
On the Construction of Database Interfaces Based on Large Language
Models

João Pinheiro1 a, Wendy Victorio1,2 b, Eduardo Nascimento1,2 c, Antony Seabra1 d,
Yenier Izquierdo2 e, Grettel Garcı́a2 f, Gustavo Coelho2 g, Melissa Lemos1,2 h,

Luiz Paes Leme3 i, Antonio Furtado1 j and Marco Casanova1,2 k

1Departamento de Informática, PUC-Rio, Rio de Janeiro, 22451-900, RJ, Brazil
2Instituto Tecgraf, PUC-Rio, Rio de Janeiro, 22451-900, RJ, Brazil

3Instituto de Computação, UFF, Niterói, 24210-310, RJ, Brazil

Keywords: Large Language Models, Database Interfaces, Conversational Interfaces.

Abstract: This paper argues that Large Language Models (LLMs) can be profitably used to construct natural language
(NL) database interfaces, including conversational interfaces. Such interfaces will be simply called LLM-
based database (conversational) interfaces. It discusses three problems: how to use an LLM to create an NL
database interface; how to fine-tune an LLM to follow instructions over a particular database; and how to
simplify the construction of LLM-based database (conversational) interfaces. The paper covers the first two
problems with the help of examples based on two well-known LLM families, GPT and LLaMA, developed by
OpenAI and Meta, respectively. Likewise, it discusses the third problem, with the help of examples based on
two frameworks, LangChain and LlamaIndex.

1 INTRODUCTION

Natural language database interfaces allow users to
access databases using queries formulated in natural
language (NL) (Affolter et al., 2019). Going one
step further, NL database conversational interfaces
(software-based dialogue systems or chatbots) (Mot-
ger et al., 2022)(Caldarini et al., 2022) offer users
the possibility to interact with databases using tech-
niques similar to human conversation; they accept
queries typically formulated in NL, return answers
also commonly expressed in NL, and support persis-
tent conversational contexts, thereby generating user-

a https://orcid.org/0000-0002-0909-4432
b https://orcid.org/0009-0003-0545-2612
c https://orcid.org/0009-0005-3391-7813
d https://orcid.org/0009-0007-9459-8216
e https://orcid.org/0000-0003-0971-8572
f https://orcid.org/0000-0001-9713-300X
g https://orcid.org/0000-0003-2951-4972
h https://orcid.org/0000-0003-1723-9897
i https://orcid.org/0000-0001-6014-7256
j https://orcid.org/0000-0003-3710-624X
k https://orcid.org/0000-0003-0765-9636

computer dialogues.
This paper argues in favor of using Large Lan-

guage Models (LLMs) (Manning, 2022) to construct
NL (conversational) database interfaces. Such in-
terfaces will be simply called LLM-based database
(conversational) interfaces, leaving it implicit that the
queries are formulated in NL. The adoption of LLMs
would simplify the interpretation of NL queries, the
generation of NL answers, and the control of user di-
alog, tasks that are addressed in LLM training.

A Large Language Model (LLM) is a language
model based on a deep neural network architecture
with a very large number of parameters, trained on
enormous quantities of unlabeled text, using self-
supervised or semi-supervised learning. One should
single out LLMs that have been trained to follow
instructions, which are most suited for constructing
conversational interfaces. Such LLMs are sometimes
called Chat Models. LLMs are a transformative tech-
nology, enabling developers to build novel applica-
tions. LLMs came to the foreground with the an-
nouncement of conversational interfaces that are able
to generate high-quality textual answers.

Specifically, the paper addresses three problems:

Pinheiro, J., Victorio, W., Nascimento, E., Seabra, A., Izquierdo, Y., García, G., Coelho, G., Lemos, M., Leme, L., Furtado, A. and Casanova, M.
On the Construction of Database Interfaces Based on Large Language Models.
DOI: 10.5220/0012204000003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 373-380
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

373



P1. How to use an LLM to create an NL database
interface.

P2. How to fine-tune an LLM to follow instructions
(i.e., to become a Chat Model) over a particular
database.

P3. How to simplify the construction of LLM-based
database (conversational) interfaces.

Sections 3 and 4 cover the first two problems with
the help of examples based on two well-known LLM
families, GPT and LLaMA, developed by OpenAI
and Meta, respectively. Likewise, Section 5 discusses
the third problem, with the help of examples based on
two frameworks, LangChain and LlamaIndex.

The paper is organized as follows. Section 2 re-
views LLMs and some popular LLM families. Sec-
tion 3 comments on GPT-based database interfaces
and Section 4, LLaMA-based database interfaces.
Section 5 covers LangChain and LlamaIndex. Section
6 concludes the paper by summarizing the lessons
learned.

2 BACKGROUND

Briefly, Affolters et al. (Affolter et al., 2019) of-
fers a comparative survey of 24 NL database inter-
faces, classified as keyword-, pattern-, parsing- and
grammar-based. As lessons learned, the authors in-
dicate that, for simple questions, keyword-based sys-
tems are enough, whereas for complex questions, an
NL database interface needs to apply some parsing to
identify structural dependencies, and that grammar-
based systems are the most powerful, but depend on
manually designed rules.

Diefenbach et al. (Diefenbach et al., 2020) as-
sumes that an NL query can be correctly interpreted
considering only the semantics of the words. For ex-
ample, the NL query “Give me actors born in Berlin”
is reformulated as a keyword question “Berlin, actors,
born in”, that is, the semantics of the words “Berlin”,
“actors”, and “born” suffice to deduce the intention
of the user. The authors proceed to map the NL query
into one of four templates, which limits the usefulness
of the process. Interestingly, however, they show that
the process has good performance on several RDF
datasets from the QALD benchmarks in different lan-
guages.

Recent surveys of conversational interfaces
(software-based dialogue systems or chatbots) can be
found in (Motger et al., 2022)(Caldarini et al., 2022).
Such systems offer users the possibility to interact
with databases using techniques similar to human
conversation; they accept queries typically formu-

lated in NL, return answers also typically expressed
in NL, and support persistent conversational contexts,
thereby generating user-computer dialogues.

In another direction, the approaches involved in
Natural Language Processing (NLP) tasks have un-
dergone profound changes over the past decades.
(Manning, 2022) classifies NLP approaches in
roughly four eras. From 1950 to 1969, the first
era was characterized by simple rule-based models,
achieving very limited results due to the lack of com-
putation, data, and knowledge of human language
structure. The second era, from 1970 to 1992, ben-
efited from the rapid development of linguistic the-
ories, allowing the creation of a new generation of
hand-built systems from knowledge-based artificial
intelligence models. The third era, from 1993 to
2012, saw a shift from knowledge-based to machine-
learning models, when digital text became widely
available, providing enough data to allow some level
of language understanding by using mainly super-
vised machine-learning methods. The last era, from
2013 to the present, extended the use of machine
learning, allowing a more generalized language un-
derstanding by using self-supervised learning and
deep learning-based models to represent words with
dense vectors. Within this context, the first LLM was
successfully trained in 2018 by exposing a model to
an extremely large quantity of text, representing an
enormous amount of language knowledge.

LLMs follow the transformer neural network
architecture (Vaswani et al., 2017)(Tunstall et al.,
2022)(Jurafsky and Martin, 2023). Manning (Man-
ning, 2022) contains a readable introduction to trans-
formers. The central intuition behind transformers is
the use of the attention mechanism, where the rep-
resentation of a given position is computed based on
a weighted combination from others. The result is a
much more complex setup when compared to simple
neural networks. Based on this architecture, the self-
supervised strategy for LLMs usually involves mask-
ing words in the text and training the model to predict
the missing words from the outer context. After this
process is extensively repeated, the model learns gen-
eralized syntactic structures of sentences.

As a consequence of their generalization capacity,
LLMs perform well in a wide variety of NLP tasks, to
the point of shifting the focus of NLP research away
from the previous paradigm of training specialized su-
pervised models for each task. An LLM can be rede-
ployed to a particular NLP task with a small number
of further instructions.

However, an LLM reflects the data it was trained
with. In particular, an LLM suffers from the “tem-
poral generalization problem” – capturing facts that
change over time – and the “factual grounding prob-

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

374



lem” – capturing specific facts. To circumvent these
limitations, the user may fine-tune the LLM, that is,
retrain it with more examples, or he may adopt few-
shot learning, that is, add a few examples in a dialog
interaction so that the model can capture what the user
is trying to do and generate a plausible completion.

Chat Models must in turn (Ouyang et al., 2022):
avoid unacceptable answers, including avoiding in-
correct or made-up facts, nonsensical answers, and
biased or toxic text; seek useful user dialogues, that
is, the language modeling objective must be aligned
with the objective “follow the user’s instructions help-
fully and safely”. Putting it in more explicit terms,
a Chat Model must be (Askell et al., 2021): helpful
(they should help the user solve their task), honest
(they shouldn’t fabricate information or mislead the
user), and harmless (they should not cause physical,
psychological, or social harm to people or the envi-
ronment).

Currently, there are three well-known LLM fami-
lies:

GPT – Generative Pre-Trained Transformer: GPT
3.51 (announced on November 30th, 2022) and
GTP 42 (announced on March 14th, 2023) respec-
tively support ChatGPT and ChatGPT Plus.

LLaMA – Large Language Model Meta AI:
LLaMA3 (announced on February 23rd, 2023)
and LLaMA 24 (announced on July 18th, 2023)
were developed by Meta.

LaMDA – Language Model for Dialogue Applica-
tions and PaLM – Pathways Language Model:
LaMDA5 (announced on May 18th, 2021) and
PaLM (announced in March 2023 and upgraded
in May 2023) support Google’s Bard.

The examples in Sections 3 and 4 respectively use
the GPT and the LLaMA families.

3 GPT-BASED INTERFACES

3.1 The GPT Family and OpenAI API

The OpenAI Research API offers several models
of the GPT family, with different capabilities and

1https://platform.openai.com/docs/model-index-for-
researchers

2https://openai.com/research/gpt-4
3https://ai.facebook.com/blog/large-language-model-

llama-meta-ai/
4https://ai.facebook.com/blog/large-language-model-

llama-meta-ai/
5https://en.wikipedia.org/wiki/LaMDA

prices6.
OpenAI models are non-deterministic, that is,

identical inputs can yield different outputs.
Section 3.3 illustrates the limitations of the max-

imum number of tokens (column “Max tokens”).
Note that the models were trained up to September
2021 or June 2021, which imposes limitations, as il-
lustrated in Section 3.2.

The OpenAI API covers many tasks that involve
understanding or generating natural language, code,
or images.

The API has three key concepts:
Prompts: a model is “programmed” by providing

some instructions or a few examples to the com-
pletions and chat completions endpoint; prompts
can be used for any task, including content or code
generation, summarization, expansion, conversa-
tion, creative writing, style transfer.

Tokens: text is processed by breaking it down into
tokens; the number of tokens processed in a given
API request depends on the length of both inputs
and outputs.

Models: the API works with several models, as listed
in the documentation.
As for training a model, the user can adopt few-

shot learning, passing examples in the prompts, or
fine-tune the model, as mentioned in Section 2. How-
ever, fine-tuning is currently only available for the
GPT 3 base models.

3.2 ChatGPT

ChatGPT from OpenAI was released on November
30, 2022, uses GPT 3.5, and is optimized for user
dialogues. According to OpenAI7, “ChatGPT pro-
vides articulated answers across several knowledge
domains, but uneven factual accuracy has been iden-
tified as a significant drawback, and sometimes it
writes plausible-sounding but incorrect or nonsensi-
cal answers”. Training data include “Internet phe-
nomena”, software documentation, and code. Chat-
GPT has limited knowledge of events that occurred
after September 2021. The training process leveraged
both supervised learning and reinforcement learning
(Neelakantan et al., 2022). Both approaches use hu-
man trainers to improve the model’s performance.
OpenAI used outsourced Kenyan workers earning
less than USD 2.00 per hour to label “toxic content”.

6The relationship between the models the OpenAI
API offers and those mentioned in the papers is de-
scribed at https://platform.openai.com/docs/model-index-
for-researchers

7ChatGPT: Optimizing Language Models for Dialogue.
https://openai.com/blog/chatgpt/

On the Construction of Database Interfaces Based on Large Language Models

375



The power and limitations of ChatGPT to gener-
ate dialogues are well-known. The reader is invited to
test ChatGPT by running the following three generic
knowledge queries, for which ChatGPT produces an-
swers of varying quality: (Correct answer) “How Liz
Taylor, Richard Burton, and John Hurt are related?”;
(Incorrect answer) “Where did D. Pedro I of Brazil
die?”; (Failed answer due to lack of data) “Tell me
about the coronation of Charles III of England.”

ChatGPT Plus, the paid version of ChatGPT, was
released on March 14th, 2023, uses GPT 4 (Ope-
nAI, 2023), at a cost of USD 20.00 per month (on
May 2023). According to the OpenAI annoucement8,
“GPT-4 is 82% less likely to respond to requests for
disallowed content, is 40% more likely to produce fac-
tual responses than GPT-3.5, and can take images as
input”.

3.3 Examples of GPT-Based Database
Interfaces

Innumerable applications of ChatGPT were published
in the few months after its announcement (Abdullah
et al., 2022)(Fraiwan and Khasawneh, 2023), rang-
ing from a simple application developed to help write
English essays (Fitria, 2023) to more complex medi-
cal applications (Lecler et al., 2023), passing through
tourism (Carvalho and Ivanov, 2023), digital enter-
tainment [omitted], and analyzing social systems data
(Wang et al., 2023).

Such applications can benefit from the fact that
ChatGPT is context-aware and accepts feeding data
before questions. One can append text directly to the
prompt or provide a contextual set of documents us-
ing LlamaIndex (see Section 5.2). Passing data as
prompts has one major limitation, though: the number
of tokens may not exceed the LLM limits.

The rest of this section describes two simple ex-
amples that use ChatGPT (or the OpenAi API) to cre-
ate NL database interfaces with literally no program-
ming.

The simplest way to create a GPT-based database
interface would be as follows:
1. Create a description of the relational schema and

pass it as a context C.
2. Given an NL query N, ask to translate N into an

SQL query Q under the context C.

3. Execute Q.
The same approach also applies to RDF datasets with
RDF schemas to translate NL queries into SPARQL.
GPT 3.5 (and GTP-4) has been trained for these trans-
lation tasks and performs remarkably well, as re-

8https://openai.com/product/gpt-4

ported in (Liu et al., 2023). The application could
adopt LangChain (see Section 5.1) to force the execu-
tion of the SQL (or SPARQL) query.

However, this approach has three limitations:

1. The schema and the NL query must be written in
the same terms. Hence, the relational schema has
to be hidden with a layer of views that remaps the
internal table and column names to terms that the
user is familiar with.

2. The database must have a schema, which is al-
ways true for relational databases but not RDF
datasets.

3. The database schema must generate fewer tokens
than the maximum allowed

Furthermore, the NL query may refer to terms
that denote entity names, attribute values, or data in
general that occur in the database, and not just to
terms that occur in the relational schema. For exam-
ple, consider the NL query “Where is Khwarazm?”,
which asks where the oasis region “Khwarazm” is
located (the region where Muhammad ibn Musa al-
Khwarizmi lived – the mathematician from whose
name the term “algorithm” is derived), but omits the
detail that “Khwarazm” is the name of a region (the
answer is “Uzbekistan” and “Turkmenistan”). Inter-
estingly, ChatGPT can infer the missing information
and synthesize a correct SQL query. Note that passing
the entire database as context would not be feasible
due to prompt size limits.

To circumvent these limitations, an approach
would be to use a database keyword search tool to me-
diate access to the database. ChatGPT (or the OpenAI
API) would be used to extract a list K of keywords
from an NL query N (a text block) and pass K to the
database keyword search tool, which would then cre-
ate an answer to N. This approach would be a simple
way to provide an NL interface to the database key-
word search tool.

The GPT-based natural language interface to the
database keyword search tool would be as follows:

1. Create a description T of the database keyword
search API and pass it as a context.

2. Given an NL query N (a text block), ask to extract
a list K of keywords from N.

3. Pass K to the tool, under the context T , to generate
an answer for N.

Lastly, the text-to-SQL problem, that is, the trans-
lation of NL questions to SQL queries, has been in-
tensively studied. The Spider Web site9, a popular
benchmark to assess text-to-SQL tools, maintains a

9https://yale-lily.github.io/spider

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

376



leaderboard of the best-performing tools. It should
be noted that the best four tools use GPT-4, whereas
the fifth best tool uses GPT-3.5-Turbo-0301, at signif-
icantly lower cost.

4 LLaMA-BASED INTERFACES

This section describes two examples that address the
problem of fine-tuning an LLM to follow instruc-
tions (i.e., to become a Chat Model) over a particular
database. The examples are Alpaca and GPT4ALL
that create chat models by fine-tuning LLaMA.

4.1 The LLaMA Family

LLaMA (Touvron et al., 2023), which stands for
Large Language Model Meta AI, is a collection
of transformer-based large language models ranging
from 7B to 65B parameters. Based on a recent work
(Hoffmann et al., 2022), the authors decided to in-
crease the number of tokens, while fixing the number
of parameters. It was observed that a 7B model con-
tinues to improve even after 1T tokens, when the rec-
ommendation of (Hoffmann et al., 2022) was to train
a 10B model on 200B tokens.

The results in (Touvron et al., 2023) indicate that
the series of LLaMA LLMs were competitive with
state-of-the-art models. In particular, LLaMA-13B
outperformed GPT 3 despite being more than ten
times smaller. The authors also pointed out that the
accuracy notably increased by increasing the number
of tokens.

The LLaMA 2 family10, announced on July 18th,
2023, changed the LLM open-source scenario. The
family includes pretrained and fine-tuned language
models (LLaMA Chat, Code LLaMA) — ranging
from 7B to 70B parameters. Llama 2 was trained
between January 2023 and July 2023, and the pre-
training data has a cutoff of September 2022, but
some tuning data is more recent, up to July 2023.
Llama 2-Chat models are optimized for dialogue use
cases and outperform open-source chat models on
most benchmarks and human evaluations for helpful-
ness and safety. Code Llama comes in multiple fla-
vors to cover a wide range of applications: foundation
models (Code Llama), Python specializations (Code
Llama - Python), and instruction-following models
(Code Llama - Instruct) with 7B, 13B, and 34B pa-
rameters each.

10https://ai.meta.com/resources/models-and-libraries/lla
ma/

4.2 Examples of LLaMA-Based
Database Conversational Interfaces

Alpaca (Taori et al., 2023), developed by the Stanford
Center for Research on Foundation Models (CRFM),
is an instruction-following model fine-tuned from the
LLaMA-7B model. Alpaca adopted the self-instruct
method (Wang et al., 2022) in an interesting way.
The authors applied GPT 3.5 (text-davinci-003) to the
175 human-written instruction-output pairs defined
in (Wang et al., 2022), generating 52K unique pairs
of instructions and the corresponding outputs. The
dataset generated was used to fine-tune the LLaMA-
7B model using Hugging Face’s training framework.
To evaluate Alpaca, the authors created a varied list
of user-oriented instructions: email writing, social
media, and productivity tools. The evaluation con-
firmed that Alpaca-7B achieved competitive perfor-
mance when compared with GPT 3.5.

GPT4All (Anand et al., 2023) is an assistant-
style chatbot from Nomic AI that features chat mod-
els fine-tuned from LLaMA. Nomic AI first gathered
sample questions/prompts from three publicly avail-
able data sources, the unified chip2 subset of LAION
OIG, coding questions with a random sub-sample
of Stackoverflow Questions, and instruction-tuning
with a sub-sample of Big-science/P3. These ques-
tions/prompts were handled over to GPT-3.5-Turbo
to generate roughly 800,000 prompt-generation pairs.
Then, the data was curated to remove low-diversity re-
sponses, ensuring that the data covered a wide range
of topics, as in the Alpaca project. The final dataset
contained approximately 440,000 prompt-generation
pairs. Nomic AI then trained several models fine-
tuned from LLaMA-7B, using LoRA (Hu et al., 2021)
for four epochs.

Alpaca and GPT4ALL illustrate a much more
elaborated process to create a database conversational
interface that can be summarized as follows:

1. Let D1, ...,Dn be one or more databases and L be
an LLM.

2. Create an initial set P of sample ques-
tions/prompts from the databases.

3. Create an expanded set P′ of questions/prompts,
perhaps using ChatGPT.

4. Create a curated set P′′ from P′.

5. Create a chat model C by fine-tuning L using P′′.

6. The database conversational interface for
D1, ...,Dn will be built using the chat model C.

Other examples that follow this strategy, but
which are not based on LLaMA, are GPT4All-J
(Anand et al., 2023) from Nomic AI, announced on

On the Construction of Database Interfaces Based on Large Language Models

377



April 13, 2023, and Dolly 2.0 (Conover et al., 2023)
from Databricks, announced on April 12, 2023.

Finally, following its announcement, there was a
hectic series of models obtained by fine-tuning the
LLaMA 2 models. The Open LLM Leaderboard11,
which evaluates open LLMs and chatbots, lists a large
number of models obtained by fine-tuning LLaMA
2 models, mostly obtained using LoRA–Low-Rank
Adaptation (Hu et al., 2021), or QLoRA–Quantized
Low-Rank Adaptation (Dettmers et al., 2023).

5 GENERIC LLM FRAMEWORKS

This section introduces two frameworks, LangChain
and LlamaIndex. LangChain helps isolate the devel-
opment of an LLM-based database (conversational)
interface from the underlying LLM, whereas the Lla-
maIndex is a simple, flexible interface between an
LLM and external data.

5.1 LangChain

LangChain12 is a framework to help develop LLM-
powered applications. It is designed to enable two
types of applications:

• Data-aware: connects an LLM to a data source;

• Agentic: allows an LLM to interact with its envi-
ronment.
It also provides two main props:

• Components consist of modular abstractions nec-
essary to work with language models;

• Use-Case Specific Chains consist of assembling
components in particular ways to accomplish a
particular use case. Its central idea is to “chai”
components to create more advanced use cases
around LLMs.
At its core, LangChain has six modules:

• Schema covers the basic data types and schemas
used.

• Models represent the different types of models
that are used in LangChain.

• Prompt refers to the input to the model and is the
new way of programming models.

• Index refers to structuring documents so that
LLMs can best interact with them. Indexes and
retrieval types are currently centered around vec-
tor databases.

11https://huggingface.co/spaces/HuggingFaceH4/open
\ llm\ leaderboard

12https://docs.langchain.com

• Memory is the concept of storing and retrieving
data in a conversation. There are two main meth-
ods: based on input, fetch any relevant pieces of
data, and, based on the input and output, update
the state accordingly.

• Chain is a generic concept that returns a sequence
of modular components (or other chains) com-
bined in a particular way to accomplish a common
use case.

• Agent accesses a suite of tools and, depending on
the user input, decides which, if any, of these tools
to call.

LangChain supports application development us-
ing Python and JavaScript/TypeScript.

LangChain can help design applications such
as personal assistants, chat-bots, question-and-
answering (QA) over documents, summarizing long
documents, extracting structured information from
unstructured text, and querying tabular data. For
example, (Kemper, 2023) illustrated how to use
LangChain to extend GPT-based models for tasks
such as QA from tabular data and QA from doc-
uments, navigating through more complex custom
database schemas. For this task, a chain type called
SQLDatabaseChain, whose main task is to provide
GPT with information from custom databases, is
used, as shown in the code snippet13 below. Note
that “gpt-3.5-turbo” is used as a parameter of the
model class. A set of eight queries over the database
schema was designed for testing. The queries address
different challenging aspects of information retrieval.
The results showed that one query had an obvious
problem. The remaining seven were handled well, in-
cluding queries requiring joins over three tables.

#creating the model object
as ChatOpenAI class
llm = ChatOpenAI(temperature=0,

model_name="gpt-3.5-turbo")
#creating a Chain using SQLDatabaseChain
db_chain = SQLDatabaseChain(llm,

database=db, verbose=True)
#running a query example
db_chain.run("Sum up the total revenue")

5.2 LlamaIndex

LlamaIndex14, also known as GPT Index, is a simple,
flexible interface between LLMs and external data. It
provides the following tools:

13Full code is available at https://github.com/kemperd/l
angchain-sqlchain

14https://gpt-index.readthedocs.io/en/latest/

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

378



• Data connectors to existing data sources and data
formats (APIs, PDFs, docs, SQL, etc.);

• Indices over unstructured and structured data for
use with LLMs;

• A user interface to query the index (feed in an in-
put prompt) and obtain a knowledge-augmented
output; and

• A comprehensive toolset, trading off cost and per-
formance.
The LlamaIndex indices store context in an easy-

to-access format for prompt insertion. They help to
deal with prompt limitations when the context is too
big, and dealing with text splitting. Depending on
the index structure adopted, LlamaIndex offers dif-
ferent methods of synthesizing a response (response
synthesis mode) from the relevant context. The re-
sponse synthesis modes are based on two concepts
node and response synthesis. Node is a generic data
container that contains a piece of data (e.g., a chunk
of text, an image, a table, etc.) and additional meta-
data about its relationship to other Node objects. Re-
sponse synthesis synthesizes a response given the re-
trieved Nodes. LlamaIndex also supports synthesiz-
ing a response across heterogeneous data sources by
composing a graph over the existing data.

The general workflow use of LlamaIndex is as fol-
lows:
1. Load in documents, either manually or through a

data loader, using available data connectors.
2. Parse the documents into nodes.
3. Construct an index, from nodes or documents.
4. Optionally, build indices on top of other indices.
5. Query the index.

Querying an index involves three main compo-
nents:
Retriever: retrieves a set of nodes from an index,

given a query;
Response Synthesizer: takes a set of nodes and syn-

thesizes an answer, given a query; and
Query Engine: takes a query and returns a response

object.
LlamaIndex allows querying data for any down-

stream LLM use case, such as QA tasks, seman-
tic search, summarization, or as a component in a
chatbot. Indeed, it provides features powered by
LLMs to analyze structured data through augmented
text-to-SQL capabilities. The code snippet below
shows a simple example of using the “text-to-SQL”
conversion features. The toy table in this example,
city stats, contains city/population/country
information.

from sqlalchemy
import create_engine

from llama_index
import SQLDatabase,
GPTSQLStructStoreIndex

#use SQLAlchemy to setup a db connection
engine =

create_engine("<database_information>")
. . .
# wrap the SQLAlchemy engine
# with the SQLDatabase wrapper
sql_database = SQLDatabase(engine,

include_tables=["city_stats"])
# the db is already populated with data
# then, create the index from the table
# with a blank document list
index = GPTSQLStructStoreIndex([],

sql_database=sql_database,
table_name="city_stats")

query_engine = index.as_query_engine()
response =

query_engine.query("Which city
has the highest population?")

print(response)

The derived SQL query can be accessed by the code
line

response.extra info["sql query"]

which shows something like

SELECT city_name, population
FROM city_stats

ORDER BY population DESC LIMIT 1

6 CONCLUSIONS

This paper argued that LLMs can be profitably used to
construct natural language database (conversational)
interfaces. The discussion focused on three problems:
(1) How to use an LLM to create an NL database in-
terface; (2) How to fine-tune an LLM to follow in-
structions (i.e., to become a Chat Model) over a par-
ticular database; and (3) How to simplify the con-
struction of LLM-based database (conversational) in-
terfaces. Sections 3, 4, and 5 briefly addressed these
problems with the help of examples.

The paper left out a discussion on Retrieval Aug-
mented Generation (RAG), for lack of space. RAG
does not require model fine-tuning but combines a
prompt engineering approach based on vector embed-
dings to encode the data, stored in a vector store.

The take-home lessons can be summarized as fol-
lows. The OpenAI API and ChatGPT offer interest-
ing facilities to create NL database interfaces which

On the Construction of Database Interfaces Based on Large Language Models

379



greatly simplifies the interpretation of NL queries, the
generation of NL answers, and the control of user dia-
log. The fine-tuning of an LLM to follow instructions
generated from a data source is far more challenging.
LangChain offers a useful framework to isolate the
development of the database interface from the under-
lying LLM, and the LlamaIndex provides facilities to
connect an LLM and a data source.

Lastly, the leaderboards mentioned before provide
references to the latest evolutions in LLM applica-
tions related to the topics of this paper.

REFERENCES

Abdullah, M., Madain, A., and Jararweh, Y. (2022).
Chatgpt: Fundamentals, applications and social
impacts. In 2022 Ninth International Confer-
ence on Social Networks Analysis, Management
and Security (SNAMS’22), pages 1–8. doi:
10.1109/SNAMS58071.2022.10062688.

Affolter, K., Stockinger, K., and Bernstein, A. (2019). A
comparative survey of recent natural language inter-
faces for databases. The VLDB Journal, 28.

Anand, Y. et al. (2023). Gpt4all-j: An
apache-2 licensed assistant-style chatbot.
https://static.nomic.ai/gpt4all/2023 GPT4All-
J Technical Report 2.pdf.

Askell, A. et al. (2021). A general language assis-
tant as a laboratory for alignment. arXiv. doi:
10.48550/arXiv.2112.00861.

Caldarini, G., Jaf, S., and McGarry, K. (2022). A literature
survey of recent advances in chatbots. Information,
13(1).

Carvalho, I. and Ivanov, S. (2023). Chatgpt for tourism:
applications, benefits, and risks. Tourism Review. doi:
10.1108/TR-02-2023-0088.

Conover, M. et al. (2023). Free dolly: Introducing
the world’s first truly open instruction-tuned llm.
https://www.databricks.com/blog/2023/04/12/dolly-
first-open-commercially-viable-instruction-tuned-
llm. online: May 22, 2023.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. (2023). Qlora: Efficient finetuning of quantized
llms.

Diefenbach, D., Both, A., Singh, K., and Maret, P. (2020).
Towards a question answering system over the seman-
tic web. Semant. Web, 11(3):421–439.

Fitria, T. N. (2023). Artificial intelligence (ai) technol-
ogy in openai chatgpt application: A review of chat-
gpt in writing english essay. ELT Forum: Journal
of English Language Teaching, 12(1):44–58. doi:
10.15294/elt.v12i1.64069.

Fraiwan, M. and Khasawneh, N. (2023). A review of
chatgpt applications in education, marketing, soft-
ware engineering, and healthcare: Benefits, draw-
backs, and research directions. arXiv. doi:
10.48550/arXiv.2305.00237.

Hoffmann, J. et al. (2022). Training compute-
optimal large language models. arXiv. doi:
10.48550/arXiv.2203.15556.

Hu, E. J. et al. (2021). Lora: Low-rank adapta-
tion of large language models. arXiv. doi:
10.48550/arXiv.2106.09685.

Jurafsky, D. and Martin, J. H. (2023). Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall. Third Edition draft.

Kemper, D. (2023). Querying complex
database schemas with gpt and langchain.
https://analytix.nl/post/querying-complex-database-
schemas-with-gpt-and-langchain. online: May 22,
2023.

Lecler, A., Duron, L., and Soyer, P. (2023). Revolutioniz-
ing radiology with gptbased models: Current appli-
cations, future possibilities and limitations of chat-
gpt. Diagnostic and Interventional Imaging. doi:
10.1016/j.diii.2023.02.003.

Liu, A., Hu, X., Wen, L., and Yu, P. S. (2023). A com-
prehensive evaluation of chatgpt’s zero-shot text-to-
sql capability.

Manning, C. D. (2022). Human Language Understand-
ing & Reasoning. Daedalus, 151(2):127–138. doi:
10.1162/daed a 01905.

Motger, Q., Franch, X., and Marco, J. (2022). Software-
based dialogue systems: Survey, taxonomy, and chal-
lenges. ACM Comput. Surv., 55(5).

Neelakantan, A. et al. (2022). Text and code
embeddings by contrastive pre-training. doi:
10.48550/ARXIV.2201.10005.

OpenAI (2023). Gpt-4 technical report. arXiv. doi:
10.48550/arXiv.2303.08774.

Ouyang, L. et al. (2022). Training language models to fol-
low instructions with human feedback. In Proceed-
ings of the Advances in Neural Information Process-
ing Systems 35 (NeurIPS’22). online: May 25, 2023.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. (2023).
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/stanford alpaca.

Touvron, H. et al. (2023). Llama: Open and effi-
cient foundation language models. arXiv. doi:
10.48550/arXiv.2302.13971.

Tunstall, L., von Werra, L., and Wolf, T. (2022). Natu-
ral Language Processing with Transformers, Revised
Edition. O’Reilly Media, Inc.

Vaswani, A. et al. (2017). Attention is all you need. In
Proceedings of the Advances in Neural Information
Processing Systems 30 (NIPS’17), volume 30.

Wang, F.-Y. et al. (2023). Chatgpt for computational social
systems: From conversational applications to human-
oriented operating systems. IEEE Transactions on
Computational Social Systems, 10(2):414–425. doi:
10.1109/TCSS.2023.3252679.

Wang, Y. et al. (2022). Self-instruct: Aligning
language model with self generated instructions.
doi:10.48550/arXiv.2212.10560.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

380


