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Abstract: Recently, tracking systems to measure player positions have been introduced in the sports domain. However, 
wheelchair sports have not been considered extensively. In addition, user-friendly and low-cost systems for 
wheelchair sports are uncommon. Thus, in this paper, we propose a method to calculate the kinematic data of 
wheelchair athletes on a playing field (i.e., player positions and wheelchair directions) using images acquired 
by a monocular camera. The proposed method was evaluated experimentally, and the root mean square error 
of the position accuracy was 0.11 m, and the mean average error of the direction accuracy was 6.78 degrees. 
The results demonstrate that the proposed method outperforms existing tracking methods in terms of accuracy. 
The findings of this study suggest that it is possible to acquire kinematic data of wheelchair athletes using a 
simple method, which we expect to contribute to improvement analysis of the wheelchair athlete performance.

1 INTRODUCTION 

Sports promote mental and physical development, 
enrich humanity, and play an important role in living 
a healthy life. For people with disabilities, sports can 
be an important component of their medical 
rehabilitation. In addition, sports can provide lifelong 
recreation and can be played at various levels 
including highly competitive ones, e.g., the 
Paralympics. In Japan, particularly in competitive 
sports, interest in sports for the disabled increased due 
to success of the Tokyo 2020 Olympic and 
Paralympic Games. Wheelchair sports accounted for 
about 50% of the competitions held at the Paralympic 
Games, e.g., tennis, basketball, athletic sports, 
badminton, rugby, and table tennis. Wheelchair sports 
are recognized as an international sport, and global 
competitiveness has advanced significantly in recent 
years (Perret, 2017). 

Moreover, in recent years, there has been a 
growing trend of utilizing technology in the field of 
sports. Various technologies are used to monitor 
performance in both competition and training to 
realize competitive advantages (Halson, 2014). In 
wheelchair sports, wheelchair movement 
performance is critical to evaluate game performance 
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and optimize training routines (van der Slikke, 2016); 
however, literature related to wheelchair sports is 
limited compared to that of other Olympic events, and 
the quantitative evaluation of wheelchair movement 
performance is insufficient (Perret, 2017). Thus, the 
goal of this study is to realize an affordable tracking 
system to obtain kinematic data of wheelchair sports 
to improve wheelchair movement performance 
assessment. However, the literature related to 
wheelchair sports is scarce, and the quantitative 
evaluation of wheelchair movement performance is 
insufficient (Perret, 2017)．This study aims to realize 
a tracking system to obtain kinematic data of 
wheelchair sports in order to improve the level of 
movement performance assessment. 

2 RELATED WORK 

With the increasing competitiveness in wheelchair 
sports, the utilization of technologies has expanded  
(Grogan, 2012) (Laferrier, 2012). For example, to 
evaluate wheelchair movement performance, Inertial 
Measurement Unit (IMU) sensors attached to the 
wheelchair are used frequently due to their user-
friendliness and low cost (Shepherd, 2018). IMU 
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sensors register movement, speed, and angular 
velocity of the wheelchair player (Pansiot, 2011) (van 
Dijk, 2022). In addition, methods based on IMU 
sensors can measure wheelchair movement easily. 
However, wheelchair positions are not accurately 
defined with the help of only IMUs accurate, which 
is one of the problems (van der Slikke, 2017). 

The local positioning system (LPS) using wireless 
technology is a method that can be used to track 
wheelchair positions in various sports, e.g., 
wheelchair rugby and basketball (Rhodes, 2014), as 
well as wheelchair tennis (Perrat, 2015). However, to 
the best of our knowledge, very few related studies 
have been reported. 

Wireless LPSs measure the position and speed of a 
wheelchair player at high accuracy. They comprise 
many fixed base stations and mobile tags attached to 
the wheelchair players; thus, there are some problems, 
e.g., the need for installation of base stations at the 
venue and expensive equipment. In addition, LPSs 
cannot obtain wheelchair motion direction. In 
wheelchair sports, the chair-work skill is an important 
factor when evaluating performance; thus, wheelchair 
direction information must be an available (Mason, 
2013). In addition, attaching IMU sensors or LPSs to 
the wheelchairs or players causes several issues, e.g., 
preventing movement. In addition, such devices are 
not always permitted during official competitions. 

Video-based tracking systems have been reported 
in the reference. Such systems eliminate the need to 
attach devices to the wheelchairs or players, and, 
therefore can collect data about all athletes in the 
game. In field sports, e.g., soccer, player positions can 
be acquired using deep learning techniques and image 
analysis from multiple cameras placed around the 
field (Redwood, 2012) (Linke, 2020). These 
techniques are used in FIFA and Japanese 
professional league matches. However，construction 
work and expensive equipment are required; thus, the 
costs of such systems are high. 

Therefore, less expensive methods have been 
proposed to obtain player positions using single 
camera images (Buric, 2019) (Zhang, 2020). In the 
wheelchair rugby context, a previous study reported 
the acquisition of player positions using single 
camera images. Here, the wheelchair player detection 
rate and the position accuracy were approximately 
20% lower than in the case of soccer; thus, operator 
corrections were required (Sarro, 2008). To the best 
of our knowledge, no video-based tracking system 
that obtains wheelchair directions has been reported 
to date. 

In this study, we developed a video-based tracking 
method for wheelchair sports. Figure 1 shows an 

outline of the proposed method. To realize a simple 
and low-cost system, only a single camera is 
employed in the proposed method. The proposed 
system output both the wheelchair players’ positions 
and the wheelchair motion directions. Thus, the 
proposed method represents a novel technique to 
acquire the variety data that has been difficult to get 
using other systems. 

 
Figure 1: Outline of the proposed method. 

3 PROPOSED METHOD 

Figure 2 shows the steps followed to develop the 
proposed method. In the following, we first describe 
the development of the detection model, including 
dataset creation and the design of the model). We then 
describe the development of the tracking model, 
including the tracking model design, camera 
calibration, and the calculations used to acquire the 
position and direction information. 

 
Figure 2: Steps to develop the proposed method. 

3.1 Detection Model 

Here, we describe the development of the model used 
to detect a wheelchair player in the acquired images. 
Previous studies have reported monocular camera-
based tracking methods that use the YOLO method 
(Redmon, 2016) to detect a bounding box (i.e., a 
square region around each player in the image) (Buric, 
2019) (Zhang, 2020). However, these previous 
studies were limited to able-bodied athletes. When 
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applied to a wheelchair player, bounding boxes were 
only detected for the player, i.e., the wheelchair was 
not included. Thus, the positions of the wheelchair 
players were identified as being above the ground, 
and correct positions could not be detected. Therefore, 
an effective model to accurately detect wheelchairs is 
required. 

In previous studies (Buric, 2019) (Zhang, 2020), 
the center of the bounding box or the midpoint of the 
lower edge of the bounding box was used as the 
player position. In the current study, we developed a 
method to estimate the wheelchair structure by 
applying a human posture estimation model. Based 
on this model, the bottom points of each wheel are 
detected, and the midpoint of the bottom points of 
each wheel is calculated as the wheelchair player’s 
position (shown in Figure 3). This method can detect 
the wheelchair player’s positions using a monocular 
camera independent of the camera positions, 
wheelchair directions, and wheelchair player’s 
posture. 

 
Figure 3: Wheelchair and player detection by the proposed 
model. 

3.1.1 Dataset Creation 

To the best of our knowledge, methods to estimate 
wheelchair structure from a camera image have not 
been reported. Thus, we developed a model to 
estimate the wheelchair structure. A marker-less 
posture estimation technique that uses a camera 
image requires a large dataset to optimize a large 
number of parameters. Thus, developing a wheelchair 
structure model from scratch required a large dataset 
of images with corresponding wheelchair key point 
coordinates. However, it is difficult to collect a large 
number of images of a specific category, e.g., 
wheelchair sports. In addition, it is difficult to 
construct a large dataset because this requires a lot of 
time and effort. Thus, in this study, we adapted a 
retraining method (Dai, 2015) that converts the 
human pose estimation model trained on the MS 
COCO library (Lin, 2014), which is a large human 
pose dataset. A new wheelchair structure estimation 

model can be created even with a small wheelchair 
sports dataset. In this study, we constructed a 
wheelchair sports dataset containing the feature 
points of wheelchair players and their wheelchairs to 
be used in the retraining method. 

Figure 4 shows the key point coordinates. Here, the 
key points included the facial parts and the upper 
body joint points, in reference to the MS COCO data 
used in the pretraining process. The wheelchair key 
points were the centers of the left and right wheels 
and the bottoms of each wheel, which are common to 
all wheelchairs and can be used to capture the 
structure of the wheelchair effectively. In this study, 
a total of 17 key points (i.e., nose, left eye, right eye, 
left ear, right ear, left shoulder, right shoulder, left 
elbow, right elbow, left wrist, right wrist, left hip, 
right hip, center of left wheel, center of right wheel, 
bottom of left wheel, and bottom of right wheel) were 
defined in the wheelchair sports dataset. The knees 
and ankles defined in the MS COCO dataset were 
replaced by the centers of each wheel and the bottoms 
of each wheel in the wheelchair sports dataset. These 
changes were implemented to facilitate efficient fine 
tuning of the parameters. The process used to 
construct the wheelchair sports dataset is described as 
follows. 
 
Step 1.  Automatically collect (royalty-free)  

 wheelchair sports images from the Internet. 
Step 2.  Normalize the image resolution (to 640 × 380 

 dpi). 
Step 3.  Mask people in the images who were not  

 related to the wheelchair players (e.g.,  
 referees and spectators). 

Step 4.  Annotate the 17 key points. 
 

 
Figure 4: Key point coordinates． 

In total, the wheelchair sports dataset contained 
approximately 2300 images with approximately 6000 
subjects. The dataset included images of wheelchair 
basketball, rugby, tennis, badminton, and track and 
field. The images were collected from various 
wheelchair players in terms of gender and ethnicity. 
The pixel size and posture of the wheelchair players 
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in the images also differed, and some of the images 
included overlapping wheelchair player images. The 
key point coordinates on the images were annotated 
manually by sports biomechanics experts. In addition, 
the data were divided randomly into training and test 
sets at a ratio of 7:3. 

3.1.2 Detection Model Design 

We adapted a human posture estimation model 
pretrained on the large-scale MS COCO dataset (Lin, 
2014), and we retrained it on the acquired wheelchair 
sports dataset. As the foundation model, we used the 
Mask R-CNN (He, 2017), which is a widely used, 
flexible, and generic framework for human posture 
estimation methods. The architecture of the 
foundation model is shown in Figure 5. As shown, 
this model comprises three networks, i.e., the 
backbone network to extract features from the RGB 
images, the region proposal network to detect the 
regions of players and wheelchairs, and the key point 
branch to extract the key point coordinates of the 
players and wheelchairs. Thus, fine tuning the 
parameters of the three networks was required in this 
study. 

First, the initial parameter weights were obtained 
by pretraining the algorithms on the MS COCO 
dataset, which contains posture information for 
approximately 150,000 humans in approximately 
60,000 images. Then, the training data from the 
acquired wheelchair sports dataset were used for fine 
tuning. The optimization function was the Adam 
optimizer (Kingma, 2014) with a learning rate of 0.01. 
Here, 30% one of the training data was used as 
validation data, and the parameter weights with the 
minimized loss in the validation data were selected. 
The source code was implemented in Open CV, 
Python, and PyTorch, and training was performed 
using an NVIDIA Tesla V100 GPU on Google 
Colaboratory. 

As a result, a new posture estimation model was 
developed that outputs the key point coordinates of  
the wheelchair player. Note that only the coordinates 
 

 
Figure 5: Architecture of the fundamental model. 

of the bottoms of each wheel were used in the tracking 
method. 

3.2 Tracking Model 

3.2.1 Tracking Model Design 

In Section 3.1, we described the model used to detect 
the key point coordinates (i.e., the coordinates of the 
bottoms of each wheel) in the images. However, this 
model was insufficient for the overall task due to 
occlusion caused by players overlapping images or 
motion blur caused by quick movements. Thus, we 
employed a model that tracks the bottoms of each 
wheel of the same player’s and corrects the missing 
frames by linking a series of detection results between 
video frames. Here, we used the Byte Track method 
(Zhang, 2022) to track multiple objects. Byte Track 
links the detection results between frames by 
predicting the frame-to-frame changes in key point 
regions using a Kalman filter. This simple algorithm 
provides high stability, high speed, and high accuracy. 
The algorithm can stably track the bottom of each 
wheel of the same athlete throughout the entire video. 

3.2.2 Camera Calibration 

In this section, we describe the process of converting 
the key point coordinates (i.e., the coordinates of the 
bottom of each wheel) in the detected and tracked 
video image into a global coordinate (i.e., the position 
in the field). 

We found that there was not possible to measure 
the coordinates of the calibration points in real time, 
and it was impossible to enter the target space for 
tracking. Thus, it was necessary to calculate the 
camera parameters from the feature points in the 
game or practice fields captured by the camera. 

The game and practice fields have feature points 
whose length and size were specified by the 
International Sports Federation’s regulation. Here, 
the camera parameters were calculated based on these 
feature points. Figure 6 shows an image illustrating 
the calculation of camera parameters on a wheelchair 
tennis court. The calibrator (i.e., the court model) was 
created using the court information specified by the 
regulations. Using this court model, the 
corresponding points of the global coordinates were 
mapped to pixel coordinates (at least four points) in 
the image. 

The external camera parameters indicating the 
camera position and orientation in three-dimensional 
space were calculated using the Levenberg–
Marquardt algorithm (Moré, 1978). The internal 
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camera parameters indicating the focal distance of the 
camera were calculated using the hill climbing 
method (Goldfeld, 1966). Using these camera 
parameters, the image-based coordinate points were 
converted to global coordinate points, and by 
exchanging the court model, it is possible to adapt the 
algorithm to other sports. 

The camera parameters were calculated using a 
single frame in the video; thus, the method did not 
support cases where the external camera parameters 
changed in the same video (e.g., camera pan, tilt, 
zoom, and position shift). 

 
Figure 6: Camera calibration. 

3.2.3 Positions and Directions Calculation 

The two-dimensional (2D) position of each 
wheelchair player on the field and the corresponding 
wheelchair directions were calculated from the global 
coordinates of the key points (i.e., the bottom of each 
wheel). Figure 7 shows the coordinate frames in the 
case of wheelchair tennis. The 2D position of the 
wheelchair player 𝑥 ,𝑦  was calculated as the 
midpoint of the bottom of each wheel. 
 𝑥 ,𝑦 𝑥 𝑥 2⁄ , 𝑦 𝑦 2⁄  (1)
 
The wheelchair direction angle θ was calculated as 
follows. This represented the sagittal plane angle of 
the wheelchair. 
 𝜃 𝑎𝑟𝑐𝑡𝑎𝑛 𝑥 𝑥 / 𝑦 𝑦  (2)

 
Figure 7: Example of global coordinate and direction in 
wheelchair tennis. 

4 RESULTS 

4.1 Accuracy of Pose Estimation Model 

We evaluated the accuracy of the detection models 
developed (Section 3.1) on the wheelchair sports 
dataset using the test data, which were not used for 
training. Table 1 shows the error of each model. Here, 
the unit is pixels. The results for the person’s posture 
are the average of the errors for each key point (i.e., 
eyes, nose, ears, shoulders, elbows, wrists, and hips), 
the results for the wheelchair structure are the average 
of the errors for each key point (i.e., the centers and 
bottoms of each wheel), and the results for the person 
and wheelchair structure are the average of the errors 
for all key points. For the human key point, the mean 
absolute error (MAE) was 4.43 pixels. The widely 
used methods for human posture estimation, Mask R-
CNN (He, 2017) and Open Pose (Cao, 2021), were 
4.68 and 4.51 pixels. Thus, the MAE value obtained 
by the proposed method was greater than that of the 
existing methods. The proposed method improved the 
estimation error by more than 1.7% compared to the 
existing methods (He, 2017) (Cao, 2021). For the 
wheelchair key points, the MAE was 6.22 pixels. 
These results confirm that the proposed method can 
be applied to various types of wheelchair sports, 
scenes, and individuals, as shown in Figure 8. 

Table 1: MAE between the estimated coordinates and 
manually annotated coordinates (unit: pixels). 

 
Human 

pose 
Wheelchair 

pose 
Human and 

wheelchair pose
Mask R-CNN  

(He, 2017) 4.68 - - 

OpenPose (Cao, 2021) 4.51 - - 
Proposed method 4.43 6.22 4.94 

 
Figure 8: Examples of estimation results by the proposed 
method (cropped to focus on wheelchair and humans). 

↓ RGB image  Court model → 

↑ Calculated   
   camera   
   parameters 

     Corresponding point 
     to global coordinates 

 (-5.49, 11.89, 0)  (5.49, 11.89, 0) 

 (-5.49, 0, 0)  (5.49, 0, 0) 

𝑥 

𝑦

360 𝑑𝑒𝑔 5.49,  0  
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0,  0  0 𝑑𝑒𝑔 
𝑥 , 𝑦  

𝑥 ,𝑦  𝑥 , 𝑦  
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4.2 Accuracy of Tracking Model 

4.2.1 Data Collection 

To evaluate the accuracy of the tracking model, an 
experiment was conducted during the wheelchair 
tennis matches. Six elite Japanese tennis players 
participated in the study. The matches were held on 
an indoor tennis court, and the players used the same 
wheelchairs they typically use in competitions. The 
players were divided into three groups and played one 
game (singles match). The players were requested to 
play with the same intensity as in international 
competitions. Two cameras (Pocket Cinema Camera 
4K by Blackmagic Design Pty. Ltd., Port Melbourne, 
Australia) were placed at each corner of the tennis 
court.  The height of the camera position was 
approximately 6 m. Each camera monitored half of 
the court. The resolution was 4K, and the frame rate 
was 60 fps. Present study was conducted in 
accordance with the Declaration of Helsinki, and the 
protocol was approved by the Ethics Committee of 
Nagaoka University of Technology. 

4.2.2 Accuracy of Player Detection 

The tracking data of the wheelchair players were 
output from the video images using the proposed 
method. Figure 9 shows an example of the tracking 
result. The player’s trajectory was overlaid on the 
input image. Table 2 shows the detection rate of each 
wheelchair player. As can be seen, the proposed 
method was able to detect the wheelchair players in 
all frames. 

 
Figure 9: Image of the tracking results. 

Table 2: Detection success rate of wheelchair player using 
the proposed method. 

 Total data [s] Detection 
data [s] 

Detection rate 
[%] 

Player 1 2650 2650 100 
Player 2 2650 2650 100 
Player 3 2300 2300 100 
Player 4 2300 2300 100 
Player 5 2900 2900 100 
Player 6 2900 2900 100 

All 15700 15700 100 

4.2.3 Accuracy of Player Position 

The positions of the wheelchair players were 
calculated using the proposed method. The videos 
were also digitized manually as reference values for 
validation. Here, for each player, 120 frames were 
selected randomly, and the bottoms of each wheel 
were digitized manually. The midpoint of each wheel 
was taken as the true value, and the coordinate 
transformation by the camera calibration was the 
same the proposed method. Table 3 shows the 
position determination errors of the proposed method 
(coordinate frames - according to Figure 7). The 
MAE in the horizontal direction (x) was 0.03 m, in 
the depth direction (y) was 0.10 m, and the root mean 
square error (RMSE) was 0.11 m. The values of "All" 
in Table 3 were calculated from all data of all players. 

Table 3: Position determination errors of our method. 
 MAE x [m] MAE y [m] RMSE [m] 

Player 1 0.03 0.09 0.10 
Player 2 0.03 0.09 0.10 
Player 3 0.03 0.14 0.15 
Player 4 0.02 0.09 0.09 
Player 5 0.03 0.09 0.10 
Player 6 0.03 0.12 0.12 

All 0.03 0.10 0.11 

4.2.4 Accuracy of Wheelchair Direction 

The wheelchair motion directions of the players were 
calculated using the proposed method. As in the 
evaluation of the positional errors, here, the true 
values of the wheelchair directions were calculated by 
digitized manual data. Table 4 shows the wheelchair 
directions errors of the proposed model, and the 
coordinate system is shown in Figure 7. As can be 
seen, the mean ± SD was −2.23 ± 8.57 degrees, and 
the MAE was 6.78 degrees. The values of "All" in 
Table 4 were calculated from all data of all players. 

Table 4: Wheelchair direction error of our method. 
 Mean ± SD [deg] MAE [deg] 

Player 1 −3.22 ± 8.65 7.82 
Player 2 −2.48 ± 9.89 8.02 
Player 3 −2.80 ± 8.71 7.13 
Player 4 −0.40 ± 7.98 6.34 
Player 5 −0.73 ± 8.32 6.61 
Player 6 −3.75 ± 7.05 6.46 

All −2.23 ± 8.57 6.78 

 

trajectory over the 
past 0.5 seconds RGB image 
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5 DISCUSSIONS 

We found that the proposed method estimated the 
wheelchair structure with the same accuracy as 
existing human posture estimation models, as shown 
in Table 1. Note that the constructed wheelchair 
sports dataset includes images of wheelchair 
basketball, rugby, tennis, badminton, and track and 
field; thus, the proposed method provides tracking 
data for a wide variety of wheelchair sports. In 
addition to wheelchair structure, the proposed model 
estimates the player’s upper body posture. In addition 
to measuring the wheelchair player positions, it is also 
possible to analyze the upper body movements. For 
example, the proposed method could be used to 
evaluate the wheelchair rowing motion. Also, it 
would be possible to analyze the relationship between 
the upper body usage and chair work skill using the 
proposed method. 

As shown in Table 2, the detection success 
accuracy for wheelchair players were 100%. In a 
previous study (Sarro, 2008), the detection 
successrate of wheelchair rugby players using a video 
camera was approximately 74%, and that of 
wheelchair soccer players was approximately 94%. 
The proposed method demonstrates higher accuracy 
than previous study, and it achieved the accuracy 
required for use in sports. 

The RMSE of the positions determinated by the 
proposed method was 0.11 m, as shown in Table 3. 
When using an LPS in wheelchair sports, the MAE 
was 0.19–0.32 m in wheelchair rugby and wheelchair 
basketball, respectively (Rhodes, 2014), and the 
MAE was 0.37 m for wheelchair tennis (Perrat, 2015). 
The results obtained for the proposed method indicate 
that it outperforms these existing methods in terms of 
accuracy. 

In this study, the position accuracy was evaluated 
in wheelchair tennis. The proposed method can be 
applied to other wheelchair sports by exchanging the 
court model for camera calibration. The proposed 
method is an innovative tracking system that does not 
require base stations or devices attached to the players, 
and it can realize high position detection accuracy 
using only a single camera. 

The MAE of the wheelchair directions tracked by 
the proposed method was 6.78 degrees, as shown in 
Table 4. Methods based on a single IMU sensor are 
widely used to measure wheelchair directions. For 
example, previous studies reported 8.1 degrees (van 
Dijk, 2022) and 11.0 degrees (Rupf, 2021). Thus, the 
proposed method outperforms methods based on a 
single IMU sensor. In addition, to the best of our 
knowledge, the proposed method is the first based on 

a monocular camera. Thus, the proposed method 
provides a simplified novel tool to obtain kinematic 
data for wheelchair sports. 

The proposed method provides the movement 
information of wheelchair players using a single 
camera placed at the side of the field or near audience 
seats. Thus, it is useful for training load management 
and evaluating on-court performance. In addition, for 
competitive sports, the proposed method can be used 
to acquire kinematic data of opponents to improve the 
analysis of tactics. 

The proposed method can be applied to the analysis 
of past legendary players and to compare the past and 
current performance of the same player, even if it is 
not possible to acquire new data using the tracking 
system. We believe that our findings contribute to the 
quantitative performance evaluation of wheelchair 
athletes. 

Finally, we describe the limitations observed in this 
study. We found that the proposed method exhibits a 
larger error in the depth direction than in the 
horizontal direction due to the single camera (Table 
3). In addition, the position error increases when the 
number of pixels per wheelchair player decreases. 
Thus, with the proposed method, it is necessary to 
consider the image acquisition conditions. In this 
study, the evaluation was conducted for singles 
wheelchair tennis; thus, the accuracy may decrease 
according to the overlap of wheelchair players. 
Therefore, in the future, we plan to evaluate the 
proposed method when multiple players are present 
on the same field. 

6 CONCLUSIONS 

In this study, we developed a tracking method to 
measure the kinematic data of wheelchair sports using 
a monocular camera. With the proposed method, the 
RMSE of the wheelchair player position was 0.11 m, 
and the MAE of the wheelchair direction was 6.78 
degrees. In addition, the proposed method achieved 
higher accuracy than existing tracking methods, e.g., 
the LPS and IMU sensor–based methods. The 
proposed method provides a simple tool to obtain 
kinematic data in wheelchair sports, which have not 
been collected previously. This research contributes 
to the quantitative performance evaluation of 
wheelchair athletes. 
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