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Abstract: Indoor localization is of increasing importance in various environments, including hospitals, retirement homes,
and emergency situations. To achieve efficient and accurate positioning of mobile individuals indoors, the opti-
mized distribution of sensors is crucial. The task of manually placing beacons (sensors) for indoor positioning
in a building can be challenging and time-consuming. Several researchers have tackled this issue using differ-
ent algorithms and considering various use cases. In our previous work (Löffler et al., 2022) at the ACS/IEEE
International Conference on Computer Systems and Applications (AICCSA 2022), we introduced a novel
approach that leverages constraint programming with exclusively Boolean variables to efficiently place Blue-
tooth Low Energy (BLE) beacons in indoor scenarios. We evaluated the quality of our results by comparing
them against manually optimized beacon placement and assessing their performance in a real-world building.
This paper extends the findings of (Löffler et al., 2022) by introducing a new constraint-based approach that
incorporates only set variables and Boolean variables, a more elaborate and balanced evaluation, i.e. on further
buildings, and certain refinements of our overall method.

1 INTRODUCTION

Indoor localization is an increasingly important topic,
particularly in hospitals, retirement homes, and highly
industrialized work areas. The ability to quickly lo-
cate patients, disoriented individuals, or injured per-
sons can be crucial in emergency situations, poten-
tially saving lives. For example, in many medical fa-
cilities individuals are currently brought to the treat-
ment area well in advance of their scheduled appoint-
ments to ensure seamless execution of treatments
without time gaps. However, from the patient’s per-
spective, the resulting waiting time is often extremely
frustrating and can even have negative health effects.
In nursing homes and retirement facilities, where in-
dividuals have freedom of movement, staff members
often face challenges in locating patients in a timely
manner for treatment. By employing indoor tracking
systems, individuals can be located and promptly di-
rected to their destinations, reducing treatment wait-
ing times and improving overall circumstances. An-
other application of indoor location services is as-
sisting customers in navigating large public or pri-
vate buildings, such as libraries, parking lots, or of-

fice complexes as well as workers in large industrial
plants, e.g. in rescue situations.

The availability of smaller Bluetooth Low Energy
(BLE) beacons with extended battery lifetimes, along
with the integration of Bluetooth and GPS technolo-
gies in even the most affordable smartphones, enables
rapid and reliable determination of positions in vari-
ous scenarios. Given that GPS signals are typically
unavailable or unreliable inside buildings, indoor po-
sitioning plays a crucial role in facilitating seamless
transition and navigation within such structures. In-
door positioning applications encompass indoor nav-
igation, asset tracking, people or personnel tracking,
and more. Among the prevalent techniques used in
indoor positioning algorithms, BLE beacons and sig-
nal strength measurements are commonly employed
for triangulation, trilateration, or simple proximity-
based approaches. This paper focuses on trilatera-
tion, a measurement method for determining the po-
sition of a point based on its distances to three refer-
ence points. The placement of beacons for trilatera-
tion should strive for optimality, aiming for minimal
beacon usage while maintaining efficacy. The place-
ment and overall quantity of the beacons should be as
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close to optimal as possible for these methods. More-
over, beacon placement should be cost-efficient and
unobtrusive.

Presently, beacon placement is often performed
manually. Manual beacon placement is not only time-
consuming but also prone to errors. Even after ex-
tensive testing, there is no guarantee of complete
coverage throughout the entire building, nor certain
knowledge of a minimum (or acceptably small) num-
ber of beacons. With our new constraint-based ap-
proaches, assuming appropriately pessimistic param-
eter choices, we can ensure complete coverage of all
positions with a minimum number of beacons at the
same time. Our model can also be used to verify man-
ually created beacon placements for their coverage
adequacy.

In this paper, we present a new method to stream-
line and enhance the beacon placement process, lever-
aging constraint optimization and programming tech-
niques to compute optimal beacon positions suitable
for common indoor positioning algorithms. We have
modeled a constraint problem based on set variables
and boolean variables, which employs highly effec-
tive channeling constraints.

The remainder of this article is organized as fol-
lows. Section 2 provides an overview of constraint
programming fundamentals essential for our pro-
posed method. Section 3 reviews prior research on
BLE beacon placement and indoor localization. Sec-
tion 4 describes the beacons, hardware, and soft-
ware used in developing our method. The subsequent
section (Section 5) outlines the developed constraint
problem for beacon placement. Section 6 presents
experimental results obtained from real-world sce-
nario evaluations. Finally, we conclude the paper
and discuss potential future improvements to our new
method (Section 7).

2 BASICS OF CONSTRAINT
PROGRAMMING

Constraint programming (CP) is a powerful method
for declaratively modeling and solving NP prob-
lems. Common research areas in CP include roster-
ing, graph coloring, optimization, and satisfiability
(SAT) problems (Marriott, 1998). In this section, we
provide the necessary definitions of constraint pro-
gramming for our approach, which can be summa-
rized in two steps:

1. Declarative representation of a problem as a
constraint model.

2. Independent solving of the constraint model by a
solver.

The CP user’s responsibility is to model the ap-
plication problem with constraints (1) and initiate the
solver, which runs independently like a black box (2).

We begin by introducing constraints based on fi-
nite domain variables before expanding this concept
to include set variables.

Finite Domain Variables and Constraints

A constraint (X ,R) consists of a relation R and an
ordered set of variables X on which the relation is de-
fined (Dechter, 2003a). Examples include ({x,y},x >
y), ({x,y,z},x∗y = z), or ({A,B},A → B). In this pa-
per, we only specify the relation of a constraint since
the variables used in a constraint are clearly identifi-
able.

A constraint satisfaction problem (CSP) is a 3-
tuple P = (X ,D,C), where X = {x1,x2, . . . ,xn} is a
set of variables, D = {D1,D2, . . ., Dn} is a set of
finite domains where Di is the domain of xi, and
C = {c1,c2, . . . ,cm} is a set of constraints involving
one or more variables from X (Apt, 2003a).

A solution to a CSP is an assignment of values d j
from their corresponding domains Di to the variables
xi, satisfying all constraints. A constraint optimiza-
tion problem (COP) is an extension of a CSP, where
an optimization variable xopt identified as such will be
minimized or maximized.

The following COP 1 is an example for a COP,
which describes the problem of finding a rectangle
a×b with only integer values {1,2,3,4,5} for a and
b, which has a maximum floor area while at the same
time the perimeter must not be greater than 15.

COP 1 = (X ,D,C) with X = {a,b,A,P}, D =
{Da = Db = {1,2,3,4,5},DA = {1,2, ...,25},DP =
{1,2, ...,15}} and the constraints C = {(a ∗ b =
A),(2 ∗ a+ 2 ∗ b ≤ P)}. The optimization variable is
A and should be maximized. An optimal solution of
this COP is a = 4, b = 3, A = 12, and P = 14.

A specific constraint relevant to the upcom-
ing work is the count constraint. The constraint
count(X ,occ,v) limits the variables of the set X such
that the value v only occurs occ times (GCC, 2022;
van Hoeve and Katriel, 2006). For example, the
constraint count({x1, x2,x3,x4},3,1) guarantees, that
the value 1 occurs exactly 3 times in the variables
x1,x2, x3 and x4. Instead of a constant, we also al-
low a set of constants as input for the occurrence
in the count constraint. In this case the occurrence
must be equal to a value in the set. For example
count({x1,x2,x3,x4,x5},{2,3},1) is only satisfied, if
two or three of the variables are assigned the value 1.
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To solve constraint problems (CSPs and COPs),
so-called solvers usually use backtracking search
nested with propagation. Popular finite domain
solvers are among others Google OR tools (Per-
ron and Furnon, 2023), Gecode (Christian Schulte,
2019), JaCoP (Kuchcinski and Szymanek, 2013) or
the Choco solver (Prud’homme et al., 2017), with
the latter beeing used here. More information about
solvers and their mode of operation can be found in
(Rossi et al., 2006; Dechter, 2003b; Apt, 2003b).

Set Variables and Constraints

So far, we have only considered integer variables that
can take on a single value. However, going forward,
we will also allow set variables that can be associated
with a collection of values. A set variable x is a vari-
able that has a discrete domain D(x) = [lb(x),ub(x)],
where lb(x) is a set of values representing the lower
bound and ub(x) is a set of values representing an
upper bound for x. Thus, the domain of a set vari-
able consists mandatory elements (exactly lb(x)) and
possible elements beyond that, i.e. the elements of
ub(x) \ lb(x). The value assigned to x should be a
set s(x) such that lb(x) ⊆ s(x) ⊆ ub(x) (van Hoeve
and Katriel, 2006). An example of a set variable is xS

with a domain D(xS) = {{},{0,1,2}}. This indicates
that the set variable can take the following valid as-
signments: {}, {0}, {1}, {2}, {0,1}, {0,2}, {1,2},
{0,1,2}. Thus, the variable xS is not required to con-
tain any value, but it can include any number of values
from the set {0,1,2}. If the lower bound were set to
{1}, it would mean that all assignments must include
the value 1: {1}, {0,1}, {1,2}, {0,1,2}.

Set variables are somtimes already considered in
finite domain constraint solvers like Choco. It is also
possible to handle set variables as set of Boolean vari-
ables. In this case for each value d j of each variable
xi a Boolean variable xB

i, j is created, which represent
whether the original set variable xi contains value d j
(xB

i, j = True) or not (xB
i, j = False).

Regardless of how set variables are handled by
the solver, they enable us to utilize additional useful
methods and constraints. For example, the method
setCard(IntVar c) sets the cardinality of a set var
equal to an integer variable c. On the other hand,
the boolsChanneling(B = [xB

1 ,x
B
2 ,x

B
3 , ...,x

B
n ],x

S) con-
straint binds the set variable xS to the Boolean vari-
ables xB

1 ,x
B
2 ,x

B
3 , ...,x

B
n , as described before (i ∈ xS ⇔

B[i] = xB
i = True).

3 RELATED WORK

In this section, we delve into current research in the
areas of sensor technology, automatic beacon place-
ment, and indoor positioning.

3.1 Different Sensor Technology

There are two primary approaches to indoor local-
ization: infrastructure-based and infrastructure-less
methods (Taskan and Alemdar, 2021). Infrastructure-
less methods rely on environmental features (sound,
light, magnetic fields, or smartphone sensors) to ob-
tain location fingerprints. Infrastructure-based meth-
ods leverage pre-installed visual sensors or vari-
ous wireless technologies like ZigBee (Fang et al.,
2012), WiFi, Ultra-Wideband (UWB), RFID (Zhang
et al., 2016), and BLE (Subedi and Pyun, 2020).
Infrastructure-based indoor positioning systems can
be costly due to required methodologies or expensive
hardware.

Among infrastructure-based technologies, BLE
has gained widespread adoption in ubiquitous com-
puting and IoT applications due to its low power con-
sumption and cost-effectiveness (Kuxdorf-Alkirata
et al., 2019). BLE beacons are portable, easy to de-
ploy, and offer high positioning accuracy. While Zig-
Bee consumes less energy, its support on smartphones
is limited. WiFi has broad support but higher energy
requirements compared to BLE (Subedi and Pyun,
2020). UWB, an emerging technology, is not yet sup-
ported on smartphones.

3.2 Automatic Beacon Placement

A significant amount of research has been conducted
on the placement of beacons for indoor positioning
algorithms. In the following, we outline the most no-
table approaches.

The first step in beacon placement is determin-
ing a metric to assess the quality of the placement.
One commonly used metric is the Geometric Dilu-
tion of Precision (GDOP). Originally used for navi-
gation satellites, GDOP quantifies the spread of mea-
sured values and depends on the relative positions of
the satellites and the observer. In the work by (Ra-
jagopal et al., 2016), they introduce a method to adapt
GDOP for indoor spaces. This augmented GDOP is
then utilized in a toolchain to evaluate various bea-
con placement algorithms. The study reveals a sig-
nificant reduction in the number of required beacons
compared to standard trilateration techniques.

One category of algorithms for position calcu-
lation relies on the Time-of-Flight (ToF) of signals
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transmitted between the beacons and the target de-
vice. In the research conducted by (Wang et al.,
2019), beacon position optimization for such algo-
rithms is explored. They propose a greedy algorithm
that initially places O(OPT ln(m)) beacons, where m
represents the number of discrete location points in
the region and OPT denotes the size of the optimal
solution. Furthermore, a random sampling algorithm
is introduced, which reduces the number of required
beacons to O(OPT ln(OPT )). These algorithms, on
average, place between 6% to 23% fewer beacons
compared to prior works.

The study conducted by (McGuire et al., 2021) fo-
cuses on the self-localization of autonomous vehicles
in scenarios where traditional methods such as GPS
positioning are not available. In contrast to the pre-
viously mentioned approaches, they utilize the Angle-
of-Arrival (AoA) for position calculation. The inclu-
sion of the heading angle sets this method apart from
others and adds complexity to the resulting optimiza-
tion problem. The paper first presents the determinant
of the Fisher information matrix for an arbitrary num-
ber of beacons. Subsequently, the optimal angular
separation for three beacons is analytically derived.
The optimality of the solution is then demonstrated
through numerical simulations.

In a different approach, (Sharma and Badarla,
2018) adopts a unique strategy by considering the
placement domain of beacons as a grid of candidate
locations on the surfaces of ceilings and walls in the
target indoor environment. They formulate the er-
ror propagation resulting from the geometric arrange-
ment between anchor beacons and target devices as
an optimization objective. To minimize the total bea-
con count while satisfying the GDOP constraint men-
tioned earlier, they employ Mixed Integer Linear Pro-
gramming (MILP). The proposed method was com-
pared against the conventional linear placement of
beacons, which assumes a planar geometry between
device and beacon locations. The results demon-
strated an improvement in the minimum GDOP while
maintaining the same number of placed beacons.

However, to the best of our knowledge, no other
work has employed a comparable specific constraint
programming approach for beacon placement using
solely Boolean variables or set variables.

3.3 Indoor Positioning

One of the main use cases for an automatic placement
of beacons in a building is indoor positioning. Hence
this section examines some of the current work re-
garding this use case.

Many of these systems also utilize information ob-

tained from nearby BLE beacons for indoor position-
ing. One such method is developed by (Tomažič and
Škrjanc, 2021). They introduce a novel visual-inertial
localization algorithm that automates the collection of
Bluetooth data required for positioning. This data is
subsequently utilized in a constrained nonlinear opti-
mization algorithm. The developed algorithm is im-
plemented on a smartphone, enabling real-time deter-
mination of beacon locations and the creation of path
loss models. The paper highlights the advancement
of their innovation by allowing users to assess if suf-
ficient data has been computed for achieving the de-
sired positioning accuracy.

A distinct approach was explored by (Grottke and
Blankenbach, 2021). Their research employs an evo-
lutionary optimization strategy to implement an in-
door positioning algorithm, utilizing the Wireless Lo-
cal Area Network (WLAN), Bluetooth (BLE), and the
smartphone’s Inertial Measurement Unit (IMU). Each
new source of information modifies the probability
values of particles through a probability-map-based
approach. Their results showed a reduction of the
maximum position error 31%, while the RMSE and
the 95-percentile positioning errors could be reduced
by 34% and 52% respectively.

The authors of (Amsters et al., 2019) conducted a
comprehensive evaluation of efficient indoor position-
ing systems, considering factors such as cost and ac-
curacy. Their findings indicated significant advance-
ments in the field of indoor positioning. Simple in-
door positioning systems, based on cameras, can be
obtained for a few hundred dollars, while higher ac-
curacies can be achieved with technologies like HTC
Vive at a slightly higher cost. However, these systems
may not be scalable for larger environments. To ad-
dress this, the authors recommended systems such as
Marvelmind or Pozyx, which utilize ultrasound rang-
ing and Ultra Wide Band beacons, respectively. No-
tably, none of the recommended efficient systems re-
lied on BLE beacons, underscoring the need for fur-
ther improvement in positioning using this technol-
ogy.

4 EXPERIMENTAL SETUP

In this section we briefly examine the hardware that
was used to test the beacon placement in buildings
and introduce the software we used to implement our
algorithm. Finally, in this section we explain how our
input building plans look like. In order to be compara-
ble with (Löffler et al., 2022), we made no changes to
the setting, but simply included additional floor plans
in the evaluation.
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4.1 Hardware and Software

The system uses BLE beacons from the company
blukii called Smart Beacon Go Mini. The beacons are
based on Bluetooth 4.2 (Bluetooth Low Energy), use
a Texas Instruments CC2640 controller and are pow-
ered by a CR2032 battery (providing up to a half year
of runtime when using a 1 second advertising inter-
val). The beacons support the iBeacon and Eddystone
protocols and have a configurable advertising interval
of 0.1 to 1 second while providing a range of up to 50
meters.

Different smartphones were used to check the sig-
nal strengths in the building from (Löffler et al., 2022)
at different locations and to make test and calibration
measurements. The main smartphone used for tak-
ing measurements was a Google Pixel 3a running An-
droid 12 with Bluetooth 5.0 capabilities.

The software for calculating the optimal beacon
placement was written in Java and with the help of
the Choco solver (Prud’homme et al., 2017) library.
No further software was necessary. It is possible
to replace Java and the Choco solver by any other
programming language and constraint solver. The
method presented in the following Section 5 is inde-
pendent of the used software.

4.2 Building Plans

The building plans for the floors of the considered
building were available in the PDF file format. As
an extension to (Löffler et al., 2022), we considered
3 more floor plans (see Figures 1 to 3) from typical
school buildings in East Germany as tests for the sub-
sequent beacon positioning. We converted the build-
ing from (Löffler et al., 2022) and the three new build-
ings to PNG files with 1,000,000 to 16,000,000 pix-
els, such that every pixel represents an area of 4cm
by 4cm. We differentiate between different wall types
and areas within the floor plans: massive walls, dry-
walls, triple glazed windows, free spaces which must
be covered by beacons and free spaces which do not
need beacon coverage. The different wall types have
an influence on the range of the individual beacons
and are considered when later calculating the posi-
tions of the beacons.

The selected floor plans have deliberately been
chosen to be highly diverse. Thus, the floor plan of
the school in Dresden (Figure 2) consists of only one
building. In contrast, the schools in Dahlewitz (Figure
1) and Potsdam (Figure 3) consist of two buildings,
which are connected by a thick corridor (Dahlewitz)
or three small corridors (Potsdam). We have chosen
the same resolution of 4 cm by 4 cm for the three new

Figure 1: The floor plan of a school in Dahlewitz (Sch,
1999).

Figure 2: The floor plan of a school in Dresden (Sch, 1999).

floor plans as the floor plan of the building in (Löffler
et al., 2022). Similarly, all other parameters are se-
lected in a consistent manner.

5 METHOD

In this section, we briefly explain the approach from
(Löffler et al., 2022) and elaborate on our new con-
straint modeling.

5.1 The General Approach

Figure 4 gives an overview over the developed pro-
cess which is explained in the following subsections.

Figure 3: The floor plan of a school in Potsdam (Sch, 1999).
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Map of the building

2-D env. resistance AE and reachability arrays AB

Preprocessing

Scaled env. resistance As
E and reachability arrays As

B

Different scalings s = 4,5,10,15, ...,54,60

Beacon coverage set S

RSSI based range calculation

Scaled COP

COP construction

P = (X ,D,C,min(numOfBeacons))

Optimized COP

COP refinements

Popt = (X ,D,C,min(numOfBeacons))

Beacon positioning

COP solving

Figure 4: Overview of the beacon positioning process from
(Löffler et al., 2022).

First, the input building plan is preprocessed to
capture all relevant wall properties, including wall
thicknesses and wall types. This process generates
two arrays, one (AB) reflecting whether a region
should be covered by beacons (areas within the build-
ing) or not (areas outside the building, walls, etc.),
and a second one (AE) indicating the environmental
resistance for beacon signals in each region (environ-
ment factor E). These arrays are then scaled to dif-
ferent sizes. Different scalings ensure whether the in-
put image is accurately reconstructed or abstracted.
Without scaling, each 4cm x 4cm pixel would be di-
rectly taken into account. By scaling, multiple pixels
are merged together. Depending on the scaling, the
resulting COP arises with a varying number of vari-
ables and constraints, which needs different solution
times. The coverage of each scaled region by placing
a beacon in each area is determined (Beacon coverage
set S) by use of Equation 1 and serves as the basis for
the Constraint Optimization Problem (COP). Before
solving the COP, various refinements are performed
on it to minimize the solution time. Finally, the COP
is solved with the objective of minimizing the total
number of beacons used.

distance = 10M1− RSSI
10∗E (1)

The COP modelling starts with a very large scal-
ing factor, resulting in a low level of detail and a
small generated COP. This COP is solved consider-
ing a specific time limit, and the best solution found
is recorded. Subsequently, the scaling factor is re-
duced, and a new COP is created. The new COP, due
to its higher resolution, exhibits a higher level of de-
tail but also generates a larger COP. Since all calcu-
lations resulting from scaling are rounded pessimisti-
cally, COPs with a low grid density are the quickest
to solve due to its small size. However, it may lead to
inferior solutions compared to COPs with higher grid
density, which, due to a higher number of variables
and constraints, requires more time for solution com-
putation. This approach allows for quickly finding a
good solution and, over time, discovering even better
solutions.

In comparison to (Löffler et al., 2022), it turned
out that we were overly pessimistic by introducing
a dynamic component in the calculation of the en-
vironmental factor E for the RSSI value. Thus, we
only consider static values for E: 2 (freeSpaces), 2.5
(drywalls), 4.5 (massiveWalls), and 10 (glass) and re-
moved the dynamic part which depends on the wall
thickness.

The determination of the environmental factor re-
mains pessimistic, as we always consider the highest
occurring value along a given path. For instance, if
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there is a massive wall (E = 4.5) between the current
position and a beacon, while the rest of the space is
unobstructed (E = 2), the value of 4.5 will still be
assumed for the entire distance in the environmen-
tal factor calculation. The constant pessimistic esti-
mation ensures that every calculated solution corre-
sponds to a reliable real-world solution. For more
details about the general approach, please refer to
(Löffler et al., 2022).

5.2 The Constraint Optimization
Problem

We use constraint programming to mathematically
model and optimize the beacon placement. Therefore,
we create a COP that describes the conditions for the
beacon placement (using trilateration), i.e. solutions
of the COP are all possible placements of beacons. An
optimization is then carried out over this very large
number of variants. This is realized by adding an ob-
jective function (minimize(xcount)), such that we get a
COP.

In (Löffler et al., 2022) a COP based on boolean
variables and count constraints was created. This
paper presents a new approach which is based on
set variables, boolean variables, and channelling con-
straints between them. The aim of the COP is to
achieve a minimum number of beacons while com-
pletely covering every point in the building with (at
least three) radio signals. The new COP is described
below and given in Figure 5.

For our set variable based COP we work with an
additional grid G3 which represents the input map.
Each grid element in G3 has a size of 3m by 3m.
Therefore, the beacons we want to position can only
be placed at locations that are at least three me-
ters apart horizontally and vertically from each other.
Keep in mind that the original map can have a pixel
size of 4 cm by 4 cm. This means that a beacon can
only be placed at every 75th position in both hori-
zontal and vertical directions (0.04m∗75 = 3m). So,
while the size of our scaled map is determined by the
scaling factor s and has n×m grid elements, the grid
G3 always has a size of nG3 ×mG3, where nG3 is the
length of the building (in meter) divided by 3 and mG3

is the width of the building (in meter) divided by 3.
The feasible positions for beacon placement, denoted
as Sx,y, only need to contain positions that fall within
our grid G3.

For each position in the grid G3, we create a
boolean variable xi, j with a domain Di, j = {0,1}.
Additionally, we have an optimization variable xcount
with a domain Dcount = {3,4, ...,nG3 ∗mG3}, and a set
variable xS

i, j for every position on the scaled map. The

domain of each set variable xS
i, j consists of the posi-

tions in the set Si, j. When a boolean variable xi, j is set
to true, it indicates that there is a beacon at position
(i, j). If a set variable xS

i, j contains the value (a,b),
it means that the position (i, j) is covered by a signal
from a beacon at position (a,b).

A constraint (|DS
i, j| ≥ 3) is created for each set

variable to ensure that every set domain has at least
three values, guaranteeing that each position on the
map is covered by at least three beacons. Addition-
ally, we need to ensure that a set domain only con-
tains a value (i, j) if there is a beacon at position (i, j),
meaning the boolean variable xi, j is set to true. Fortu-
nately, the boolsChanneling constraint, described in
Section 2, precisely fulfills this requirement. There-
fore, the constraint specifically requires the boolean
variables representing positions in Si, j and the set
variable xS

i, j as inputs. All of this collectively forms
the constraint optimization problem shown in Fig-
ure 5.

We used the same optimizations to improve the
solution speed of the COP as in (Löffler et al., 2022).
This includes different scalings, the use of paralleliza-
tion through a portfolio approach, and the addition of
additional constraints.

6 RESULTS

In this section, we evaluate our new constraint-
based method by comparing the maximum numbers
of beacons calculated using the constraint optimiza-
tion method and its solution times against the COP
in (Löffler et al., 2022), and two greedy-based ap-
proaches.

The best solution for the building in (Löffler et al.,
2022) we could find using our boolean variable-based
constraint modeling approach, is illustrated in Fig-
ure 6. Similarly, the best solution we could find for
the set variable-based constraint modeling approach
is shown in Figure 7. The purple squares indicate the
areas where the placement of beacons is required to
ensure that at least three beacon signals cover each
position on the entire building level. Due to our pes-
simistic approach, a purple square divided by a wall
signals that the beacon can be placed on either side
and still ensure triple coverage.

The solution of the boolean-based COP uses 15
beacons and the solution of the new set variable-based
COP uses 18 beacons, which is five and two beacons
fewer than what we needed for our best manually
crafted solution. We thoroughly examined for both
solutions the entire floor and confirmed that every
area consistently received signals from at least three
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P = (X ,D,C, f ) with:

X = {xi, j | ∀i ∈ {1, ...,n3}, j ∈ {1, ...,m3}} ∪ (one Boolean variable for each position (i, j) in the grid G3)
{xS

i, j | ∀i ∈ {1, ...,n}, j ∈ {1, ...,m}} ∪ (one set variable for each position (i, j) in the n×m map)
{xcount} (a beacon counting variable)

D = {Di, j = {0,1} | ∀i ∈ {1, ...,n}, j ∈ {1, ...,m}} ∪ (at position (i, j) is a beacon (1) or not (0))
{Dcount = {3, ...,nG3 ∗mG3}} ∪ (maximal number of beacons is between 3 and n∗m)
{DS

i, j = Si, j | ∀i ∈ {1, ...,n}, j ∈ {1, ...,m}}
(every position (i, j) can be covered by all beacons with position in Si, j)

C = {|DS
i, j| ≥ 3 | ∀i ∈ {1, ...,n}, j ∈ {1, ...,m}} ∪ (every position (i, j) is covered by at least 3 beacons)

{boolsChanneling(boolvars(Si, j),xS
i, j) | ∀i ∈ {1, ...,n}, j ∈ {1, ...,m}} ∪

(if there is a beacon at position (i, j) then all set variables
corresponding to a position in Si, j contain the position (i, j))

{count({xi, j | ∀i ∈ {1, ...,n}, j ∈ {1, ...,m}}, xcount , 1)} (sum up the used beacons)

minimize(xcount)! (minimize the number of used beacons)
Figure 5: The set variable COP which represents the beacon positioning problem.

Figure 6: The best solution found with the boolean variable-
based approach for the building from (Löffler et al., 2022):
15 beacons.

different beacons. The improvement, which is three
beacons better compared to (Löffler et al., 2022), is
attributed to the removal of the dynamic component in
the RSSI calculation. This assumption, as mentioned
before, was overly pessimistic.

To enhance the comprehension and evaluation of
the effectiveness of our method, we conducted a com-
parative analysis with the two greedy approaches pre-
sented in (Löffler et al., 2022). The first greedy ap-
proach prioritizes covering large areas in the mid-
dle of the buildings initially and subsequently focuses
on the boundaries of the buildings. Consequently,
the first set of beacons covers significant portions of
the building, but unfortunately, the borders are ini-
tially overlooked. This drawback results in the algo-

Figure 7: The best solution found with the set variable-
based approach for the building from (Löffler et al., 2022):
18 beacons.

rithm requiring a greater number of beacons to cover
smaller areas at the borders of the building towards
the end. The second algorithm assigns higher weights
to hard-to-reach places such as corners, ensuring they
are covered earlier. This approach results in fewer
critical areas remaining where a larger number of bea-
cons would be required at the end.

Both greedy algorithms perform significantly
worse than the constraint-based approaches and yield
inferior solutions. For the building in (Löffler et al.,
2022), the first greedy algorithm requires 27 beacons,
while the second greedy algorithm requires 28 bea-
cons. In comparison, the constraint-based approaches
outperform both greedy algorithms by achieving bet-
ter results.
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Table 1: A comparison of the results between the two constraint-based and greedy-based approaches.

Boolean COP Set COP Greedy 1 Greedy 2
Beacons Time Beacons Time Beacons Time Beacons Time

BTU Cottbus 15 207s 18 0.12s 27 0.08s 28 0.06s
Dahlewitz 9 185s 9 7.93s 11 0.01s 10 0,01s
Dresden 9 0.03s 10 0.02s 11 0.01s 12 0,01
Potsdam 43 168s 48 0.08s 50 0.48s 49 0.5s

Table 1 shows solutions with the fewest beacons
found by the various approaches for different build-
ings, along with their corresponding solution times.
It can be observed that the boolean variable-based ap-
proach from (Löffler et al., 2022) consistently finds
the best solution, requiring the fewest number of bea-
cons. The set variable-based approach, while only
achieving an equally good solution for the school in
Dahlewitz, quickly finds a good solution (in 3 out of
4 cases in under 1s and in one case in under 8s). The
runtime of each COP was limited to 10 minutes, and
the same solver settings were used. The two greedy
algorithms quickly find a solution (always under 1s),
but in this comparison, the solutions they find are con-
sistently the worst.

Of course, trying our approaches for only four
buildings against two simple greedy algorithms is no
proof that our constraint approach always finds an op-
timal solution, but it can be seen as confirmation that
our approach poses a valid alternative. Furthermore, it
was demonstrated that our new constraint model (the
set variable-based COP) is capable of solving such
placement problems with good results in very short
time.

The greedy approaches compute only one solu-
tion each, while the COPs, on the other hand, com-
pute multiple solutions, from which they then select
the best one, resulting in a slightly longer computa-
tion time. However, the computation times are mini-
mal, and it can be expected or at least presumed that
this scalability will hold true for larger, more complex
buildings, as the beacon placements are ultimately
only influenced locally due to the layout of corridors
and rooms within the building.

For highly complex problem instances, two dif-
ferent scaling approaches can be employed. One is
already inherent in our developed process, involving
various scaling factors for environmental resistance
As

E and reachability arrays AS
B. However, this scal-

ing approach is limited due to the restricted range of
the beacons. Since the range cannot be scaled accord-
ingly, in the more extensively scaled arrays, only a
few areas are covered, resulting in significantly re-
duced accuracy of the overall computation and, due
to the pessimistic perspective, inferior outcomes.

The alternative approach to scaling large layouts

would be their division into sectors, with individ-
ual coverage calculations. At the interfaces between
two sectors, there may potentially arise areas of fre-
quent overlap, which could unnecessarily increase the
overall number of required beacons. Nevertheless, it
should still be possible to quickly achieve very good
solutions using this method.

7 CONCLUSION AND FUTURE
WORK

We introduced a new method for finding optimal so-
lutions to a sensor beacon placement problem for in-
door positioning. This method utilizes Boolean vari-
ables and set variables with Boolean channeling con-
straints. We conducted additional experiments to
determine environmental factors for different types
of walls, leading to the realization that the previ-
ously considered dynamic component was overly pes-
simistic and could be eliminated. We then modeled
and solved a new representative Constraint Optimiza-
tion Problem (COP) for the issue and outlined meth-
ods to improve the solution process. Our approach
was tested on floor plans from four different buildings
and compared against the approach of (Löffler et al.,
2022) and two greedy algorithms. The results demon-
strated the effectiveness of our method in achieving
good solutions fast.

Future work involves expanding our experiments
to include more buildings, conducting an experimen-
tal analysis of additional environmental factors for
different wall types, incorporating additional con-
straints to accelerate the solution process, enhancing
the signal strength estimation, and exploring the uti-
lization of a SAT solver. Additionally, we are inter-
ested in studying the interaction of beacons across dif-
ferent floors and in vertical spaces such as stairwells.
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Tomažič, S. and Škrjanc, I. (2021). An automated indoor lo-
calization system for online bluetooth signal strength
modeling using visual-inertial slam. Sensors, 21(8).

van Hoeve, W.-J. and Katriel, I. (2006). Global Constraints.
In (Rossi et al., 2006), First edition. Chapter 6.

Wang, H., Rajagopal, N., Rowe, A., Sinopoli, B., and
Gao, J. (2019). Efficient beacon placement algorithms
for time-of-flight indoor localization. In Proceedings
of the 27th ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Sys-
tems, Chicago, IL, USA, November 5-8, pages 119–
128.

Zhang, D., Yang, L. T., Chen, M., Zhao, S., Guo, M., and
Zhang, Y. (2016). Real-time locating systems using
active RFID for internet of things. IEEE Syst. J.,
10(3):1226–1235.

Enhanced Optimal Beacon Placement for Indoor Positioning: A Set Variable Based Constraint Programming Approach

79


