
A Stateless Bare PC Web Server

Fahad Alotaibi, Ramesh Karne and Alex Wijesinha
Department of Computer and Information Sciences, Towson University, Towson, MD 21252, U.S.A.

Keywords: Bare PC, Bare Machine Computing, Stateless Server, Multi-Core Processor, Web Server, UDP Protocol.

Abstract: Bare PC Web servers that run on 32-bit or 64-bit machines and use TCP or UDP for transport have been built
previously. This paper describes the design and implementation of a new stateless UDP-based bare PC multi-
core Web server. It also presents performance measurements. The server extends previous server designs with
several novel architectural and protocol enhancements. A load balancing technique suitable for multi-core
servers is included to illustrate a simple way to efficiently process HTTP requests. The architecture presented
here could be adapted in future to build simple conventional Web servers.

1 INTRODUCTION

Conventional Web server designs are complex. Such
servers are architected to make the client design
simple and the server design complex. Previous
approaches to simplify Web server design include use
of UDP-based protocols with a last ACK for a 32-bit
multi-core Web server (Ordouie et al., 2021), a 32-bit
single-core Web server (Soundararajan et al., 2020),
and a 64-bit multi-core Web server with a last ACK
and no last ACK (Ordouie et al., 2023). When there
is no last ACK, all the data packets for an HTTP
request are not sent at one time. Instead, the data file
is split, and a limited amount of data in a small
number of packets is sent at a time to the client. After
receiving these packets, the client makes a new
request to receive the next set of packets. This
approach needs locking and peeking the Ethernet
buffers (that is, looking ahead at packets), which
results in complex synchronization and load
balancing problems. In this paper, the previous
designs are extended by designing and implementing
a simple stateless UDP-based Web server that handles
these problems. Our contributions are as follows.

1. We design and implement a simple and
reliable UDP-protocol for HTTP traffic using bare
machines.

2. We extend previous work on a multi-core
server in (Ordouie et al., 2023) and propose novel
architectural and design specifications that enable
simple load balancing techniques and avoidance of all
locking issues.

3. We conduct experiments to evaluate the
performance of the proposed solution in terms of the
number of requests, CPU utilization, file size
variations, maximum parallel requests, and average
processing time.

4. We describe the design of a bare client that
works with the proposed stateless server.

The rest of the paper is organized as follows.
Section 2 describes the client-server protocol. Section
3 gives an overview of related work. Section 4
discusses architectural and design features of the
server. Section 5 provides implementation details.
Section 6 presents performance results. Section 7
contains the conclusion.

2 CLIENT/SERVER PROTOCOL

The primary goal of this work is to develop a simple
and reliable stateless Web server that uses a UDP-
based protocol for transferring HTTP traffic to bare
clients over a network. This protocol has no relation
to CoAP (Shelby et al., 2014) or QUIC (Iyangar and
Thomson, 2021). Figure 1 shows the message
exchange for the protocol. The client sends an HTTP
GET request to the server for the desired resource file.
Upon receiving the HTTP GET request, the server
responds with a GET-ACK, which includes important
parameters related to the resource file, including file
size and the total number of packets to be sent. The
client now has all the information needed to complete
the transaction.

406
Alotaibi, F., Karne, R. and Wijesinha, A.
A Stateless Bare PC Web Server.
DOI: 10.5220/0012207400003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 406-413
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

Note that the client only sends the HTTP GET
request and the server only responds with GET-ACK,
the HTTP header, and a small number n of data
packets (for example, n may be between 4 and 8). We
chose a small value for n because there is no
automatic retransmission mechanism at the server,
the server is stateless, and it is easier for the client to
make subsequent GET requests instead of the usual
acks for reliability. We use a special 16-byte control
header that is sent with each packet (described later)
that further simplifies the client and server design.

Figure 2 illustrates how to deal with subsequent
packets and lost packets. Here, the client sends a
subsequent GET with a starting packet number and
the server simply sends the data starting with that
packet number. There is no GET-ACK sent for
subsequent requests. While this protocol makes the
server stateless and simple, it requires a moderate
increase in client complexity. This increase is
acceptable because most clients have large memory
and faster processors, and they are already able to
deal with small and large files. One may view the
subsequent GETs as replacing the previous reliability
mechanisms and out-of-order logic for the client. In
this protocol, the client has complete control over its
requests in any order using subsequent GET requests.
Also, the stateless server has significantly less
complexity than a conventional server since it does
not need to keep any state about the request.
Reliability is now primarily handled at the client side.

3 RELATED WORK

The Bare Machine Computing (BMC) paradigm
evolved from the Application-Oriented Architecture
(AOA) (Karne, 1995) and Dispersed Operating
System Computing (DOSC) (Karne et al., 2005).
Previous publications on BMC are at (Karne, n.d.).

Bare applications can run on older or newer x86
and x64 compatible Intel processors. In the BMC
approach, a computing device is made bare, meaning
that it has no OS and no hard disk, and only uses the
BIOS during the boot process. The bare computing
device contains no valuable resources such as code,
data or applications that need to be protected. The
application software is written in C/C++ with a small
amount of assembly code to communicate to
hardware. Application programs directly
communicate with and control the hardware using a
hardware API (HAPI). BMC systems are based on a
single programming environment and are owner
centric. The boot, loader, and interrupt code are
written in assembly. One or more applications can be

Figure 1: Original GET request.

Figure 2: Subsequent GET requests.

compiled as an application suite to generate a single
monolithic executable. This is statically compiled and
linked with no external software or libraries. The
BMC paradigm eliminates all intermediate layers and
middleware enabling applications to be independent
of environments. It has been also used to build
middleboxes and split servers.

Earlier work on a bare PC Web server for a 32-bit
multi-core machine based on TCP (Soundararajan et
al., 2020), and UDP (Soundararajan et al., 2020)
provide details of similar approaches to build Web
servers. Technical details underlying the design of a
64-bit multi-core Web server are given in (Ordouie et
al., 2021). Design issues with a 64-bit CPU
architecture and multiple cores sharing a single
network interface card are discussed in (Ordouie et
al., 2023). A preliminary attempt to migrate a 32-bit
single core Web server to a 64-bit was made in
(Chang et al., 2016). That work used a TCP-based

A Stateless Bare PC Web Server

407

Figure 3: Multi-core server architecture.

server and focused primarily on migration.
Exokernel (Engler, 1998), Microkernel (Odun-

Ayo et al., 2021), Tiny-OS (Levis, 2012), and RIOT
(Baccelli et al., 2013) are a few examples of
approaches to reduce the size and complexity of the
OS or kernel, give more direct hardware access to
applications, move some OS functions into user
space, and bypass the kernel. RDMA is now widely
used in the cloud (Kong et al., 2023), and in view of
the increased support for kernel bypass in data center
servers, (Zhang et al., 2019) propose a library OS
architecture for kernel-bypass devices. These
approaches differ from BMC in that some form of an
OS or kernel is present. Embedded systems that
integrate applications with an operating system or
kernel, and virtualization approaches are also
different from BMC systems.

In a BMC system, conventional OS functions are
not duplicated in an application suite as there is no
centralized OS or kernel running in the system. A
typical OS provides services for all applications,
while a bare machine application suite is designed to
run only a desired set of applications. The bare-to-
bare communication is implemented as application-
to-application avoiding all middle layers. There are
no heterogeneous components, and the application
suite includes the necessary network protocols and
device drivers. An application suite image is typically
very small since BMC systems are designed to be
domain-specific and have only the necessary
functionality. For example, the UDP based stateless
server executable image size is 331,776 bytes.

4 ARCHITECTURE AND DESIGN

4.1 Architecture

Figure 3 shows the overall system architecture of the
bare Web server. The server has four Intel core
processors with 4 GB of memory working
asynchronously and concurrently to process HTTP
requests. We refer to these processors as BSP, AP1,
AP2 and AP3, where the BSP is responsible for
booting and waking up the other cores. The BSP is
also used as a dedicated network processor to send
and receive packets over Ethernet. In this approach,
the other cores do not send and receive packets
directly. Instead, the BSP receives packets and
dispatches them to cores AP1, AP2, and AP3 using
the round robin algorithm. Alternate approaches such
as having all cores peek packets in the Ethernet
buffers are inefficient and complex due to
concurrency control mechanisms (Ordouie et al.,
2023). We note that multi-core architectures typically
focus on thread-level parallelism rather than
networking. Ethernet bonding may be used with
multiple cores to separate receive and send paths
using two network interface cards (NICs) (Almansour
et al., 2018).

In the BMC paradigm, the programmer has total
control over hardware and software, and applications
directly communicate to the hardware through a
direct hardware API (HAPI). There is no middleware
in the bare server. The Ethernet driver is also bare
without any OS or kernel support. This architecture is
based on a shared memory model wherein all cores
have access to main memory. Concurrency control

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

408

problems are avoided by providing circular lists for
input and output packets.

Figure 4: BSP control flow.

When a packet is received by the BSP, it is placed
on a given core’s input circular list. When there are
one or more packets in the input circular list, the
corresponding AP processes the GET request by
removing them from the circular list. Each AP
processes HTTP requests independently without
interfering with the other APs. There is thus HTTP
request-level parallelism implemented in this design.
An AP processes a request without interruption and
then places the data packets in the send circular list.
All data packets for a given resource file are
preformed and kept in memory. Furthermore, each
resource file is divided into packets during
initialization of the server and pre-processed to be
ready to send.

In addition to receiving packets from the Ethernet
buffer, the BSP checks the send circular lists for each
AP to determine if they have one or more packets to
be sent. These packets are inserted into the Ethernet
send buffer one at a time in the order they arrived
from the APs. As all the cores are running
concurrently processing HTTP requests, the single
Ethernet card becomes a bottleneck limiting the
parallelism that can be achieved. In effect, this
bottleneck is the main design issue when
implementing Web servers using a multi-core
architecture. Concurrency is avoided using the send
and receive circular lists for data, and at the Ethernet
level by dedicating the BSP to manage receiving and
sending packets. Otherwise, the Ethernet receive and
transmit buffers must have concurrency control as in
(Ordouie et al., 2023). The stateless server

architecture presented here is novel, simple, and
scalable.

4.2 Processor and Client Control Flow

4.2.1 BSP Control Flow

The control flow shown in Figure 4 illustrates the
processing logic for the BSP, which has a loop that
consists of receive and send controls. The receive
control checks whether a packet is ready to be
received from the Ethernet buffers. There are a total
of 4096 circular list entries in the bare driver model.
The BSP program directly accesses the Ethernet
receive buffer entry by checking the DD (device
done) bit set and reads the packet into a receive
buffer. This packet is allocated to AP1, AP2, or AP3
using round robin by inserting it in the appropriate
receive circular lists for the APs. Similarly, send
control checks if there are one or more packets in the
send circular list. If so, it gets the packet for the list
and inserts it into the Ethernet send buffer. As noted
earlier, the BMC programmer’s code has complete
control over the Ethernet driver and related hardware.

4.2.2 AP Control Flow

AP control flow is shown in Figure 5. After an AP has
been woken up by the BSP, it remains in a loop to
process HTTP requests. It does this by checking if
there are one or more packets in the receive circular
list and then processing them in order. If there is a
GET request to be processed, it calls the RCVCall
function. These requests could be either original
GETs or subsequent GETs received from the client.
The RCVCall function calls the IP Handler, which
then calls the UDP handler. At each stage, the
appropriate headers are checked and validated.

The UDP handler plays an important role in AP
processing. Its logic is different for regular and
subsequent GETs. For regular GETs, it needs to send
a specific number (n) of packets for a given resource
file. For subsequent GETs, it must send appropriate
packets beginning with a starting number requested
by the client. In either case, the UDP handler calls the
IP handler with the appropriate number of packets of
data to be sent. The IP handler inserts the packets into
the corresponding send circular lists for the APs. The
above control flows for the APs are executed as a
single thread of execution without interruption. As
each HTTP request is independent of other requests,
this control flow is simple and applicable to all of
them.

A Stateless Bare PC Web Server

409

Figure 5: AP control flow.

Figure 6: Client’s send control flow.

Figure 7: (a) Data header (b) Tail of GET packet.

4.2.3 Client Control Flow

The bare UDP client is used to perform testing and
measure performance of the stateless server. Stateless
server design impacts the client. The client sends
GETs on a periodic basis to the server. This period is

characterized by the two parameters frequency and
maxreq as shown in Fig. 6. These parameters
determine the request rate. For example, if frequency
and maxreq values are 9 and 8 respectively, then every
9 units of time, 8 requests will be sent to the server.
Each unit of time in our design is 1/4 milliseconds, as
defined by the timer period. The 9 units of time
amounts to 9/4 = 2.25 milliseconds. Thus, (8/2.25) x
1000 = 3555 requests per second will be sent to the
server.

The client logic for received packets is as follows.
The client uses port numbers to index requests and
maintains the state of requests in a data structure. The
state of a request is updated when a new packet arrives
and when all data arrivals are complete. Each data
packet coming from the server has a data header of 16
bytes. Using this header as control information in the
client design makes the logic simpler for
implementation. In this header, the packet state
inserted by the server indicates the type of packet sent
to the client. The client uses the packet state to trigger
processing of a given response packet from the server.

There are five states named Get Ack, Header, Data
Part, Last Data, and Last Data Now (corresponding
respectively to type values 0x31, 0x32, 0x33, 0x34,
0x88). When a packet of type Get Ack, Header, or
Data Part arrives, it updates the linear list structures
and returns to the caller. When Last Data arrives, it
updates the data count and if all data has arrived, it
deletes the entry in the linear list. The Last Data Now
state indicates that only partial data was sent, which is
limited by the number of packets n that can be sent at
a time for a given request. In this case, the client must
send the next GET with a starting packet number to
receive subsequent sets of data or for requesting lost
packets.

5 IMPLEMENTATION

The server and client are implemented using C/C++
code. All circular lists referred to in the previous
section are designed and implemented using C++
classes. A stack structure is used to store request ids
for HTTP requests. The stack is initialized with
numbers 1–5000 at the start of the program. When a
packet arrives in the BSP, a request id is popped from
the stack. When a request is complete, the request id
is pushed back onto the stack. The maximum number
of request ids used indicates the maximum
parallelism achievable in the system. Each core also
has a core id of 0, 1, 2, 3 (corresponding respectively
BSP, AP1, AP2, AP3). The cores AP1, AP2, AP3 are
symmetrical. That is, any AP can process any request

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

410

or any subsequent request. There are many new
design features in the stateless server that makes the
implementation simple and results in a small code
size image as noted before. The 16-byte data header
plays an important role in the design. Its details are
shown in Fig. 7 (a). In addition, the tail data of a GET
request also has some control information which is
used at the server and simplifies the server design for
subsequent requests. This data has no relation to the
HTML data. The state tag value 0x88 (Last Data
Now) is used for larger files.

As indicated in the client design, the state field
also makes the client implementation simpler. The
request number and core id fields helped to test and
debug problems at the server related to identifying
requests processed by the corresponding cores. The
total bytes field is used in Get Ack to indicate the total
bytes for a given resource file. The same field is used
for packet size in data packets to indicate the current
size of the packet. The packet number field is used in
Get Ack as the total number of packets for the request.
The same field is used as the number of packets when
transmitting data packets. In addition, we also added
4 optional characters to GET and subsequent GET
requests at the client as shown in Figure 7(b). For
initial GET requests the code is 0x9999, and for
subsequent GETs the code is a starting packet
number. These values are parsed by the server and
used in the control logic to simplify the server code.

6 PERFORMANCE RESULTS

The tests were done in a LAN using a gigabit Ethernet
switch, a 4-core Dell Optiplex 9010 desktop as the
bare server, and four Dell Optiplex 260 desktops as
bare clients. We connected 1-4 bare PC clients, where
each client can serve up to a maximum of 3555
requests per second. The clients send requests for file
sizes of 4K through 128K. The parameter N = 1, 2, 4,
8, 16, 32 is used to vary file sizes from 4K to 128K.
The results that follow are based on measurements
collected over a 15-minute period. These results are
preliminary, and more tests need to be conducted in
an Internet environment to validate the design and
identify any issues. We have also not considered
security issues such as server authentication, and
encryption and integrity protection for data packets.

Figure 8: Performance (number of requests).

6.1 Varying the Number of Cores

The graph in Figure 8 shows the number of requests
when varying the number of cores (1, 2 or 3) with a
fixed file size of 4K. Here, the one core model used
three clients (3555, 3555, 2500 requests) with a total
of 9610 requests/sec to generate the maximum load,
the two-core model used four clients (3555, 3555,
3555, 1000 requests) with a total of 11,665
requests/sec to generate the maximum load, and the
three-core model used four clients (3555, 3555, 3555,
3200 requests/sec) with a total of 13,865 requests/sec
to generate the maximum load. These numbers show
the maximum capacity of the server with stable
operation.

Figure 9: Performance (CPU utilization).

The BSP core is only used for network operations
and is not involved in processing HTTP requests. The
results indicate that for 1 to 2 cores, the performance
increased by 21.5%, and for 1 to 3 cores by 44.7%.
This clearly indicates that the speedup is not linear
with respect to adding more cores to process HTTP
requests. The reason for this low speedup is due to a
single network card for multiple cores becoming a
bottleneck when processing multiple HTTP requests
concurrently. Since HTTP processing is a network-

A Stateless Bare PC Web Server

411

based application, thread-level and application-level
parallelism could not be exploited.

Figure 10: Max parallel and send list size.

Figure 9 shows CPU utilization for a 4K resource
file using the preceding measurement parameters.
CPU utilization is measured by using the rdtsc
assembly instruction that gives clock ticks. The clock
frequency for the OptiPlex 9010 is 3.4 GHz. The
clock tick for this model is (1/ (3.4*10^9)), which is
roughly 296 picoseconds. It is seen that BSP
utilization reaches 87% with all cores running in the
system. Because the APs are not fully utilized in all
three models (2, 3 or 4 cores), it limits the speedup in
this system. To achieve scalable performance, all
cores must be fully utilized. This not possible with
one network card as noted above.

6.2 Max Parallel and Send List Size

The BSP receives packets from the Ethernet buffer
and distributes them to the other cores. There is one
input circular list and one output circular list for each
AP. We measured the queue sizes for these lists using
the same parameters as above. The maximum number
of request ids indicates the maximum number of
parallel requests (max parallel) processed at a given
time. The input circular list measurements show that
there were 1 or 2 requests waiting at a given point.

The cores were free to handle the input circular
list without waiting. Max parallel and max send list
size were measured when the number of requests is
varied in the system by using multiple clients. As seen
in Figure 10, max parallel shows a range of 7 to 16,
which indicates that at one point there were 16
requests outstanding in the system. Similarly, max
send list sizes range from 9 to 24 showing there was
a maximum of 24 packets in the send circular list
waiting to be sent to the Ethernet. As these numbers

are small, they show that the APs and their circular
lists were not fully utilized.

Figure 11: Varying file size.

6.3 Varying the File Size

Figure 11 shows the total number of requests when
varying the file size. It is seen that when the resource
file size increases, there are more packets and it takes
a longer amount of time, thus limiting the number of
requests. For the 16K file size, all models (1, 2 or 3
cores) behave the same as they are limited by the
network rather than the capacity of the cores. The
number of requests has dropped dramatically
indicating the limit of this server with a single
network card.

6.4 Client Processing Time

Figure 12: Processing time at client.

Figure 12 shows the average processing time on the
client side when the load is varied at the server using
multiple clients. The average processing time at
clients varies between 500 to 941 milliseconds.
However, the average processing time for requests
measured at the server is only 27 milliseconds. This
is because at the server, we only measured the
processing time until the packets were inserted into

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

412

the send buffer, which does not include actual
transmission at the Ethernet level. The average
processing time for requests at the client reflects the
actual processing time and it shows how the server
performs with an increased load.

7 CONCLUSION

We described the design and implementation of a
novel stateless 64-bit multi-core Web server that runs
on a bare machine. One core handles networking
while other cores process the HTTP requests. The
server communicates with bare machine clients using
a simple UDP-based protocol that is easy to
implement. We also gave a brief overview of the
client design.

A key aspect of the protocol is the use of a 16-byte
data control header with fields specifically designed
to simplify client-server communication. The server
architecture avoids concurrency controls by using
buffers at the receiving and sending ends. The receive
circular list did not affect the results. The send
circular list showed a varying number of packets
(maximum of 24) waiting to be sent depending on the
server load. The measured concurrency in the system
shows reasonable parallelism (maximum of 16). The
use of a dedicated core for networking enables
multiple cores to be used efficiently to implement the
Web server application.

We identified the single network interface card as
the main bottleneck in processing requests in multi-
core processors. The performance measurements
indicate that there is no linear speedup gained by
using multiple cores for processing because the
network interface is the bottleneck. Future studies
could investigate the use of multiple on-board NIC
interfaces or chips for multi-core processors.

REFERENCES

Ordouie, N., Soundararajan, N., Karne, R., and Wijesinha,
A. L. (2021). Developing Computer Applications
without any OS or Kernel in a Multi-core Architecture.
International Symposium on Networks, Computers and
Communications (ISNCC).

Soundararajan, N., Karne, R. K., Wijesinha, A. L., Ordouie,
N., and Rawal, B. S. (2020). A Novel Client/Server
Protocol for Web-based Communication over UDP on
a Bare Machine. 18th Student Conference on Research
and Development (SCOReD).

Ordouie, N., Karne, R., Wijesinha, A. and Soundararajan,
N. (2023). A Simple UDP-Based Web Server on a Bare
PC with 64-bit Multi-core Processors: Design and

Implementation. 2023 International Conference on
Computing, Networking and Communications (ICNC).

Karne, R. K. (1995). Object-oriented Computer
Architectures for New Generation of Applications.
Computer Architecture News, Vol. 23, No. 5.

Karne, R. K., Jaganathan, K. V., Ahmed, T., and Rosa, N.
(2005). DOSC: Dispersed Operating System
Computing. 20th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Onward Track.

Karne, R. (n.d.). Bare Machine Computing,
http://orion.towson.edu/~karne/dosc/pubs.htm.
Accessed July 3, 2023.

Soundararajan, N., Karne, R., Wijesinha, A., Ordouie, N.,
and Chang, H. (2020). Design Issues in Running a Web
Server on Bare PC Multi-core Architecture. 44th
Annual Computers, Software, and Applications
Conference (COMPSAC).

Chang, H., Karne, R. K., and Wijesinha, A. (2016).
Migrating a Bare PC Web Server to a Multi-core
Architecture. 40th Annual International Computer
Software and Applications Conference (COMPSAC).

Engler, D. R. (1998). The Exokernel Operating System
Architecture. Ph.D. thesis, MIT.

Odun-Ayo, I., Okokpujie, K., Akinwumi, H., Juwe, J.,
Otunuya, H., and Oladapo, A. (2021). An Overview of
Microkernel Based Operating Systems. IOP
Conference Series: Materials Science and Engineering,
1107 012052, 2021.

Levis, P., (2012). Experiences from a Decade of TinyOS
Development. 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12).

Baccelli, E., Hahm, O. Gunes, M., Wahlisch, M., and
Schmidt, T. C. (2013). RIOT OS: Towards an OS for
the Internet of Things. 2013 IEEE Conference on
Computer Communications Workshops (INFOCOM
WKSHPS).

Almansour, F., Karne, R. K., Wijesinha, A. L., and Rawal,
B. (2018). Ethernet Bonding on a Bare PC Webserver
with Dual NICs. 33rd ACM/SIGAPP Symposium on
Applied Computing (SAC).

Shelby, Z., Hartke, K., and Bormann, C. (2014). The
Constrained Application Protocol (CoAP). RFC 7252.

Iyengar, J., and Thomson, M. (2021). QUIC: A UDP-Based
Multiplexed and Secure Transport, RFC 9000.

Kong, X., Chen, J., Bai, W., Xu, Y., Elhaddad, M., Raindel,
S., Padhye, J., Lebeck, A. R., and Zhuo, D. (2023).
Understanding RDMA Microarchitecture Resources
for Performance Isolation. 20th USENIX Symposium
on Networked Systems Design and Implementation.

Zhang, I. Liu, J., Austin, A., Roberts, M. L., and Badam, A.
(2019). I’m Not Dead Yet! The Role of the Operating
System in a Kernel-Bypass Era. 17th Workshop on Hot
Topics in Operating Systems (HotOS ’19).

A Stateless Bare PC Web Server

413

