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Abstract: With WebAssembly, a new web technology has been developed that allows compiled bytecode to be executed
directly in the browser, which, unlike JavaScript code, does not have to be initially compiled by the browser
and can therefore be executed faster. This allows the development of complex web applications. A challenge
for these complex web applications is the increasing importance of mobile devices and their limited battery
capacity. The goal of this study is to determine whether the energy consumption of web applications can
be reduced by using WebAssembly instead of JavaScript. For this purpose, an automated experiment was
performed on Android smartphones with different algorithms using WebAssembly and JavaScript using com-
mon browsers. The energy consumption was measured hardware-based with the Monsoon HVPM measuring
device. The results show that WebAssembly consumes about 20% to 30% less energy than JavaScript. In
addition, differences between the two tested browsers, Chrome and Firefox, in the energy consumption of
JavaScript and WebAssembly were found. This potential reduction of energy consumption also allows to re-
duce the user’s CO2 footprint. The flexible study design used, allows for further investigations with other
types of devices and other compilers.

1 INTRODUCTION

Applications are being increasingly developed as
browser-based web applications to achieve a con-
sistent user experience between different platforms,
such as smartphones, tablets and desktops. New web
technologies are continuously emerging and being
standardized, making the browser an attractive tar-
get for modern application development. WebAssem-
bly (Wasm) is one of these technologies, which al-
lows compiled bytecode to be executed within the
browser, unlike JavaScript (JS) code, which must be
processed by an interpreter and just-in-time compiler
when called.

A promised advantage of Wasm is its ability
to achieve near-native performance, when execut-
ing computationally intensive or performance-critical
code. In addition, existing code, created in pro-
gramming languages such as C/C++ or Rust, can
be compiled into Wasm and thus executed in the
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browser (Mozilla Developer Network, 2022). This
highly increases the portability of existing codebases.

The battery capacity of mobile devices is a sig-
nificant factor that can limit the user experience of
modern web applications. This is especially true for
resource-intensive use cases such as machine learn-
ing, games, and virtual or augmented reality experi-
ences. Given the key attributes of Wasm, we state
the hypothesis, that Wasm could be used as a substi-
tute to JS for demanding workloads and, as a result,
make web applications more energy efficient. To test
this hypothesis, this study has defined the following
research questions:

• RQ1: How does the energy consumption of ex-
ecuting intensive workloads in Wasm bytecode
compare to that of JS?

• RQ2: How does the energy consumption of exe-
cuting intensive workloads in Wasm and JS vary
across different browsers?

To address these research questions, we conducted
a controlled experiment where we executed intensive
workloads using both JS and Wasm within two dif-
ferent browsers and measured the resulting energy
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consumption. The execution was carried out on two
different mobile devices to provide a comprehensive
understanding of how browser and device variations
impact energy consumption. For measuring the en-
ergy consumption, we used the Monsoon High Volt-
age Power Monitor1 (HVPM) measuring device.

The remainder of this paper is structured as fol-
lows. Section 2 gives an overview of relevant related
research. The research method is introduced in Sec-
tion 3, followed by the results in Section 4. A dis-
cussion on the results is given in Section 5. Finally,
Section 6 concludes the paper.

2 RELATED WORK

A part of existing studies focuses on a comparison
of different types of performance indicators between
Wasm in the browser and a native implementation
on workstations or desktops. An early study from
2017 (Haas et al., 2017) examines the speed of Wasm
in browsers with a benchmark compared to native C
code. Results show that Wasm execution times of 7
out of 24 algorithms are up to 10% above native code,
and almost all in the range of a factor of 2. Sandhu
et al. (Sandhu et al., 2018) address the performance
of Wasm with a focus on the calculation of sparse
matrix-vector multiplications and show close to na-
tive slowdown factors with Firefox and factors of 2.2
for single- and 1.8 for double-precision floating points
with Chrome. The authors Jangda et al. (Jangda et al.,
2019) use a benchmark software for examining Wasm
and show on average a slower execution of 45% with
Chrome and 55% with Firefox than native code.

Other studies use the Node.js runtime environ-
ment instead of browsers to investigate the perfor-
mance of Wasm. Oliveira et al. (Oliveira and Mattos,
2020) compare Wasm with JS and native C code with
a benchmark software and show that Wasm is on aver-
age 21% slower in runtime compared to native C and
around 40% faster than JS. Macedo et al. (De Macedo
et al., 2021) compare different algorithms and bench-
marks to show that Wasm is faster than JS in most
cases, but only with small factors up to 1.17.

Some studies compare Wasm against JS in the
browser. Sandhu et al. (Sandhu et al., 2018) also
compare JS to Wasm in browsers and show slowdown
factors of 1.9 and 2.1 with Chrome and 2.6 and 3.0
with Firefox. Herrera et al. (Herrera et al., 2018)
achieve an advantage of between 1.5 and 2.5 with
Wasm over JS on different device types and browsers
with a benchmarking tool. In a comprehensive study

1https://www.msoon.com/high-voltage-power-monitor

in 2021, Yan et al. (Yan et al., 2021) compare code
with a benchmark software compiled with different
Wasm compilers to a JS implementation on desktop
and mobile devices. They find fundamental perfor-
mance differences in the execution on mobile and
desktop devices, as well as the different browsers.

However, only few studies investigate the energy
consumption of Wasm. Oliveira et al. (Oliveira and
Mattos, 2020) investigate the energy consumption of
Wasm in their Node.js IoT setup with a self-built mea-
suring device and found an advantage of about 40%
over JS. Studies by De Macedo et al. (De Macedo
et al., 2021; De Macedo et al., 2022) use Wasm with
benchmarks in different browsers and the software-
based approach to measure the energy consumption.
The results in their newer study show an average im-
provement in energy consumption of 30% with Wasm
compared to JS.

A recent study by van Hasselt et al. (van Hasselt
et al., 2022) compares the energy efficiency of Wasm
against JS by using the Ostrich benchmark software
on one Android device. The software-based energy
profiler trepn2 of Qualcomm is used, which is now
available as Snapdragon Profiler3. As a result, on the
choice of implementation, a large statistical effect size
is determined for the energy-efficiency of Wasm com-
pared to JS for two browsers. For the choice of the
browser, they show a negligible difference for JS be-
tween Chrome and Firefox. For Wasm, their results
show a medium effect size.

3 RESEARCH METHOD

The study was planned with a focus on reproducibil-
ity and extensibility for different device types and
programming languages. Thus, implementations of
algorithms were chosen instead of benchmarking li-
braries, as done in other studies (Haas et al., 2017;
van Hasselt et al., 2022; Herrera et al., 2018; Jangda
et al., 2019; Oliveira and Mattos, 2020; Yan et al.,
2021), which are only available for specific program-
ming languages. Furthermore, our setup also dif-
fers by using a hardware-based measuring of energy
consumption and by using two devices from the low
and high-end category. The experimental proce-
dure, the measurements and the analysis is publicly
made available as a replication package for a detailed

2https://web.archive.org/web/20180514003122/
https://developer.qualcomm.com/software/trepn-pow

er-profiler
3https://developer.qualcomm.com/software/snapdragon

-profiler
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investigation4.

3.1 Workloads

We carefully selected 19 algorithms from the Rosetta
Code platform5 as workloads for the experimental
evaluation. To ensure extensibility, we set several se-
lection criteria:

• Each algorithm must have a C and JS implemen-
tation.

• Each algorithm must provide a full implementa-
tion that does not require external dependencies,
such as external libraries.

• The runtime of the algorithm should be control-
lable by varying its input parameters. This allows
for adapting the algorithm to different experimen-
tal scenarios.

Based on these requirements, the nine sorting al-
gorithms bubblesort, countingsort, gnomesort, heap-
sort, insertionsort, mergesort, pancakesort, quicksort
and shellsort were selected. In addition, the follow-
ing ten intensive processing algorithms were selected:
Ackermann, Fibonacci, happy numbers, humble num-
bers, k-means, matrix multiplication, n-queens, per-
fect numbers, sequence of non squares and towers of
Hanoi.

For executing the algorithms on the mobile de-
vices, a minimal website was created for each imple-
mentation of an algorithm. The algorithms were em-
bedded into the corresponding website, directly as JS
code or compiled as Wasm bytecode.

The Wasm bytecode was created by compiling
the C code with the emscripten compiler toolchain6.
Wasm was compiled with the highest optimization
level provided by the compiler. To trigger the execu-
tion of an algorithm, we added a button to the website.
This button is also clickable by the automatized exe-
cution pipeline provided as part of the experimental
setup.

3.2 Test Devices & Browsers

To provide enough variability, two different Android
devices were selected for the execution of this exper-
iment. The Samsung Galaxy S21 device was the lat-
est Samsung model at the time of the experiment and
represents the high-end class. The more than 7 years
older Nexus 5 device represents the low-end class.

4https://github.com/dpockstaller/webist23-wasm-js-e
nergy

5https://rosettacode.org
6https://emscripten.org

As the experiment is executed on real smart-
phones, there are several confounding factors, such
as background services, other active apps or notifi-
cations. Therefore, the devices were prepared ac-
cordingly before starting the experiment. The display
brightness is dimmed to approximately 50% to avoid
influences on the energy consumption by automatic
changes due to the ambient light sensor. All services
and apps, which are not required for the experiment,
such as mobile data networks, Bluetooth, GPS track-
ing or notifications, are deactivated or stopped.

We selected Google Chrome and Mozilla Fire-
fox as the two execution targets for our experiment.
Chrome has the largest worldwide mobile market
share (StatCounter, 2022) and can be considered the
default web-browser on Android phones. In terms
of popularity, Firefox is far behind Chrome, but the
only non-Chromium alternative on Android, which
provides fully-fledged Wasm support.

3.3 Energy Measurement Procedure

For the measurement of the energy consumption dur-
ing the experiment, the Monsoon HVPM measure-
ment device is used. Compared to software-based
measurements found in previous studies (De Macedo
et al., 2021; De Macedo et al., 2022; van Hasselt
et al., 2022), the hardware-based approach provides
a more accurate representation of the real energy con-
sumption of the device under test. The software-based
measurements rely on mathematical models to esti-
mate energy consumption, whereas hardware-based
approaches directly measure the actual energy usage.
Furthermore, a replication of the experiment with
other device types, such as iOS smartphones, would
be feasible with this approach. A disadvantage of this
method is that the battery needs to be disassembled
from the mobile device, which makes the device use-
less for other purposes.

A controlling device was used in this experiment
to execute the experimental procedure. For this pur-
pose, during the experiment the Android smartphones
were connected with the controlling device via the
Android Debug Bridge (ADB) using Wi-Fi. The
power monitor was connected to the controlling de-
vice via USB to start and stop the measurement of the
energy consumption and to transfer the measured val-
ues after the execution of an experiment run.

The full execution procedure of this experiment is
automated by Python scripts to handle the large num-
ber of test cases and runs. This also ensures that all
test cases are performed under the same conditions
and can be replicated.

Each test run starts with opening one test website
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in a new and clean browser window after resetting
the browser application data. After a fixed waiting
period for the browser to load the experimental set-
ting, the energy consumption measurement procedure
is started by tapping the button on the website. The
tapping was generated with the ADB connection and
the pixel coordinates of the button in the web-browser.
After an execution time of 5 seconds, the measure-
ment procedure is stopped. It was ensured that the ex-
ecution of the algorithms took at least 5 seconds. At
least 30 randomized samples for each test case were
obtained. The measured energy consumption is per
sample given in Joules.

3.4 Data Analysis

The experimental procedure yielded a total of 4,826
samples. Since a visual inspection of the sample dis-
tributions and also a Shapiro Wilk test did not indicate
normally distributed data, a non-parametric statistical
procedure was selected for analysis. To address the
research questions, hypothesis tests (Mann Whitney
U) were conducted to identify significant differences.

Regarding RQ1, we aimed to test a statistically
significant difference in energy consumption between
the execution of JS and Wasm within the two selected
web-browsers. Thus, we formulated the following
two-tailed hypothesis:

H10,b : µJS,b = µWasm,b ∀b ∈ {Chrome,Fire f ox}
H1a,b : µJS,b ̸= µWasm,b ∀b ∈ {Chrome,Fire f ox}

The H10,b hypothesis states that there is no sig-
nificant difference between the energy consumption
of JS and Wasm within the two tested web-browsers.
This is in contrast to the alternative hypothesis H1a,b,
that there is a significant difference.

For RQ2, the focus of our experiment was to deter-
mine any significant differences in energy consump-
tion across the two selected web-browsers. Therefore,
the following two-tailed hypothesis was formulated:

H20,t : µChrome,t = µFire f ox,t ∀t ∈ {JS,Wasm}
H2a,t : µChrome,t ̸= µFire f ox,t ∀t ∈ {JS,Wasm}

With H20,t hypothesis, it was stated that there is
no significant difference in energy consumption be-
tween Chrome and Firefox, when executing either
Wasm or JS workloads. In contrast, the alternative
hypothesis H2a,t states that there is a significant dif-
ference.

To add practical relevance to the findings, the
analysis incorporated the calculation of appropriate
effect sizes. In accordance with the non-statistical
hypothesis test, we selected Cliff’s delta effect sizes.

4 RESULTS

Figure 1 provides a graphical overview of the energy
distribution of the collected samples per device in the
form of violin plots. The violin plot shows the distri-
bution of the energy consumption along the y-axis.
The left side shows the distributions for the lower-
end device and the right side the distributions for the
higher-end device. The used web-browser can be dis-
tinguished by the blue and orange colour. Within each
violin plot, the left column resembles the JS work-
load, the right column the Wasm workload.

From a pure visual interpretation, we can con-
clude that the higher-end device uses less energy for
the same workloads. Also, the distribution of Wasm is
skewed more towards lower energy-consumption val-
ues compared to that of JS. For the difference between
the browsers, a more in depth statistical analysis is
provided below.

Table 1 provides an overview of the descriptive re-
sults. We listed the values for the two web-browsers,
with reference to the device class, within the columns.
Typical descriptive statistics, such as mean, median
and standard deviation are listed row-wise. When
considering the difference in means of Chrome, we
can observe a consistent improvement of approxi-
mately 20% across the devices, when using Wasm in-
stead of JS. Firefox has a similar reduction of approx-
imately 21% in mean on the lower-end device, but up
to approximately 31% on the higher-end device.

For a proper statistical analysis, we conducted rel-
evant hypothesis tests and a following calculation of
corresponding effect sizes. The full list of results is
given in Table 2. Within the major rows, we separated
the results per device class. Per our defined α level
of 0.05 all H0 hypotheses, as defined in Section 3.4,
were rejected.

Looking in more detail into the results regard-
ing RQ1, with reference to Table 2, it is observ-
able that there is a significant difference in energy-
consumption between Wasm and JS within the two
selected web-browsers. Using Wasm over JS has a
medium effect size also across the device classes.
These results allow for the conclusion that Wasm uses
less energy than JS for executing the tested algorith-
mic workloads within mobile web-browsers.

The results with respect to RQ2 and in reference
to Table 2 show a significant difference in all the con-
sidered data pairs. Firefox in this case uses more en-
ergy than Chrome when executing JS workloads or
Wasm workloads. This result is also consistent across
the tested device classes. When considering the effect
size and by that give an indication for the practical rel-
evance of the results, only a small or even negligible
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Figure 1: Energy consumption of Wasm and JS workloads executed on different mobile devices and browsers.

Table 1: Descriptive statistics.

Device Low-End High-End
Browser Chrome Firefox Chrome Firefox

JS Wasm JS Wasm JS Wasm JS Wasm
Mean 11.64 9.34 12.61 9.91 7.05 5.67 9.21 6.32
Std.Dev 3.75 3.16 3.91 3.19 2.00 1.25 4.82 2.43
Min 5.92 5.67 6.06 5.79 4.30 4.16 4.39 4.22
Q1 8.53 7.23 9.03 7.63 5.46 4.49 5.99 4.63
Median 10.93 8.24 13.13 9.04 6.62 5.47 7.67 5.96
Q3 14.44 10.02 15.01 10.99 8.29 6.46 11.03 6.62
Max 26.04 22.29 24.44 19.78 13.96 10.14 30.46 16.11

All values are given in Joules.

Table 2: Hypotheses tests and effect sizes on a high-end device.

Device Dataset Pair p-Value Cliffs Delta Interpretation

Low-End

Chrome JS vs. Chrome Wasm (RQ1) 3.872448e-33 0.395187 medium
Firefox JS vs. Firefox Wasm (RQ1) 3.617754e-33 0.396013 medium
Chrome JS vs. Firefox JS (RQ2) 9.598055e-06 -0.146084 negligible
Chrome Wasm vs. Firefox Wasm (RQ2) 0.000023 -0.139392 negligible

High-End

Chrome JS vs. Chrome Wasm (RQ1) 1.591990e-36 0.423401 medium
Firefox JS vs. Firefox Wasm (RQ1) 1.160505e-42 0.459227 medium
Chrome JS vs. Firefox JS (RQ2) 9.184663e-15 -0.259970 small
Chrome Wasm vs. Firefox Wasm (RQ2) 0.000402 -0.118702 negligible

interpretation can be attested.

5 DISCUSSION

Previous studies on Wasm focused mainly on runtime
performance or hardware usage compared to a na-
tive implementation or JS and mostly on desktop de-
vices. This paper focuses on the energy consumption
of Wasm compared to JS in the browser on mobile
devices.

To the best of our knowledge, only one recently
published study investigated the energy consumption

of Wasm and JS on Android smartphones. In contrast
to our results, van Hasselt et al. (van Hasselt et al.,
2022) found a large effect size between Wasm and
JS for both browsers Chrome and Firefox, while this
study identifies a medium interpreted effect size for
both browsers. Also, a medium effect size for the dif-
ference in the energy consumption of Wasm between
Chrome and Firefox was reported in their study. This
cannot be confirmed by this paper, as a negligible ef-
fect size was achieved. Furthermore, the results of the
browsers in their study are the opposite to this study,
as in their results Firefox consumes less energy than
Chrome. The results of their descriptive values show

Comparing the Energy Consumption of WebAssembly and JavaScript in Mobile Browsers

125



that Wasm consumes around 61% less energy with
Chrome and 73% less energy with Firefox than JS in
the mean value. These values are significantly larger
than those found in this paper. A possible explana-
tion for the diverging results could be that our study
is based on a hardware-based measurement approach
and that we selected different workloads. Thus, we
consider the results of our study an important com-
plement to the existing body of research in this field.
For future work, it would be interesting to combine
the experimental subjects and measurement methods
in a single large experiment.

In other studies (Sandhu et al., 2018; Herrera
et al., 2018), a larger difference between JS and
Wasm implementations was found for Firefox than
for Chrome. This could be confirmed in this study
by RQ2 and is probably related to the lower base per-
formance of JS in Firefox. Apart from the influence of
the chosen browser, a study by Oliveira et al. (Oliveira
and Mattos, 2020) using the Node.js environment,
which comes closest to a comparison with Chrome
due to the same V8 JS engine, showed an average im-
provement of about 40% in the runtime and the energy
consumption using Wasm. In comparison, this study
was able to determine a lower energy consumption of
around 20% through the use of Wasm compared to JS
using Chrome.

The findings of our study indicate that using
Wasm in web application development brings a no-
table advantage in energy-efficiency across all tested
browsers and devices. This outcome is particularly
valuable in highly competitive markets, where such
advantages could make a crucial difference in user
satisfaction. These results would also indicate that it
is beneficiary to transfer existing code bases in C to
the web-browser via Web Assembly instead of a re-
implementation in JS.

As a practical recommendation for mobile users,
the results of this study suggest considering using
Chrome over Firefox to conserve battery life. The
results show significant results for our experiments,
however, only with a small or negligible effect size.
This small difference would result in an overall
smaller CO2 footprint for users.

6 CONCLUSIONS

The goal of this study was to determine whether
Wasm can be used to reduce the energy consump-
tion of executing intensive workloads within mobile
web applications. In an experiment with different An-
droid devices and different browsers, a variety of al-
gorithms to generate load were compared as imple-

mentations in Wasm and JS. In addition, the influence
of the chosen browser on the energy consumption on
mobile Android devices was investigated.

Overall, the results show that using Wasm instead
of JS for intensive processing tasks can reduce en-
ergy consumption by a range of approximately 20%
to 30% in the browser on Android smartphones. Fur-
thermore, it was found that Chrome consumes less en-
ergy when executing both JS and Wasm compared to
Firefox.

It is important to note that our study is limited
to Android devices and Wasm bytecode generated
by compiling C source code with emscripten. Fur-
ther research could explore the differences in energy
consumption across different device types, such as
iOS smartphones, and other programming languages
and their compilers, such as Rust, Go, or Assem-
blyScript. The study design is flexible enough and
can be adapted to enable further research in these ar-
eas.
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