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Abstract: Bare PC Web servers that run on 32-bit or 64-bit machines and use TCP or UDP for transport have been built 
previously. This paper describes the design and implementation of a new stateless UDP-based bare PC multi-
core Web server. It also presents performance measurements. The server extends previous server designs with 
several novel architectural and protocol enhancements. A load balancing technique suitable for multi-core 
servers is included to illustrate a simple way to efficiently process HTTP requests. The architecture presented 
here could be adapted in future to build simple conventional Web servers. 

1 INTRODUCTION 

Conventional Web server designs are complex. Such 
servers are architected to make the client design 
simple and the server design complex. Previous 
approaches to simplify Web server design include use 
of UDP-based protocols with a last ACK for a 32-bit 
multi-core Web server (Ordouie et al., 2021), a 32-bit 
single-core Web server (Soundararajan et al., 2020), 
and a 64-bit multi-core Web server with a last ACK 
and no last ACK (Ordouie et al., 2023). When there 
is no last ACK, all the data packets for an HTTP 
request are not sent at one time. Instead, the data file 
is split, and a limited amount of data in a small 
number of packets is sent at a time to the client. After 
receiving these packets, the client makes a new 
request to receive the next set of packets. This 
approach needs locking and peeking the Ethernet 
buffers (that is, looking ahead at packets), which 
results in complex synchronization and load 
balancing problems. In this paper, the previous 
designs are extended by designing and implementing 
a simple stateless UDP-based Web server that handles 
these problems. Our contributions are as follows. 

1. We design and implement a simple and 
reliable UDP-protocol for HTTP traffic using bare 
machines.  

2. We extend previous work on a multi-core 
server in (Ordouie et al., 2023) and propose novel 
architectural and design specifications that enable 
simple load balancing techniques and avoidance of all 
locking issues. 

3. We conduct experiments to evaluate the 
performance of the proposed solution in terms of the 
number of requests, CPU utilization, file size 
variations, maximum parallel requests, and average 
processing time. 

4. We describe the design of a bare client that 
works with the proposed stateless server.  

The rest of the paper is organized as follows. 
Section 2 describes the client-server protocol. Section 
3 gives an overview of related work. Section 4 
discusses architectural and design features of the 
server. Section 5 provides implementation details. 
Section 6 presents performance results. Section 7 
contains the conclusion. 

2 CLIENT/SERVER PROTOCOL 

The primary goal of this work is to develop a simple 
and reliable stateless Web server that uses a UDP-
based protocol for transferring HTTP traffic to bare 
clients over a network. This protocol has no relation 
to CoAP (Shelby et al., 2014) or QUIC (Iyangar and 
Thomson, 2021). Figure 1 shows the message 
exchange for the protocol. The client sends an HTTP 
GET request to the server for the desired resource file. 
Upon receiving the HTTP GET request, the server 
responds with a GET-ACK, which includes important 
parameters related to the resource file, including file 
size and the total number of packets to be sent. The 
client now has all the information needed to complete 
the transaction.  
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Note that the client only sends the HTTP GET 
request and the server only responds with GET-ACK, 
the HTTP header, and a small number n of data 
packets (for example, n may be between 4 and 8). We 
chose a small value for n because there is no 
automatic retransmission mechanism at the server, 
the server is stateless, and it is easier for the client to 
make subsequent GET requests instead of the usual 
acks for reliability. We use a special 16-byte control 
header that is sent with each packet (described later) 
that further simplifies the client and server design. 

Figure 2 illustrates how to deal with subsequent 
packets and lost packets. Here, the client sends a 
subsequent GET with a starting packet number and 
the server simply sends the data starting with that 
packet number. There is no GET-ACK sent for 
subsequent requests. While this protocol makes the 
server stateless and simple, it requires a moderate 
increase in client complexity. This increase is 
acceptable because most clients have large memory 
and faster processors, and they are already able to 
deal with small and large files. One may view the 
subsequent GETs as replacing the previous reliability 
mechanisms and out-of-order logic for the client. In 
this protocol, the client has complete control over its 
requests in any order using subsequent GET requests. 
Also, the stateless server has significantly less 
complexity than a conventional server since it does 
not need to keep any state about the request. 
Reliability is now primarily handled at the client side. 

3 RELATED WORK 

The Bare Machine Computing (BMC) paradigm 
evolved from the Application-Oriented Architecture 
(AOA) (Karne, 1995) and Dispersed Operating 
System Computing (DOSC) (Karne et al., 2005). 
Previous publications on BMC are at (Karne, n.d.). 

Bare applications can run on older or newer x86 
and x64 compatible Intel processors. In the BMC 
approach, a computing device is made bare, meaning 
that it has no OS and no hard disk, and only uses the 
BIOS during the boot process. The bare computing 
device contains no valuable resources such as code, 
data or applications that need to be protected. The 
application software is written in C/C++ with a small 
amount of assembly code to communicate to 
hardware. Application programs directly 
communicate with and control the hardware using a 
hardware API (HAPI). BMC systems are based on a 
single programming environment and are owner 
centric. The boot, loader, and interrupt code are 
written in assembly. One or more applications can be 

 
Figure 1: Original GET request. 

 
Figure 2: Subsequent GET requests. 

compiled as an application suite to generate a single 
monolithic executable. This is statically compiled and 
linked with no external software or libraries. The 
BMC paradigm eliminates all intermediate layers and 
middleware enabling applications to be independent 
of environments. It has been also used to build 
middleboxes and split servers. 

Earlier work on a bare PC Web server for a 32-bit 
multi-core machine based on TCP (Soundararajan et 
al., 2020), and UDP (Soundararajan et al., 2020) 
provide details of similar approaches to build Web 
servers. Technical details underlying the design of a 
64-bit multi-core Web server are given in (Ordouie et 
al., 2021). Design issues with a 64-bit CPU 
architecture and multiple cores sharing a single 
network interface card are discussed in (Ordouie et 
al., 2023). A preliminary attempt to migrate a 32-bit 
single core Web server to a 64-bit was made in 
(Chang et al.,  2016).  That  work  used  a  TCP-based  
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Figure 3: Multi-core server architecture.

server and focused primarily on migration. 
Exokernel (Engler, 1998), Microkernel (Odun-

Ayo et al., 2021), Tiny-OS (Levis, 2012), and RIOT 
(Baccelli et al., 2013) are a few examples of 
approaches to reduce the size and complexity of the 
OS or kernel, give more direct hardware access to 
applications, move some OS functions into user 
space, and bypass the kernel. RDMA is now widely 
used in the cloud (Kong et al., 2023), and in view of 
the increased support for kernel bypass in data center 
servers, (Zhang et al., 2019) propose a library OS 
architecture for kernel-bypass devices. These 
approaches differ from BMC in that some form of an 
OS or kernel is present. Embedded systems that 
integrate applications with an operating system or 
kernel, and virtualization approaches are also 
different from BMC systems. 

In a BMC system, conventional OS functions are 
not duplicated in an application suite as there is no 
centralized OS or kernel running in the system. A 
typical OS provides services for all applications, 
while a bare machine application suite is designed to 
run only a desired set of applications. The bare-to-
bare communication is implemented as application-
to-application avoiding all middle layers. There are 
no heterogeneous components, and the application 
suite includes the necessary network protocols and 
device drivers. An application suite image is typically 
very small since BMC systems are designed to be 
domain-specific and have only the necessary 
functionality. For example, the UDP based stateless 
server executable image size is 331,776 bytes.  

 
 

4 ARCHITECTURE AND DESIGN 

4.1 Architecture 

Figure 3 shows the overall system architecture of the 
bare Web server. The server has four Intel core 
processors with 4 GB of memory working 
asynchronously and concurrently to process HTTP 
requests. We refer to these processors as BSP, AP1, 
AP2 and AP3, where the BSP is responsible for 
booting and waking up the other cores. The BSP is 
also used as a dedicated network processor to send 
and receive packets over Ethernet. In this approach, 
the other cores do not send and receive packets 
directly. Instead, the BSP receives packets and 
dispatches them to cores AP1, AP2, and AP3 using 
the round robin algorithm. Alternate approaches such 
as having all cores peek packets in the Ethernet 
buffers are inefficient and complex due to 
concurrency control mechanisms (Ordouie et al., 
2023). We note that multi-core architectures typically 
focus on thread-level parallelism rather than 
networking. Ethernet bonding may be used with 
multiple cores to separate receive and send paths 
using two network interface cards (NICs) (Almansour 
et al., 2018). 

In the BMC paradigm, the programmer has total 
control over hardware and software, and applications 
directly communicate to the hardware through a 
direct hardware API (HAPI). There is no middleware 
in the bare server. The Ethernet driver is also bare 
without any OS or kernel support. This architecture is 
based on a shared memory model wherein all cores 
have access to main memory. Concurrency control 
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problems are avoided by providing circular lists for 
input and output packets.  

 
Figure 4: BSP control flow. 

When a packet is received by the BSP, it is placed 
on a given core’s input circular list. When there are 
one or more packets in the input circular list, the 
corresponding AP processes the GET request by 
removing them from the circular list. Each AP 
processes HTTP requests independently without 
interfering with the other APs. There is thus HTTP 
request-level parallelism implemented in this design. 
An AP processes a request without interruption and 
then places the data packets in the send circular list. 
All data packets for a given resource file are 
preformed and kept in memory. Furthermore, each 
resource file is divided into packets during 
initialization of the server and pre-processed to be 
ready to send.  

In addition to receiving packets from the Ethernet 
buffer, the BSP checks the send circular lists for each 
AP to determine if they have one or more packets to 
be sent. These packets are inserted into the Ethernet 
send buffer one at a time in the order they arrived 
from the APs. As all the cores are running 
concurrently processing HTTP requests, the single 
Ethernet card becomes a bottleneck limiting the 
parallelism that can be achieved. In effect, this 
bottleneck is the main design issue when 
implementing Web servers using a multi-core 
architecture. Concurrency is avoided using the send 
and receive circular lists for data, and at the Ethernet 
level by dedicating the BSP to manage receiving and 
sending packets. Otherwise, the Ethernet receive and 
transmit buffers must have concurrency control as in 
(Ordouie et al., 2023). The stateless server 

architecture presented here is novel, simple, and 
scalable. 

4.2 Processor and Client Control Flow 

4.2.1 BSP Control Flow 

The control flow shown in Figure 4 illustrates the 
processing logic for the BSP, which has a loop that 
consists of receive and send controls. The receive 
control checks whether a packet is ready to be 
received from the Ethernet buffers. There are a total 
of 4096 circular list entries in the bare driver model. 
The BSP program directly accesses the Ethernet 
receive buffer entry by checking the DD (device 
done) bit set and reads the packet into a receive 
buffer. This packet is allocated to AP1, AP2, or AP3 
using round robin by inserting it in the appropriate 
receive circular lists for the APs. Similarly, send 
control checks if there are one or more packets in the 
send circular list. If so, it gets the packet for the list 
and inserts it into the Ethernet send buffer. As noted 
earlier, the BMC programmer’s code has complete 
control over the Ethernet driver and related hardware. 

4.2.2 AP Control Flow 

AP control flow is shown in Figure 5. After an AP has 
been woken up by the BSP, it remains in a loop to 
process HTTP requests. It does this by checking if 
there are one or more packets in the receive circular 
list and then processing them in order. If there is a 
GET request to be processed, it calls the RCVCall 
function. These requests could be either original 
GETs or subsequent GETs received from the client. 
The RCVCall function calls the IP Handler, which 
then calls the UDP handler. At each stage, the 
appropriate headers are checked and validated.  

The UDP handler plays an important role in AP 
processing. Its logic is different for regular and 
subsequent GETs. For regular GETs, it needs to send 
a specific number (n) of packets for a given resource 
file. For subsequent GETs, it must send appropriate 
packets beginning with a starting number requested 
by the client. In either case, the UDP handler calls the 
IP handler with the appropriate number of packets of 
data to be sent. The IP handler inserts the packets into 
the corresponding send circular lists for the APs. The 
above control flows for the APs are executed as a 
single thread of execution without interruption. As 
each HTTP request is independent of other requests, 
this control flow is simple and applicable to all of 
them. 
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Figure 5: AP control flow. 

 
Figure 6: Client’s send control flow. 

 

Figure 7: (a) Data header (b) Tail of GET packet. 

4.2.3 Client Control Flow 

The bare UDP client is used to perform testing and 
measure performance of the stateless server. Stateless 
server design impacts the client. The client sends 
GETs on a periodic basis to the server. This period is 

characterized by the two parameters frequency and 
maxreq as shown in Fig. 6. These parameters 
determine the request rate. For example, if frequency 
and maxreq values are 9 and 8 respectively, then every 
9 units of time, 8 requests will be sent to the server. 
Each unit of time in our design is 1/4 milliseconds, as 
defined by the timer period. The 9 units of time 
amounts to 9/4 = 2.25 milliseconds. Thus, (8/2.25) x 
1000 = 3555 requests per second will be sent to the 
server. 

The client logic for received packets is as follows. 
The client uses port numbers to index requests and 
maintains the state of requests in a data structure. The 
state of a request is updated when a new packet arrives 
and when all data arrivals are complete. Each data 
packet coming from the server has a data header of 16 
bytes. Using this header as control information in the 
client design makes the logic simpler for 
implementation. In this header, the packet state 
inserted by the server indicates the type of packet sent 
to the client. The client uses the packet state to trigger 
processing of a given response packet from the server.  

There are five states named Get Ack, Header, Data 
Part, Last Data, and Last Data Now (corresponding 
respectively to type values 0x31, 0x32, 0x33, 0x34, 
0x88). When a packet of type Get Ack, Header, or 
Data Part arrives, it updates the linear list structures 
and returns to the caller. When Last Data arrives, it 
updates the data count and if all data has arrived, it 
deletes the entry in the linear list. The Last Data Now 
state indicates that only partial data was sent, which is 
limited by the number of packets n that can be sent at 
a time for a given request. In this case, the client must 
send the next GET with a starting packet number to 
receive subsequent sets of data or for requesting lost 
packets. 

5 IMPLEMENTATION 

The server and client are implemented using C/C++ 
code. All circular lists referred to in the previous 
section are designed and implemented using C++ 
classes. A stack structure is used to store request ids 
for HTTP requests. The stack is initialized with 
numbers 1–5000 at the start of the program. When a 
packet arrives in the BSP, a request id is popped from 
the stack. When a request is complete, the request id 
is pushed back onto the stack. The maximum number 
of request ids used indicates the maximum 
parallelism achievable in the system. Each core also 
has a core id of 0, 1, 2, 3 (corresponding respectively 
BSP, AP1, AP2, AP3). The cores AP1, AP2, AP3 are 
symmetrical. That is, any AP can process any request 
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or any subsequent request. There are many new 
design features in the stateless server that makes the 
implementation simple and results in a small code 
size image as noted before. The 16-byte data header 
plays an important role in the design. Its details are 
shown in Fig. 7 (a). In addition, the tail data of a GET 
request also has some control information which is 
used at the server and simplifies the server design for 
subsequent requests. This data has no relation to the 
HTML data. The state tag value 0x88 (Last Data 
Now) is used for larger files.  

As indicated in the client design, the state field 
also makes the client implementation simpler. The 
request number and core id fields helped to test and 
debug problems at the server related to identifying 
requests processed by the corresponding cores. The 
total bytes field is used in Get Ack to indicate the total 
bytes for a given resource file. The same field is used 
for packet size in data packets to indicate the current 
size of the packet. The packet number field is used in 
Get Ack as the total number of packets for the request. 
The same field is used as the number of packets when 
transmitting data packets. In addition, we also added 
4 optional characters to GET and subsequent GET 
requests at the client as shown in Figure 7(b).  For 
initial GET requests the code is 0x9999, and for 
subsequent GETs the code is a starting packet 
number. These values are parsed by the server and 
used in the control logic to simplify the server code. 

6 PERFORMANCE RESULTS 

The tests were done in a LAN using a gigabit Ethernet 
switch, a 4-core Dell Optiplex 9010 desktop as the 
bare server, and four Dell Optiplex 260 desktops as 
bare clients. We connected 1-4 bare PC clients, where 
each client can serve up to a maximum of 3555 
requests per second. The clients send requests for file 
sizes of 4K through 128K. The parameter N = 1, 2, 4, 
8, 16, 32 is used to vary file sizes from 4K to 128K. 
The results that follow are based on measurements 
collected over a 15-minute period. These results are 
preliminary, and more tests need to be conducted in 
an Internet environment to validate the design and 
identify any issues. We have also not considered 
security issues such as server authentication, and 
encryption and integrity protection for data packets. 

 
Figure 8: Performance (number of requests). 

6.1 Varying the Number of Cores 

The graph in Figure 8 shows the number of requests 
when varying the number of cores (1, 2 or 3) with a 
fixed file size of 4K. Here, the one core model used 
three clients (3555, 3555, 2500 requests) with a total 
of 9610 requests/sec to generate the maximum load, 
the two-core model used four clients (3555, 3555, 
3555, 1000 requests) with a total of 11,665 
requests/sec to generate the maximum load, and the 
three-core model used four clients (3555, 3555, 3555, 
3200 requests/sec) with a total of 13,865 requests/sec 
to generate the maximum load. These numbers show 
the maximum capacity of the server with stable 
operation.  

 
Figure 9: Performance (CPU utilization). 

The BSP core is only used for network operations 
and is not involved in processing HTTP requests. The 
results indicate that for 1 to 2 cores, the performance 
increased by 21.5%, and for 1 to 3 cores by 44.7%. 
This clearly indicates that the speedup is not linear 
with respect to adding more cores to process HTTP 
requests. The reason for this low speedup is due to a 
single network card for multiple cores becoming a 
bottleneck when processing multiple HTTP requests 
concurrently. Since HTTP processing is a network-
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based application, thread-level and application-level 
parallelism could not be exploited. 

 
Figure 10: Max parallel and send list size. 

Figure 9 shows CPU utilization for a 4K resource 
file using the preceding measurement parameters. 
CPU utilization is measured by using the rdtsc 
assembly instruction that gives clock ticks. The clock 
frequency for the OptiPlex 9010 is 3.4 GHz.  The 
clock tick for this model is (1/ (3.4*10^9)), which is 
roughly 296 picoseconds. It is seen that BSP 
utilization reaches 87% with all cores running in the 
system. Because the APs are not fully utilized in all 
three models (2, 3 or 4 cores), it limits the speedup in 
this system. To achieve scalable performance, all 
cores must be fully utilized. This not possible with 
one network card as noted above. 

6.2 Max Parallel and Send List Size 

The BSP receives packets from the Ethernet buffer 
and distributes them to the other cores. There is one 
input circular list and one output circular list for each 
AP. We measured the queue sizes for these lists using 
the same parameters as above. The maximum number 
of request ids indicates the maximum number of 
parallel requests (max parallel) processed at a given 
time. The input circular list measurements show that 
there were 1 or 2 requests waiting at a given point.  

The cores were free to handle the input circular 
list without waiting. Max parallel and max send list 
size were measured when the number of requests is 
varied in the system by using multiple clients. As seen 
in Figure 10, max parallel shows a range of 7 to 16, 
which indicates that at one point there were 16 
requests outstanding in the system. Similarly, max 
send list sizes range from 9 to 24 showing there was 
a maximum of 24 packets in the send circular list 
waiting to be sent to the Ethernet. As these numbers  

are small, they show that the APs and their circular 
lists were not fully utilized. 

 
Figure 11: Varying file size. 

6.3 Varying the File Size 

Figure 11 shows the total number of requests when 
varying the file size. It is seen that when the resource 
file size increases, there are more packets and it takes 
a longer amount of time, thus limiting the number of 
requests. For the 16K file size, all models (1, 2 or 3 
cores) behave the same as they are limited by the 
network rather than the capacity of the cores. The 
number of requests has dropped dramatically 
indicating the limit of this server with a single 
network card. 

6.4 Client Processing Time 

 
Figure 12: Processing time at client. 

Figure 12 shows the average processing time on the 
client side when the load is varied at the server using 
multiple clients. The average processing time at 
clients varies between 500 to 941 milliseconds. 
However, the average processing time for requests 
measured at the server is only 27 milliseconds. This 
is because at the server, we only measured the 
processing time until the packets were inserted into 
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the send buffer, which does not include actual 
transmission at the Ethernet level. The average 
processing time for requests at the client reflects the 
actual processing time and it shows how the server 
performs with an increased load. 

7 CONCLUSION 

We described the design and implementation of a 
novel stateless 64-bit multi-core Web server that runs 
on a bare machine. One core handles networking 
while other cores process the HTTP requests. The 
server communicates with bare machine clients using 
a simple UDP-based protocol that is easy to 
implement. We also gave a brief overview of the 
client design.  

A key aspect of the protocol is the use of a 16-byte 
data control header with fields specifically designed 
to simplify client-server communication. The server 
architecture avoids concurrency controls by using 
buffers at the receiving and sending ends. The receive 
circular list did not affect the results. The send 
circular list showed a varying number of packets 
(maximum of 24) waiting to be sent depending on the 
server load. The measured concurrency in the system 
shows reasonable parallelism (maximum of 16). The 
use of a dedicated core for networking enables 
multiple cores to be used efficiently to implement the 
Web server application. 

We identified the single network interface card as 
the main bottleneck in processing requests in multi-
core processors. The performance measurements 
indicate that there is no linear speedup gained by 
using multiple cores for processing because the 
network interface is the bottleneck. Future studies 
could investigate the use of multiple on-board NIC 
interfaces or chips for multi-core processors. 
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