and the
weights set by the user at the beginning of the BPEL
scenario (line 2).

Beneath the list of the qualifying services, the UI
informs the user regarding additional adaptation
possibilities, through the tuning of the QoS
parameters. In this illustration, we consider that no
services have been rejected due to the application of
the user-specified QoS bounds, hence the UI informs
the user that no QoS tuning options are applicable.

When the BPEL user makes his selection for the
service to be invoked, this is highlighted.

In the case that there exist QoS tuning
opportunities, i.e. some services have been found not
to fulfill the bounds criteria set by the user, but are
deemed to be potentially attractive for the user, the
‘QoS tuning’ area lists these options, effectively
informing the user that small modifications to the
QoS bounds may result to suggestions that he might
be interested in selecting.

In the example shown in Figure 4, we increased
the minimum reliability boundary from 5 to 5.3 and,
thus, the RyanAir service is rejected. However,
Ryanair is only rejected by 0.1/10 (equals to 1%) and
its weighted average is calculated at 7.0*0.2 + 7.2*0.3
+ 5.2*0.5 = 6.16/10, while the weighted average of
the EasyJet service, which is ranked first, is
calculated at 6.1*0.2 + 6.7*0.3 + 5.5*0.5 = 5.98/10.
As a result, the rejected service has been found to be
superior to the optimal one and, hence, the RyanAir
service will be included in the ‘QoS tuning’ area, as
illustrated in Figure 4.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

418

In this work, we have set the criteria for including
a service that has been rejected due to violation of the
QoS bounds as follows:

a) Each QoS attribute value of the service that
has been rejected deviates by at most 0.5 from
the user-set bounds. For example, if the user
sets mincost=4 and maxcost=8, the “QoS tuning”
area will include services having a cost in the
range [3.5-8.5] (and, obviously, not appearing
in the “Recommendations” area).

b) The overall score of the service is either
superior to the score of the services in the
recommendation area, or inferior by a margin
of 0.5. The inclusion of services with inferior
scores allows the user to slightly modify “on-
the-fly” the initially set weights, without
needing to change the weight specifications in
the left pane. For instance, if the Volotea
service with QoS parameters (3, 9.3, 5.2)
exists within the service implementation
database, with an overall score of 5.98, this
might be appealing for the user due to its
significantly lower cost, and therefore he
might choose to choose it, disregarding the
fact that it scores lower than both RyanAir and
EasyJet, considering the initially set bounds.

The user is also offered the option to further relax
the criteria regarding the area around the bounds
within which services are searched, to be included
appearing in the “QoS tuning” section.

Each time the “Find more suggestions…” link is
clicked, the margin is increased by 0.5. For example,
while for the setting mincost=4 and maxcost=8, the
“QoS tuning” area would initially include services
that have a cost in the [3.5-8.5] range, after the “Find
more suggestions…” link is clicked once, the “QoS
tuning” area would include services that have a cost
in the [3.0-9.0] range. Finally, a recommendation
process may produce no results (no service can be
found either within the user boundaries to be listed in
the “Recommendations” area or fulfilling the criteria
to be listed in the “QoS tuning” area), the user is
informed and may employ the “Find more
suggestions…” link to extend the search range, as
described above.

5 EXPERIMENTAL
EVALUATION

The usability of the UI was assessed via a user study.
For the user evaluation, 14 WS-BPEL designers (5
female and 9 male, with a mean age of 41 years old;

all 14 are BSc holders in Computer Science or
Engineering) were selected to participate. Each
participant had more than 6 months of experience
(either academic or commercial) in BPEL design. 12
out of the 14 participants have already used UIs for
BPEL scenario adaptation in the past. However, those
did not include the extended functionality of tuning
QoS parameters.

Initially, the BPEL designers were briefed about
the interface, the notation used for the specification of
BPEL scenarios and were familiarized with the
functionality and the visual elements of the user
interface. The duration of the briefing was between
16 and 24 minutes. We asked the participants to use
the pseudocode that the presented UI supports (see
Figure 2) and develop simple BPEL code that
included at least one recommendation. We also gave
the participants access to the taxonomy that was
already stored. After UI experimentation, the
participants were asked to report on their experience.
The participants reported their feedback using an
online questionnaire that was administered at the end
of the experiment The usability metrics included the
user acceptance, confidence, and user satisfaction.

Each participant evaluated each criterion in a
Likert scale from 1 to 7 (Albaum, 1997; Allen and
Seaman, 2007). Figure 5 depicts the average values
of the responses given by the users for these criteria.

Figure 5: User evaluation results.

According to the evaluation results, shown in
Figure 5, we can conclude that the BPEL users were
overall satisfied with the UI. Interestingly, the lowest
evaluation score (4.0) was found to be given by the
two BPEL users that had not used another UI for
BPEL scenario adaptation in the past. This is
attributed to the fact that these users had limited
experience on how the BPEL scenario adaptation is
applied and required more time to fully comprehend
the adaptation concepts and process, resulting in
above average number of trial-and-error attempts.

0
1
2
3
4
5
6
7

acceptance confidence satisfaction

us
er

 e
va

lu
at

io
n

sc
or

e

usability metrics

A User Interface for Tuning QoS Parameters in Recommendation-Based Business Process Scenario Adaptation

419

After the end of the evaluation, an open
discussion followed, where most of the participants
stated that they would be happy to use this UI both in
its current state and by incorporating it into another
compatible UI, like the ones in (Margaris et al.,
2020b; Margaris et al., 2021).

Regarding further improvement, two suggestions
were made by the users. The first suggestion was
about the threshold value used to determine whether
a service is considered to be of potential interest to the
user, which, for the experiments, and was set to ±0.5
for every QoS attribute participating in the process.
The participants suggested that the user should be
allowed to tune this threshold. This will be part of our
future work. The second issue concerns the threshold
tuning level, where the participants suggest the UI to
give the BPEL designer the ability to configure the
threshold both globally (to be applied in all REC
requests) and per REC request. This suggestion will
be also considered for our future work. An initial
assessment was that these suggestions could result in
a more flexible interface and allow for finer-
granularity tuning. A concern will be that of the
complexity of the interface that could also suffer, as a
result. Therefore, the interplay between these
dimensions will have to be assessed, together with the
ability of these extensions to contribute to the
formulation of solutions of considerably higher
overall quality.

6 CONCLUSION AND FUTURE
WORK

In this paper, we presented a specialised UI that
facilitated the WS-BPEL scenario adaptation process,
by allowing the users to request recommendations for
web service implementations, designating QoS
criteria that the recommended implementations must
satisfy. The UI provides a dedicated supporting
mechanism that enables the users to explore
additional service implementations that may not
satisfy the initially set criteria but are deemed to be of
potential interest to the user. The rationale behind the
proposed functionality was that in many real-life
cases, a person will accept/purchase a product or a
service that exceeds the threshold(s) that were
initially set by them, e.g., if the overhead is marginal
or the offer is deemed appealing.

We validated the proposed UI by conducting a
user study, in which WS-BPEL designers, both with
academic and commercial BPEL background, used
the UI to create and adapt WS-BPEL scenarios and

subsequently rated different aspects of the UI and
recorded their suggestions. This evaluation results
showed adequately high level of acceptance,
confidence, and satisfaction. Furthermore, the
majority of the BPEL designers mentioned that they
would happily use this UI, both in its current state and
by incorporating it into another compatible IDE.

Our future work will primarily focus on
extensions and improvements suggested by the BPEL
designers who participated in our experiments. These
involve the inclusion of a functionality that allows the
BPEL designer to (a) tune the threshold value used to
determine whether a service is considered to be of
potential interest to the user and (b) configure the
threshold both globally (to be applied in all REC
requests) and per service recommendation request.
Furthermore, we plan to provide the BPEL users the
ability to write their BPEL code using graphical tools
(e.g. implement suitable UI controls through which
users specify sequential and parallel execution
branches of the BPEL scenario, loop and conditional
execution constructs, and so forth). Finally, we plan
to extend the BPEL recommender process, including
collaborative filtering techniques between users who
share identical or similar functionalities (Zhao et al.,
2020, Wu et al., 2022).

REFERENCES

Albaum, G. (1997). The Likert scale revisited. Market
Research Society. Journal., 39(2), 1-21. SAGE Journals.

Alférez, G. H., Pelechano, V., Mazo, R., Salinesi, C., Diaz,
D. (2014). Dynamic adaptation of service compositions
with variability models. Journal of Systems and
Software, 91, 24-47. ELSEVIER.

Aljukhadar, M., Senecal, S., Daoust, C.-E. (2012). Using
Recommendation Agents to Cope with Information
Overload. International Journal of Electronic Commerce,
17(2), 41–70. Informa UK Limited.

Allen, I. E., Seaman, C. A. (2007). Likert scales and data
analyses. Quality progress, 40(7), 64-65.

Canfora, G., Di Penta, M., Esposito, R., Villani, M. L. (2005).
An approach for QoS-aware service composition based
on genetic algorithms. In Proceedings of the 7th annual
conference on Genetic and evolutionary computation
(pp. 1069-1075). ACM.

Chan, K. M., Bishop, J., Steyn, J., Baresi, L., Guinea, S.
(2009). A fault taxonomy for web service composition.
In Service-Oriented Computing-ICSOC 2007
Workshops: ICSOC 2007, International Workshops,
Vienna, Austria, September 17, 2007, Revised Selected
Papers 5 (pp. 363-375). Springer Berlin Heidelberg.

Christos, K., Vassilakis, C., Rouvas, E., Georgiadis, P.
(2009). QoS-driven adaptation of BPEL scenario

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

420

execution. In 2009 IEEE International Conference on
Web Services (pp. 271-278). IEEE.

Deng, C., Yang, H., Liao, H., Sun, M., Qiu, Z. (2011,
August). Analysis of ws-bpel processes in prism. In 2011
Fifth International Conference on Theoretical Aspects of
Software Engineering (pp. 199-202). IEEE.

Dıaz, E., Panach, J. I., Rueda, S., Vanderdonckt, J. (2021) An
Empirical Study of Rules for Mapping BPMN Models to
Graphical User Interfaces. Multimedia Tools and
Applications, 80, 9813–9848. Springer
Science+Business Media, LLC.

Dionisis, M., Costas, V., Panagiotis, G. (2013). An integrated
framework for QoS-based adaptation and exception
resolution in WS-BPEL scenarios. In Proceedings of the
28th Annual ACM Symposium on Applied Computing
(pp. 1900-1906). ACM.

Driss, M., Ben Atitallah, S., Albalawi, A., Boulila, W. (2022).
Req-WSComposer: a novel platform for requirements-
driven composition of semantic web services. Journal of
Ambient Intelligence and Humanized Computing, 13,
849–865. Springer-Verlag.

Fu, X., Bultan, T., Su, J. (2004). Analysis of interacting
BPEL web services. In Proceedings of the 13th
international conference on World Wide Web (pp. 621-
630). ACM.

Karastoyanova, D., & Leymann, F. (2009). BPEL'n'Aspects:
Adapting service orchestration logic. In 2009 IEEE
International Conference on Web Services (pp. 222-229).
IEEE.

Liu, X., Xu, M., Teng, T., Huang, G., Mei, H. (2016). MUIT:
a domain-specific language and its middleware for
adaptive mobile web-based user interfaces in WS-BPEL.
IEEE Transactions on Services Computing, 12(6), 955-
969. IEEE.

Margaris, D., Georgiadis, P., Vassilakis, C. (2013). Adapting
WS-BPEL scenario execution using collaborative
filtering techniques. In IEEE 7th International
Conference on Research Challenges in Information
Science (RCIS) (pp. 1-11). IEEE.

Margaris, D., Vassilakis, C., Georgiadis, P. (2015a). An
integrated framework for adapting WS-BPEL scenario
execution using QoS and collaborative filtering
techniques. Science of Computer Programming, 98, 707-
734. ELSEVIER.

Margaris, D., Georgiadis, P., Vassilakis, C. (2015b). A
collaborative filtering algorithm with clustering for
personalized web service selection in business processes.
In 2015 IEEE 9th International Conference on Research
Challenges in Information Science (RCIS) (pp. 169-180).
IEEE.

Margaris, D., Spiliotopoulos, D., Kardiasmenos, A.,
Pantazopoulos, D. (2020a). An integer programming-
based algorithm for optimising the WS-BPEL scenario
execution adaptation process. International Journal of
Web Engineering and Technology, 15(3), 307-332.
Inderscience Enterprises Ltd.

Margaris, D., Spiliotopoulos, D., Vassilakis, C., Karagiorgos,
G. (2020b). A user interface for personalized web service
selection in business processes. In HCI International
2020–Late Breaking Papers: Interaction, Knowledge and

Social Media: 22nd HCI International Conference, HCII
2020, Copenhagen, Denmark, July 19–24, 2020,
Proceedings 22 (pp. 560-573). Springer International
Publishing.

Margaris, D., Spiliotopoulos, D., Vasilopoulos, D.,
Vassilakis, C. (2021). A user interface for personalising
WS-BPEL scenarios. In International Conference on
Human-Computer Interaction (pp. 399-416). Cham:
Springer International Publishing.

Maximilien, E.M., Singh, M.P. (2004). A framework and
ontology for dynamic web services selection. IEEE
Internet Computing, 8(5), 84-93.

Moser, O., Rosenberg, F., Dustdar, S. (2008). Non-intrusive
monitoring and service adaptation for WS-BPEL. In the
17th international conference on World Wide Web (pp.
815-824). ACM.

Mukherjee, D., Jalote, P., Gowri Nanda, M. (2008).
Determining QoS of WS-BPEL compositions. In
Service-Oriented Computing–ICSOC 2008: 6th
International Conference, Sydney, Australia, December
1-5, 2008. Proceedings 6 (pp. 378-393). Springer Berlin
Heidelberg.

Ouyang, C., Dumas, M., Ter Hofstede, A. H., Van der Aalst,
W. M. (2006). From BPMN process models to BPEL
web services. In 2006 IEEE International Conference on
Web Services (ICWS'06) (pp. 285-292). IEEE.

Pasley, J. (2005). How BPEL and SOA are changing web
services development. IEEE Internet computing, 9(3),
60-67. IEEE.

Raj, R.J.R., Sasipraba, T. (2010). Web service selection
based on QoS Constraints. In Trendz in information
sciences & computing (tisc2010) (pp. 156-162). IEEE.

Sun, C. A., Zhai, Y., Shang, Y., Zhang, Z. (2012). Toward
effectively locating integration-level faults in BPEL
programs. In 2012 12th International Conference on
Quality Software (pp. 17-20). IEEE.

Tragatschnig, S., Zdun, U. (2011). Runtime process
adaptation for bpel process execution engines. In 2011
IEEE 15th International Enterprise Distributed Object
Computing Conference Workshops (pp. 155-163). IEEE.

Yongchareon, S., Liu, C., Zhao, X., Yu, J., Ngamakeur, K.,
Xu, J. (2018). Deriving user interface flow models for
artifact-centric business processes. Computers in
Industry, 96, 66-85. ELSEVIER.

Wang, Q., Ying, S., Wen, J., Lv, G. (2012). Policy-based
exception handling for BPEL processes. In 2012 IEEE
International Conference on Information Science and
Technology (pp. 326-331). IEEE.

Wu, L., He, X., Wang, X., Zhang, K., Wang, M. (2022). A
survey on accuracy-oriented neural recommendation:
From collaborative filtering to information-rich
recommendation. IEEE Transactions on Knowledge and
Data Engineering, 35(5), 4425-4445. IEEE.

Zhao, S., Zhang, Q., Peng, Z., & Lu, X. (2020). Personalized
manufacturing service composition recommendation:
combining combinatorial optimization and collaborative
filtering. Journal of Combinatorial Optimization, 40,
733-756. Springer Science+Business Media, LLC.

A User Interface for Tuning QoS Parameters in Recommendation-Based Business Process Scenario Adaptation

421

