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Social network analysis is a prominent and thriving research field, with community detection being a partic-

ularly active area of study. In this study, we propose a cuckoo search-based approach for identifying the best
network partitions by maximizing the modularity function. The proposed algorithm combines wisely the con-
tinuous nature of the standard cuckoo search algorithm with the discrete nature of the community detection
problem to achieve the best results. Firstly, the algorithm incorporates the random key representation, which
operates in a continuous space. This representation enables the algorithm to perform global and local walks,
enabling both exploration and exploitation within the search space. Secondly, the algorithm utilizes the locus-
based representation to handle the discrete aspect of the community detection problem. Experiments on both
synthetic and real-world networks demonstrate the effectiveness and efficiency of our proposed algorithm.

1 INTRODUCTION

Recently, social networks, initially introduced by
Wasserman and Faust (1994), have gained consider-
able popularity in research and development, partly
due to more and more social media platforms such as
Facebook, Instagram, and Twitter, being built online
and the development of Web 2.0 applications. Social
networks model social relationships by graph struc-
tures using vertices and edges. Vertices model indi-
vidual social actors in a network, while edges model
relationships between social actors.

Social networks have the characteristic property to
exhibit a community structure, and highlighting the
hidden structures of many real-world networks has
drawn a wide range of researchers from many areas.
As a result of the huge interest in the topic, a large
number of surveys on community detection have been
published (Souravlas et al., 2021; Khan and Niazi,
2017; Cai et al., 2016). Communities are formally de-
fined as sub-graphs in which nodes are more strongly
connected to each other than to the rest of the network
(Girvan and Newman, 2002).

Various approaches have been proposed to ad-
dress the community detection problem in social net-
works, as highlighted in the recent survey conducted
by Bara’a et al. (2021) wherein researchers formu-
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lated the issue as a combinatorial optimization prob-
lem. This formulation enables the application of var-
ious optimization methods, including heuristics and
metaheuristics, and functions for measuring the qual-
ity of partitioning in communities of a network have
been proposed. Among them, modularity emerged
as one of the most well-known and widely employed
measures in this field (Newman and Girvan, 2004).
Nowadays, nature-inspired metaheuristic algo-
rithms have gained significant popularity in the op-
timization field. The literature has been rich in regard
to different optimization strategies for detecting com-
munities by maximizing the aforementioned partition
quality indicators (Bedi and Sharma, 2016; Su et al.,
2022). In particular, metaheuristics, inspired by bio-
logical processes, have proven to be effective methods
for tackling community detection problems in com-
plex network instances (Osaba et al., 2020), with Evo-
lutionary Algorithms as the most resorted optimiza-
tion techniques in the last years (Pizzuti, 2017).
Cuckoo search algorithm (CSA) (Yang and Deb,
2009) is one of the recent nature-inspired algorithms
used extensively to solve optimization problems in
different fields of engineering (Yang and Deb, 2010).
It is very effective in solving global optimization be-
cause it is able to maintain a balance between local
and global random walks. Nonetheless, the appli-
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cation of the CSA to solve the community detection
problem is very limited. Zhou et al. (2016) proposed
a multi-objective discrete CSA with local search tech-
niques. Their algorithm aimed at minimizing the ra-
tio association (RA) and the ratio cut (RC) to enhance
community quality. Shishavan and Gharehchopogh
(2022) used a hybrid approach by combining genetic
operators with the CSA to overcome local optima and
improve its applicability to the community detection
problem.

Using the cuckoo search algorithm directly for
community detection can potentially diminish its ef-
fectiveness because the algorithm was primarily de-
signed for continuous problems. This presents a chal-
lenge because community detection problems inher-
ently possess a discrete nature. In light of this, the
aim of this paper is to develop and assess the perfor-
mance of Cuckoo search algorithm to discover com-
munities in social networks. Firstly, the proposed al-
gorithm incorporates the random key representation,
which operates in a continuous space. This repre-
sentation allows performing global and local walks,
enabling both exploration and exploitation within the
search space. Secondly, the algorithm utilizes the
locus-based representation to meet the requirements
of the discrete nature of the network community de-
tection problem.

The structure of the paper is as follows: Section 2
gives the community detection problem description.
Section 3 describes the proposed cuckoo search algo-
rithm. The results of experiments conducted on syn-
thetic and real networks are presented in Section 4.
Finally, Section 5 concludes the paper and discusses
possible future work.

2 PROBLEM FORMULATION

A social network can be modeled by a graph, de-
noted G = (V, E), which includes N = |V| nodes and
m = |E| edges. V represents the set of nodes and E
represents the set of edges connecting two nodes in
G. Ais an N x N adjacency matrix of the network,
where A;; represents the element at the i row and j'*
column of A. If there is an edge connecting nodes i
and j, A;; = 1; otherwise A;; = 0.

The problem of community detection requires
the partitioning of the network into sub-clusters or
communities. This partitioning is denoted as C =
{C1,...Cy}, where each element C; [ = 1,2,....,k is a
proper subset of V, and k is the total number of com-
munities. Moreover, for any two communities C; and
C; e Candi# j,ViNV;=¢. The quality of the com-
munities obtained is often measured by the so-called
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modularity function Q (Newman and Girvan, 2004).
Q is a value between -1 and 1 that measures the den-
sity of the links within the communities compared to
the links between the communities; it can also be de-
fined as the difference between the edges of the net-
work connecting vertices of the same type and the ex-
pected value of the same quantity in a network with
the same community divisions but random links be-
tween vertices. It is computed according to equation
1:

1 kikj se. o
0= m lzj,[Al./ zm]a(ctvc./) ey
Where A;; represents the adjacency matrix, k;(k;)
is the degree of node (), c¢i(c;) is the community of
node i(j), m is the sum of all the links in the graph. &
is the Kronecker delta function 8(x,y) = 1 ifx =1y, 0
otherwise.

3 PROPOSED CUCKOO SEARCH
BASED SOLVING APPROACH

Cuckoo search algorithm (CSA) (Yang and Deb,
2009) is a metaheuristic optimization algorithm, in-
spired by the brood parasitism behavior of some of
a bird family called cuckoo (Yildiz, 2013). Cuckoo
birds lay their eggs in another nest, called the host
nest where they imitate the color and patterns of the
host eggs to prevent them from being discovered. if
the host bird discovers them, the cuckoo eggs can be
thrown or the host bird leaves its nest. To make the
algorithm suitable for solving optimization problems,
the eggs of the nest are associated with a set of can-
didate solutions for a given optimization problem. In
particular, CSA is based on three idealized rules:

* Each cuckoo lays one egg at a time, and deposits
it in a randomly selected nest.

* The best nests containing high-quality eggs will
be passed on to subsequent generations.

* The number of available host nests is fixed, and
the egg laid by a cuckoo is discovered by the host
bird with probability Pa. In this case, the host bird
can either discard the egg or simply abandon the
nest and build a brand-new one.

This algorithm follows a simple approach where
each nest is associated with a single egg, and each
cuckoo can lay only one egg (thus representing one
solution). We can safely make no difference between
an egg, a nest, or a cuckoo. The aim is to use the new
and potentially better solution (cuckoo egg) to replace
existing solutions in the nests.
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In the proposed algorithm, hereinafter RKCSA for
random key CSA, the nests represent the current so-
lutions or candidate solutions represented with a new
structure combining both the locus representation and
a random key representation. The eggs or nests corre-
spond to the new solutions generated by both global
and local walks. The algorithm evaluates these new
solutions using the modularity function based on the
locus representation and replaces the existing solu-
tions in the nests with the improved ones. By con-
tinuously generating and evaluating new solutions for
the locus vector, RKCSA aims to enhance the qual-
ity of the solutions over time. The replacement pro-
cess ensures that only better solutions are retained in
the nests, leading to the continual improvement of
the overall solution quality. It is worth noting that
the random key representation, depicting the continu-
ous nature of the algorithm, also plays a crucial role
in guiding the search and exploration process. How-
ever, the replacement of solutions in the nests specif-
ically focuses on the locus representation to improve
the community detection results. By combining the
exploration capabilities of the random key represen-
tation and the refinement process of the locus repre-
sentation, the proposed algorithm aims to achieve bet-
ter performance in optimizing the modularity function
and identifying the best network partitions. The pop-
ulation of nests is subjected to repeated cycles until
the stop criterion is satisfied.

Next, we will delve into a comprehensive explo-
ration of the proposed algorithm, providing a detailed
explanation of its step-by-step process in algorithm 1.

3.1 Solution Encoding and Decoding

The implementation of RKCSA at hand begins with
egg encoding to generate a random initial population.
A candidate solution X, i.e. an egg, (Figure la) is
coded by a two-field structure where:

* The first field is the locus vector (Figure 1b)
that uses the locus-based representation (Pizzuti,
2008). Each individual in the population consists
of N genes {g1,....,g,} equivalent to the number
of nodes in the network. Each gene g, in an in-
dividual is assigned a value v, which represents
one of the adjacent nodes of node u. In this rep-
resentation, it is necessary to perform a decoding
step to identify all the components of the graph,
so that the nodes participating in the same com-
ponent are assigned to the same community (Piz-
zuti, 2008). This decoding step can be performed
in linear time using the method described in (Cor-
men et al., 2022).

* The second field is the key vector (Figure 1c) that

takes a random value between 0 and 1 associated
with each node in the network. This random key
representation enables the algorithm to operate in
a continuous space, facilitating smooth transitions
between solutions and allowing for efficient ex-
ploration of the search landscape. This contin-
uous aspect is crucial in navigating the complex
and high-dimensional solution space of commu-
nity detection problems.

To generate the initial solutions, we need to initial-
ize both the locus-based vector and the random key
vector. For the locus vector initialization, we assign
to a node one of its neighbors. On the other hand, to
initialize the key vector, we assign a random number
between 0 and 1 to each node in the network. Ac-
cording to this representation, prior knowledge of the
number of communities is not needed.

"

(a) Graph partitions.

(b) Locus vector.
1 2 3 4 5 6 7 8

Key | 0.28 | 0.55 0.83 0.62 | 0.02 | 045

(c) Key vector.

Figure 1: Example of a solution representation.

3.2 Global Walk

The first component of the cuckoo search algorithm
known as the Lévy flights or global walk generates
new solutions in proximity to the best solution found
so far (Reda et al., 2022). In the proposed algorithm,
we need to create both a new key vector and a new lo-
cus vector to generate a new cuckoo. The generation
of a new key vector is done using the Lévy flights’
distribution according to equation 2.

Ty (1 1) = X (1) + @5 (xfy (1) =205y (1)) (2)
Where xj,,, (1), 5, (t +1) and x2% are the current,

the new, and the best key solution, respectively. s is
the step size while « is the scale of the step size.
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In Mantegna’s algorithm (Mantegna, 1994), the
step size s can be calculated using two Gaussian dis-
tributions u and v via the transformation of equation
3.

u
S= 1
V[P

3)

With

u~ N(0,var(u)) et v~ N(0,var(v)) 4)
And

r'(1+B) sin(nB/Z)]l/B
BE((1+B)/2) 2607

var(u) = |

b

®)

var(v) =1

Where u and v are random numbers from a
normal distribution, N(I') is the normal(gamma)
distribution. var(u(v))is the variance of u(v) is the
gamma distribution, and B = 1.5.

To generate a new locus vector as shown in figure
2, we perform the following steps:

1. Calculate the difference between the old and new
key vectors |x,, (1 +1) —x;,. (¢)].

2. If the difference is greater than the acceptance rate
|x;;e),(t +1)—xi oy(1)| > 8, we reinitialize the cor-
responding node with the neighbor of the best so-

lution so far xf’(fg,ﬂs(t). Otherwise, the node’s value
remains the same as the previous iteration.

3. The newly generated solution is evaluated using
the modularity measure (Eq.1) on the locus vector,
and if it has greater modularity than the current
solution, then it replaces the current solution for
this nest.

3.3 Local Walk

The second component of the cuckoo search algo-
rithm is the abandon operator. Its purpose is to gen-
erate solutions that are far from the best solution ob-
tained. This is done to prevent the search from getting
trapped in local optima and to encourage exploration
of different regions of the search space. By introduc-
ing diversity into the search process, the algorithm in-
creases the chances of finding the global optimum or
better solutions (Reda et al., 2022).

In the abandon operator, the host bird has a proba-
bility Pa of discovering foreign eggs in its nest. If for-
eign eggs are found, the host bird will abandon them
and replace them with new eggs. In RKCSA, this pro-
cess is applied to the key vector, where foreign solu-
tions are replaced with new solutions generated using
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equation 6.
ey (1) =X} (1) + S+ K (6)
With
k{0 Giemie @
And
S = (o 1) X O0) - ®)

Where rand is a random number within [0,1], Pa
is the discovery probability and randperm(n) is the
permutation function that chooses a random number
in the range [0,n].

After generating a new key vector, the locus vector
needs to be updated by following these steps:

1. Calculate the difference between the old and new
key vectors \x}'cey(t +1)— x;;e),(t +1)

2. If the difference is greater than the acceptance rate
(i.e, |x§m,(t +1) —xfcey(t +1)| > §), then the corre-
sponding node in the locus vector is reinitialized
by one of its neighbors, unlike the global walk,
whose value is reinitialized by the neighbor of the
best solution. Otherwise, the node’s value remains
the same as in the previous step;

)

3. The newly generated solution is evaluated using
the modularity measure (Eq.1) on the locus vector,
and if it has greater modularity than the current
solution, then it replaces the current solution for
this nest.

4 EXPERIMENTAL RESULTS
AND DISCUSSION

To assess the efficiency and performance of our pro-
posed algorithm, RKCSA, we conducted a compre-
hensive set of experiments on both synthetic and real-
world networks using a personal computer running
Windows 10 Enterprise, equipped with 8 GB of RAM
and powered by an Intel(R) Core(TM) i7-3537u CPU
with a clock speed of 2.50 GHz.

For the synthetic networks, we used the well-
known LFR benchmark (Lancichinetti et al., 2008),
which allows us to generate networks with various pa-
rameters. In our experiments, we focused on varying
the mixing parameter u from O to 0.8, with an interval
of 0.05. This deliberate variation was intended to cre-
ate a scenario where the boundaries between commu-
nities became increasingly blurred, thereby making
the task of community detection significantly more
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Key(t+1) [Xeaf() | [Kimglt+1) - Xeey(t+1) [>0.001

0.65 0.62 0.03
0.12 0.02 0.10
0.45 0.45 0

Locus

Key

5 8 8 7
0.36 0.62|0.02|0.45
5 8 8 7
0.36 0.62|0.02 | 0.45

Figure 2: An example of the locus vector generation.

challenging. Then, we created two groups of net-
works with different community sizes by specifying
the minimum and maximum number of communities.

For real-world networks, we also employed a di-
verse set of 11 real-world networks from various do-
mains with diverse sizes and characteristics. Details
are presented in Table 1.

Table 1: Real-world networks.

Network | Nodes | Edges
Karate 34 78
Dolphin 62 159
Polbooks 105 441
Football 115 613
Lesmis 77 254

Jazz 198 2742
Metabolic 453 2040
08blocks 300 584

Neural 297 2148
Polblogs 1490 | 16718
Netscience | 1589 2742

In order to evaluate the performance of RKCSA
algorithm, we compared it with six other algo-
rithms namely: GN (Girvan and Newman, 2002),
CNM (Blondel et al., 2008), Louvain (Blondel et al.,
2008), BCD (Binary Swarm Optimization) (Beldi and
Bessedik, 2019), ABC (Artificial Bee Colony) (Da-
kiche et al., 2022), and CSA (The standard Cuckoo
Search Algorithm).

4.1 Evaluation Metrics

Given the fact that we have two types of networks,
with and without the ground truth community struc-
ture, we adopt two widely used criteria to evaluate
the accuracy of community detection algorithms. For
the synthetic networks where the ground truth com-
munity structure is known, we used the Normalized
Mutual Information (NMI) (Danon et al., 2005) met-
ric to assess the similarity between the detected com-
munities and the ground truth. The NMI is calculated
according to equation 9.

—2%4 X2 Cijlog(CiiN /Ci.C )

Yt Cilog(Ci/N)+ X%, C jlog(C.j/N)
©))

Where A and B are two communities in the net-
work. C;; is the number of nodes in community A; € A
that are also in community B; € B. ca(cp) is the num-
ber of groups in A(B). C;. and C ; are the sum of the
elements of C in row i and column j respectively. N
is the number of nodes.

For real-world networks, where the ground truth
community structure is not available, we used the
Modularity function (Eq 1) to measure the quality of
the detected communities.

NMI(A,B) =

4.2 RKCSA’s Parameters Tuning

The most important cuckoo search algorithm includes
three parameters: Pa (abandonment probability for
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worse nests), step size scale (), and acceptance rate
(0). Among these parameters, Pa and o play a cru-
cial role in achieving improved solutions. Therefore,
in this paper, we have undertaken a sensitivity anal-
ysis of performance for RKCSA to examine the ef-
fects of varying the values of five parameters: pop-
ulation size (n), the maximum number of iterations
(maxGen), and the CSA parameters Pa, o, and 8. Af-
ter a deep analysis of the results, we observed that
the performance of the algorithm was sensitive to the
choice of parameter values. For the population size
(n), we found that values between 150 and 200 led
to the best outcomes. Regarding the maximum num-
ber of iterations (maxGen), we observed that values
between 800 and 1000 were optimal. The step size
scale () was found to be most effective when set to
0.1. For the acceptance rate (8), we obtained the best
results when it was set to 0.1. The complete details
are not reported for the sake of a concise presentation.

Algorithm 1: Random key cuckoo search algorithm
for community detection.

Data: A network G = (V,E)

Result: Community structure of the network

C={C,C,...,Ct}

Initialize the algorithm parameters n
(population size), maxGen (maximum
number of iterations), Pa (discovery
probability), o (step size scale), &
(acceptance rate).

Generate an initial population of n hosts with
both key vector and locus vector Xiey, Xiocus
respectively.

while ¢ < maxGen do

Generate cuckoos by global walk.

Evaluate the quality of the cuckoo
solution Q(x/, . ).

Choose a nest j among n nests at random.

if (Q(X;UL‘MS) > Q(XEOCMS)) then

Replace cuckoo i with the new
cuckoo j.

end

A fraction Pa of the nests are abandoned.

New nests are generated by local walk.

Keep the best solutions (nests with
quality solutions).

Rank the solutions and find the best
current solutions.

Update ¢ < ¢+ 1.

end
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4.3 RKCSA Performance Analysis on
Synthetic Networks

Figure 3 presents the experimental results on LFR
benchmarks. It shows the performance of different
algorithms in detecting the real communities for var-
ious values of the mixing parameter, u. Plots (a)
and (b) in Figure 3 correspond to the same network
size with two different community sizes (small 20-
50 and big 30-100). For u = 0.05, most of the algo-
rithms are able to accurately detect the real commu-
nities. However, as the value of u increases beyond
0.05, the algorithms start to struggle in identifying the
real communities, except for the Louvain algorithm
which maintains its effectiveness until g = 0.2. From
u=0.25 to y = 0.5, the Louvain algorithm consis-
tently outperforms the other algorithms in detecting
real communities. In terms of the metaheuristic al-
gorithms, RKCSA demonstrates better performance
than the other metaheuristics for y values less than
0.5. Itis able to maintain its ability to detect real com-
munities effectively. However, for u values greater
than 0.5, we observe that the CSA, BCD, and RKCSA
algorithms converge towards similar results and out-
perform the other algorithms (CNM, GN, and Lou-
vain) in terms of community detection accuracy.

These results highlight the varying performance of
the algorithms based on the value of the mixing pa-
rameter, with some algorithms performing better in
specific ranges of u. It also indicates the effective-
ness of RKCSA and other metaheuristic algorithms
in community detection tasks, particularly for certain
parameter settings.

4.4 RKCSA Performance Analysis on
Real Networks

Table 2 presents the experimental results of modu-
larity on real-world networks. The numbers in bold
indicate the highest modularity values in each corre-
sponding row. It is observed that the RKCSA algo-
rithm achieves optimal modularity results for 7 out
of 11 real-world networks, accounting for 63.64% of
the networks. On the other hand, the Louvain algo-
rithm obtains the best results for 5 networks, which
corresponds to 45.45% of the networks. Furthermore,
RKCSA outperforms GN, CNM, ABC, BCD, and
CSA algorithms on 10 out of the 11 networks, making
it a competitive method for the community detection
problem. These results highlight the effectiveness of
RKCSA in achieving high modularity values and its
capability to accurately identify community structures
in various real-world networks.



Improved Random Key Cuckoo Search Optimization Algorithm for Community Detection in Social Networks
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0.8
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0.2

0.05 01 015 0.2 0.25 03 0.35 04 045 05 0.55 06 065 0.7 0.75 0.8
Mixing parameter
GN CNM Louvain e===BCD  ===(CSA  ===RKCSA

(a) 20-50

0.8

0.4
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0
005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 038
Mixing parameter

GN CNM Louvain  e===BCD  ====(CSA  ====RKCSA

(b) 30-100

Figure 3: NMI results on LFR benchmarks with n = 500. (a) Small size communities. (b) Big-size communities.

Table 2: Comparison of modularity results on real-world networks.

Network GN CNM | Louvain | BCD ABC CSA | RKCSA
Karate 0.4013 | 0.3807 | 0.4198 | 0.4198 | 0.4198 | 0.4188 | 0.4198
Dolphin 0.5194 | 0.4955 | 0.5185 | 0.5253 | 0.5285 | 0.4572 | 0.5285
Polbooks | 0.5168 | 0.5020 | 0.5270 | 0.5189 | 0.5116 | 0.4915 | 0.5285
Football 0.5996 | 0.5497 | 0.6043 | 0.5146 | 0.6009 | 0.3671 | 0.6044
Lesmis 0.5381 | 0.5006 | 0.5548 | 0.5430 | 0.5594 | 0.4879 | 0.5600
Jazz 0.4051 | 0.4389 | 0.4438 | 0.3120 | 0.4384 | 0.2392 | 0.4426
Metabolic | 0.4048 | 0.4172 | 0.4405 | 0.3128 | 0.3664 | 0.2569 | 0.4055
08blocks | 0.8599 | 0.8750 | 0.8750 | 0.8104 | 0.8750 | 0.8749 | 0.8750
Neural 0.3010 | 0.3728 | 0.3926 | 0.2319 | 0.3137 | 0.1901 | 0.4254
Polblogs | 0.4180 | 0.4270 | 0.4269 | 0.3642 | 0.3702 | 0.2234 | 0.4234
Netscience | 0.9579 | 0.9551 | 0.9592 | 0.9006 | 0.9086 | 0.8909 | 0.9500
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S CONCLUSIONS

In this paper, we presented a novel cuckoo search al-
gorithm, RKCSA, for community detection in social
networks. Where we proposed a new solution rep-
resentation that combines the locus and random key
representations of the network to enhance its search
ability. Experiments on both synthetic and real-world
networks show that RKCSA can accurately and ef-
fectively uncover the community structure. We also
demonstrated the superior performance of RKCSA
compared to the standard CSA algorithm. However,
in real-life networks, we can find multiple relation-
ships between a couple of nodes. Therefore, we
aim to extend our algorithm to handle multilayer net-
works.
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