Wireless Remote Control of Low-Cost Smart Devices for No-Coders

Leopoldo Armesto!©?, Sara Blanc?>©®, Antonio Gonzalez>©° and Antonio Sala

3nd

Unstituto de Disefio y Fabricacion, Universitat Politécnica de Valéncia, Spain

2 Instituto U. de Tecnologias de la Informacion y Comunicaciones, Universitat Politecnica de Valencia, Spain

3 Instituto U. de Automdtica e Informdtica Industrial, Universitat Politécnica de Valencia, Spain

Keywords:

Abstract:

Block Programming, Educational Robotics, Robot Programming, Internet of Things, Home Automation.

This paper describes the development of a block programming tool, named Facilino, to remotely control

multiple agents consisting of low-cost smart devices based on ESP32 and Arduino, such an intelligent house
and a robot, using Bluetooth and WiFi (HTTP) in the context of educational applications. Facilino is based on
Blockly, a library that has been adapted to create Arduino code from custom blocks. The new tool is combined
with App Inventor to develop Apps with no-coders. The paper describes the preliminary results using this tool
within research and development and academic activities.

1 INTRODUCTION

In the last decades, the education system is quickly
becoming outdated as a consequence of the intro-
duction of new technologies, particularly the Inter-
net of Things. We aim to contribute to a more mod-
ern school system by properly stimulating students’
imagination and creativity through the adequate tech-
nological resources. Indeed, STEM approach to ed-
ucation (Schejbal et al., 2022; Ruutmann, 2015) pro-
vides a suitable field to increase students’ motivation,
level of participation and engagement, communica-
tion, collaboration, critical thinking and creativity.

Block programming tools have been popularized
in the recent years coping with the dilemma “Learn
to code* vs. “Code to learn®. In the first approach,
coding is the aim and students must learn their fun-
damentals, however this will be only of interest to a
small part of the population; while in the second ap-
proach, students code with the purpose of learning an
added value knowledge and coding becomes a tool for
a given mean.

People have different opinion about the benefits
of using block programming tools (Cash, 2020; Had-
low, 2018; Guzdial, 2022), but clearly its use has
been growing in the last decade among young learn-

https://orcid.org/0000-0003-0979-4428
https://orcid.org/0000-0001-6439-2902
https://orcid.org/0000-0002-4669-8374
4@ https://orcid.org/0000-0002-5691-8772

o

iel

Armesto, L., Blanc, S., Gonzélez, A. and Sala, A.
Wireless Remote Control of Low-Cost Smart Devices for No-Coders.
DOI: 10.5220/0012194600003543

ers with few experience in coding, and multiple tools
have been popularized among makers, educators and
even senior people. Among them, Scratch (Maloney
et al., 2010; Ouahbi et al., 2015) and Blockly (Paster-
nak et al., 2017; Trower and Gray, 2015) have become
the more popular options.

Block programming tools have been widely used
in different applications such as programming robots
(Trower and Gray, 2015); on smart devices using
MQTT in Internet of Things applications (Adi and
Kitagawa, 2019) and industrial robots (Winterer et al.,
2020). In addition to this, block programming tools
have shown the capability to focus on the impor-
tant concepts of coding, abstracting complex routines
into a single block. They also have the advantage of
hardware abstraction, at least, when referred to the
programming of micro-controllers, since the block
can have the same aspect, but the generated code
might be adapted to the specific hardware require-
ments. Projects (Schejbal et al., 2022; Kusmin et al.,
2019) based on Arduino, Raspberry Pi, ESP8§266 and
ESP32 processors allow students to participate on
STEM project aimed with different purposes, such as
robotics, light control, wearables, eco-technology, in-
cluding also the development of soft-skills as part of
the learning process. Block programming tools allow
them to program these devices via Bluetooth or WiFi
connectivity without getting stucked at details which
are not relevant in terms of a STEM project. For in-
stance, aspects such as remote data access between
two devices might require complex concepts (for a

173

In Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2023) - Volume 2, pages 173-180

ISBN: 978-989-758-670-5; ISSN: 2184-2809

Copyright © 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

young learner) such as syncronization, baudrate trans-
mission, telegram structure, data formatting, etc...

Facilino is a block programming tool based on
Blockly (Armesto, 2016). It has been widely used
by no-coder learners for programming smart devices
in the Internet of Things (Armesto, 2019) and low-
cost Arduino robots (Armesto, 2017). Recently, we
have published a new version of Facilino, which is
purely based on frontend-backend architecture devel-
oped using a variety of programming languages in-
cluding PHP, javascript and HTML.

This paper focuses on Facilino’s features such
as bluetooth and WiFi communication with low-cost
electronics in order to develop custom smart devices
integrated with custom Apps using App Inventor 2.
We have developed specific Facilino blocks for pro-
gramming ESP32 devices and also Arduino (ATMega
328p with a Bluetooth module). In particular, we
show the use of these new blocks on a low-cost robot,
known as bPED and a smart-house (developed in the
context of EcoThings project, grant 2021-1-ESO1-
KA220-SCH-000034349).

This paper is organised as follows: Section 2 de-
scribes the main developments of the paper using Fa-
cilino; Section 3 describes an extension for App In-
ventor compatible with Facilino blocks; Section 4 de-
scribes the results applied to remotely control a low-
cost Arduino robot via bluetooth and a smart-house as
well as a survey conducted to Facilino users. Section
5 draws some conclusions..

2 BLOCK PROGRAMMING
WITH Facilino:
COMMUNICATION BLOCKS

We have created several blocks in Facilino aimed to
help students abstracting some complex aspects of
communication between devices. For instance, on
ESP32 processors, Facilino can generate code for
communicating (using several approaches) with ex-
ternal devices via Bluetooth or WiFi using its inte-
grated antenna, while for Arduino (ATMEGA 328p),
wireless communication must be done using a Blue-
tooth/WiFi module (i.e.: HC-06 or ESP-01) through
digital pins using a software serial library. Blocks
used on either case are practically similar, while the
code they generate is different (hardware abstraction).
In the following, we will discuss some simple ap-
proaches to complete our aim.

174

2.1 Classic Bluetooth

In particular, for Bluetooth communication between
two peer devices (using SPP profile (Argenox, 2020)),
we propose two simple approaches!:

¢ Commands: A single byte is transmitted from
one device to another. The number of commands
is obviously limited to 256, but avoids synchro-
nization between devices (every single byte is the
actual data being transmitted). The device receiv-
ing commands will simply listen incoming data
and proceed accordingly with received command.
There must be an agreement between the trans-
mitter sending data and the receiver interpreting
commands.

* Telegram: One device can request data to an-
other device and thus the receiver can pro-
vide a response is data is requested back. In
this case, we can implement a basic tele-
gram structure where data length can be larger
than one byte length. In particular, we have
implemented the following telegram structure
STX+CMD+LEN+DATA+END, where STX is a
telegram starting code (in our case we use '@’
symbol), ’CMD’ is the command number, ’LEN’
is the length of "DATA’ field and ’END’ is a tele-
gram ending code (in our case we use **’ sym-
bol). The length of all this fields is 1 byte, but the
"DATA’ field that has a variable length, depending
on the command.

Following this approach, we can distinguish be-
tween two types of telegrams on transmissions be-
tween an App controlling a smart device:

1. App Requests for Sensor Readings: The
transmission is initiated by the App requesting
data with a telegram, i.e.: requesting the read of
a digital pin is implemented as @+0+1+10+%
(command field is 0 and data length field is 1
and data is 10, that is the pin number). Then,
the device receiving the telegram decodes it and
sends a telegram back to the App with the data,
i.e.: @+1+2+10+1+* (command field in the re-
sponse is incremented by 1, data length is 2 and
data is contains the read pin number and the ac-
tual pin value). Then App can notify the user
on the reception of the response telegram with
an event containing received data.

2. App Requests for Actuators: The transmis-
sion is initiated by the App with a telegram con-

1Of course, more complex approaches can be imple-
mented too, but keeping it simple has the advantage that can
be easily understood by pupils aged between 12-18 years
old.

taining data to set the actuator value, i.e.: to
control a servo position we can send the tele-
gram @+16+2+3+90+*, where in this case, the
servo position command is 16, data length is 2,
and data field contains the pin number (3 in this
example) and the target position in degrees (90°
in this case). No response telegram is needed in
this case.

2.2 REST API

In this approach, the device implements a web server
receiving HTTP requests implementing a basic REST
API (Fielding, 2000). In order to exchange data with
the device, a client sends HTTP requests to specific
REST end-points and the server returns a JSON file if
read data is requested. For instance, reading a digital
pin value can be done by sending an HTTP request to
the REST end-point “DigitalRead/pin”, where ‘pin° is
the pin number; the server will respond with a JSON
file containing a ‘status‘ field, ‘pin°‘ field and ‘value*
field. On the other hand, setting the value for a digital
pin will imply to send an HTTP request to the REST
end-poin “Digital Write/pin/value®, where ‘pin‘ is the
pin number and ‘value® is either 1 o O (true or false)
and no response back is expected.

2.3 Communication Blocks in Facilino

Following the previous ideas, we have implemented
Facilino blocks to allow bluetooth and WiFi commu-
nication. Figure 1 shows the block used to receive
bluetooth commands, where the user can add up-to
256 commands and needs to set the command value.
This block instruction is usually included inside the
main loop of the code.

Decode message

command

| command
S

@) Bluetooth Receive Command

D Loop? B

command

command

Loop? @

Figure 1: Facilino block for bluetooth communication via
commands.

On the other hand, Figure 2 shows some of the
blocks defined to decode telegrams on the device.
The checkbox fields are used to enable decoding of

Wireless Remote Control of Low-Cost Smart Devices for No-Coders

generic telegrams, such as digital or analog inputs or
digital or analog outputs. More complex telegrams
might require specific fields to access sensor data or
to set the actuator value, such as the ones shown in
the figure to read the temperature from a DHT sensor
or to set the position of a servo.

Bluetooth Receive telegram

Digital Read @ Digital Write @
Analog Read) Analog Write [§

Telegram [Telegram DHT Temperature sensor

Data

DHT11

Telegram
Data

Figure 2: Example of bluetooth telegram decoding with Fa-
cilino. It decode telegrams to read a temperature as well as
servo telegrams.

Also, Figure 3 shows some of the blocks defined
to decode HTTP requrests on the device. As it can
be seen, we have defined blocks that ressembles the
bluetooth telegram blocks, but the generated code is
completely different.

HTTP APl REST Receive
Digital Read [} Digital Write [§§
Analog Read) Analog Write [§

API REST Temperature

Data pin

Response DHT11

APIREST Servo
Data [pin

Figure 3: Example of REST API decoding with Facilino.
It decode HTTP requests to read a temperature as well as
Servo requests.

In our current implementation, we have managed
to implement telegrams for transmitting generic enu-
merated data such as booleans, integers, floats or
strings. Also to control 180° and 360° servos, to set
specific tones on a buzzer, to set a melody (a string
concatenating frequencies and durations) on a buzzer,
to set specific “expressions* on a 8x8 LED matrix or
a 7-LEDs RGB strip and to read data from an ultra-
sonic sensor; and humidity and temperature from a

175

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

DHT sensor. Obviously, the number of telegrams can
be extended to other sensors/actuators.

3 Facilino EXTENSION FOR APP
INVENTOR

App Inventor 2 (AI2) is a web app developed by MIT
App Inventor Team to develop Android Apps based
on a simple set of instructions using Blockly, see,
for instance to learn the fundamentals of AI2 (Wolber
etal., 2011). In order to extend AI2 capabilities, they
introduced the use of extensions (AI2, 2015), which
allows developers to create new components that can
be used within AI2. In that sense, we have created
an AI2 extension to communicate with smart devices
using Facilino (Armesto, 2015). In particular, two ex-
tensions have been developed in order to read from a
set of predefined sensors or send command values to
a set of actuators with use a very similar interface (see
Figure 4 for the list of available components):

¢ Bluetooth extension: Based on the built-in Blue-
tooth client, it extends its functionalities imple-
menting telegram coding/decoding to communi-
cate with Facilino.

* Web extension: Based on the built-in Web client
component, it extends its functionalities imple-
menting a REST API communication with Fa-
cilino via HTTP.

\\"'\, AnalogReadBluetooth
M AnalogReadWeb

Il AnalogwriteBluetooth
I Analogwriteweb

@1 BooleanVariableBluetooth
@1 BooleanVariableWeb

B BuzzerBluetooth
B Buzzerweb

DigitalReadBluetooth
1 DigitalReadBluetoo 11 DigitalReadweb

q] DigitalWriteBluetooth q

DigitalWriteWeb
FacilinoBluetoothClient FacilinoWeb
U FloatvariableBluetooth TC Floatvariableweb
48 HumidityBluetooth 48 HumidityWeb
8 IntVariableBluetooth 8 IntVariableWeb
B LeoMatrixsxsBluetooth B8 LeoMatrixsxaweb

RGB_LEDStripBluetooth RGB_LEDStripWeb

ServoBluetooth @ servoContweb
@ servoContBluetooth = ServoWeb
®m SonarBluetooth ®m SonarWeb
Aa StringVariableBluetooth Aa StringVariableWeb
§ TemperatureBluetooth § Temperatureweb

(a) Bluetooth extension (b) Web extension

Figure 4: Components of Facilino AI2 extensions.

Bluetooth extension uses FacilinoBluetoothClient
component to handle bluetooth communication (con-

176

jon-visible components

Clock1 ClockTemperature FacilinoBluetoothClient1 D13LED D12LED D2Bt D3Bt AOPot Servo Temperature

Figure 5: User-interface example on AI2 using Bluetooth
extension.

nection and disconnection from the server), while
the Web extension uses FacilinoWeb component to
send/receive HTTP requests. In both cases, the exten-
sions include equivalent components to send/receive
generic data (such as booleans, ints, floats or string),
to handle digital or analog signals or to exchange data
with specific devices such as a humidity and temper-
ature sensor, a sonar, a servo, RGB LED strip, etc...

All sensors implement an Request method to read
data, using a non-blocking call. On data reception, the
event Received notifies the user with the sensor value.
On the other hand, actuators have procedures that al-
low to set their state, such as the Set method for a Dig-
italWrite component or the Move method for a Servo
component. An example on how to use Facilino AI2
extension using bluetooth’? can be seen in Figure 5
and Figure 6, where only relevant blocks have been
included, while other blocks with replicated function-
alities have been omitted for compactness. On the
other hand, Figure 7 shows Facilino blocks used to
read from digital and analog pins and a DHT sensor
and to set LEDs values and position of a servo.

4 RESULTS

In order to validate our developments, we have tested
Facilino communication capabilities on two test-bed
educational platforms: a low-cost walking robot and
a low-cost home automation prototype.

4.1 bPED: A Low-Cost Walking Robot

bPED (see Figure 8a) is a low-cost walking robot with
4 joints (two on each leg). It’s movement is character-

ZWeb extension version uses equivalent components.

when (GEC[ERED .Changed
CONNCEIN D12LED v St

when ([@LISIED - Timer

'@ | ReadSwitch - M On - | e

then | call ([RZ:[#d .Request

call [(RE[#® .Request
:all AOPot v BEERIER

—

value |
\/1:=h | ClockTemperature * Faflylls

ReadSwitch * | On ~ |

do if
Len call .Request
-y

(a) Sensor requests

RedLed * [On - |

(-1 thumbPosition * ey Recelied

when ([Tl .Received

Wireless Remote Control of Low-Cost Smart Devices for No-Coders

when U Received
value |

don set (TS . ATES to [cet REITERS
Cet PotSlider ~ M| ThumbPosition + B

get

when EENCEIEEES PositionChanged

<.} BEEH LbiServoAngle * M Text + IGME 8 thumbPosition
call EZ1% Move

temperature
do :e1 LbiTemp ¥ Text + B

get

do (o] if | get (ZITRD
ifien <ct (IETRPED - GETEED o

SESN set (ETrED . (ETEED to

(b) Sensor readings and actuators requests

Figure 6: Main components for bluetooth App.

Sefup Bluetooth definition

Name MEEDEVSY
Master? @

=@

' Ignore output

Loop Biuetooth Receive telegram
Digital Read & Digital Write
Analog Read @ Analog Write @
Telegram | Telegram EEGTRA

Telegram DHT Temperature sensor
Data

Response T—— DHT11
L e |

Figure 7: Facilino blocks using telegrams.

ized by having no hip and thus in order to walk needs
proper coordination of foot and leg motors on each
leg. It uses an Arduino Nano (ATMega 328p) pro-
cessor to control four servo motors (SG90) to move
robot’s joints, an ultrasonic sensor (HC SR04) to de-
tect objects, a passive buzzer to produce sounds such
as simple melodies, a 1.9° OLED screen to display
images and a bluetooth module HC-06 to extend com-
munication capabilities of Arduino Nano.

We have used this robot with a group of 8 students
(17-years old) in a educational initiative, known as
Praktikum, held at the Universitat Politeécnica de Va-
lencia (UPV) from 19th to 22nd june 2023. Within
Praktikum, students received a 6h course on how to
program with Facilino from scratch, using robot’s
components. They developed exercises to gener-
ate robot’s movements, read from ultrasonic sensor,
create customizable melodies and expressions (emo-

(a) bPED Robot

Figure 8: bPED robot used during Praktikum initiative at
the UPV.

(b) A Praktikum session

tions) using the buzzer and the OLED screen with
the aim of creating a simple choreography with syn-
chronized movements, sounds and emotions. In addi-
tion to this, they developed the code for a simple App
containing buttons to send movement and expression
commands to the robot. A sample App was provided
to them with all components created for them, but
with blank code (only with the user-interface), while
the students had to implement code on AI2, but also
the code on the Arduino side with Facilino (in Fig-
ure 10 code for one single command is shown for
brevity, but students completed the code to include
upto 17 movements and 13 expressions). To grasp
an idea on the learning curve, students were able to
complete all these activities, while, of course, enjoy-
ing creating their own programs. None of them had
previous experience on Facilino, only three of them
had previous experience with Arduino and also two
of them used App Inventor beforehand in their regu-
lar academic activities.

177

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

Componentes no visibles
o
8

bt

Figure 9: AI2 user-interface with command buttons.

Define walking robot

Leg 1 AO ¥
Leg 2 Al
Ankle 1 A2~
Ankle 2 A3 v
Settings
Leg1 +-[)
Leg2 +-([)
Ankle 1 +/- [
Ankle 2 +/- [

Bluetooth definition

Baud rate YY)
RX D11 -

TX D10 ~
_@ Bluetooth Receive Command
EED Locp? @
do Move walking robot

command

uovemem Walk forward

Figure 10: Facilino blocks for receiving bluetooth com-
mands using bPED robot.

4.2 Home Automation

An intelligent eco-house described in this document
has been designed under EcoThings Project. The pur-
pose of this house is to serve as a mock-up in order to
evaluate the set of proposed electronics in the context
of an intelligent ecological house using similar prin-
ciples of real houses and energy saving systems. As a
consequence, the design has been oriented in provid-
ing low-cost solutions, considering as well as manu-
facturing aspects including 3D printing and laser cut-
ting.

The smart house includes a living room and a
green house that includes the following electronics:
ESP32 board, Arduino Uno Extension Shield V5, 3
servo’s (SG-90), Smoke/Gas sensor (MQ2), a mini
fan, a temperature/humidity sensor (DHT11), a mini
water pump moisture sensor, 7-RGB LEDs strip,
LDR-sensor (KY-018), 2-Channel relay board and a

178

passive buzzer. Figure 11 shows the location of be-
fore mentioned electronics, while Figure 12 shows the
implemented prototype manufactured using laser cut-
ting with pywood and 3D printed parts. The prototype
has been implemented by a group of Erasmus students
during their stay at the UPV. In the video (Armesto,
2022), we show a working demo of the whole proto-
type.

We also have developed an App in App Inventor
2 integrating Facilino bluetooth extension. A couple
of the screens developed for the App are shown in
Figure 13, while part of the corresponding code for
the screen Figure 13b is shown in Figure 14a, sending
a number to indicate a predefined LEDs setting. Part
of the corresponding Facilino code to decoding the
telegram is shown in Figure 14b.

(a) Electronicsx... (b) Electronics

Figure 11: Electronics.

T LB o

Figure 12: Eco-house prototype.

4.3 Survey

During this preliminary stage of the development, we
have conducted a survey among 16 users that have
tested the new version Facilino. In particular, the sur-
vey was filled by teachers from (latest courses of) pri-

|
WINDOWS

Light Temperature

0 o

(b) RGB LEDs screen

Figure 13: Some of the screens developed in App Inventor
2 for the smart house project

(a) Window control
screen

LN Canvas1 - Tt

%y touchedAnySprite

do | (o) initialize local {71 Jto call [EIIESEIED -GetPixelColor

@I

then

then call GIEEMERETGTTIEN -ShowPredefLEDs
number

Do 7RGBLEDs PIN pin | Expression

D0 7ReBLEDs PN (!pi

(b) Facilino RGB LED code
Figure 14: Example code for controlling RGB LEDs.

mary and secondary school levels. Only 9 of them
have previous experience on programming with old
Facilino version, but all of them have some experi-
ence and interest on block programming tools, that’s
why all of them considered very relevant the use of
block programming tools appropriate to secondary
level when they were asked for (this was a explicit
question within the survey).

After testing the tool, they were asked about what
kind of features considered more relevant and graded
the main features of Facilino. In particular, they
were asked about the following Facilino features: 1)
Web application (front-end & back-end) that can be
used from any device; 2) User accounts (capability
to configure certain default aspects such as language
and keep track of projects); 3) Over-the-Air (allow

Wireless Remote Control of Low-Cost Smart Devices for No-Coders

1) Web-based App

10) Translation tool 2) User account

o N s o @ NS

9) Generation of Arduino code 3) Over-The-Air upload

8) Toolbox block filters 4) Project Dashboard

7) Tutorials and examples 5) Compilation and library dependency

6) Block simplification

Figure 15: Relevance of Facilino’s features.

to work from devices such as tablets or iPADs and
upload code remotely to devices); 4) Project dash-
board (allow to better organize the different types
of projects and exercises requested in class, dupli-
cate, share, etc...); 5) Easier code compilation, be-
cause all library dependencies are already included;
6) Block simplification (e.g.: inclusion of “shadow”
blocks with default value for inputs); 7) Generation of
tutorials and examples with built-in TinkerCAD sim-
ulations; 8) Toolbox blocks are adapted according to
the type of project to be generated (capability to filer
out some blocks which are not relevant for a project
type); 9) Ability to view/modify the generated Ar-
duino code before compiling and uploading the code
to the microcontroller; 10) Translation tool (blocks
are translated into several languages). As it can be
seen in Figure 15 the feature that considered more rel-
evant is the fact that Facilino works as a web applica-
tion (multi-platform). Users consider quite relevant
the fact that all compilation and library dependency
issues have been simplified as well as the inclusion of
tutorials and examples.

On the other hand, users were also asked to grade
main features of Facilino with 1 being a poor grade
and 5 the highest possible grade. As it can be
seen from Figure 16, block programming obtains best
grades, followed by the fact that users can create their
custom project associated with their acccount and the
inclusion of tutorials and examples. According to
users, installation and setup needs to be improved, be-
ing the feature with the lowest grades.

5 CONCLUSIONS

In this paper, we have presented an on-going project
regarding with the development of a block program-
ming tool named Facilino. In particular, we have
presented the proposed set of blocks to communicate
with Bluetooth and WiFi with smart devices. We have
shown a couple of case studies were Facilino has been

179

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

m Em2 3 W4 W5

6
4
0 | |

Installation & setup (ability D Project
to easily generate (tutorials and and user account
programs with exercises)
blocks)

Figure 16: Grading of Facilino features (1-low, 5-high).

used in combination with an extension created for
App Inventor 2 that allows users to remotely control
smart devices based on Arduino or ESP32. The pa-
per also shows a survey conducted to a small group of
users. Although the number of users testing the tool
is small, we took this survey to see potential flaws of
the application for further improvement.

ACKNOWLEDGEMENTS

The authors are grateful to grant PID2020-
116585GB-100 funded by MCIN/AEl/
10.13039/501100011033 (Agencia espafiola de
investigacion) and grant 2021-1-ESO1-KA220-SCH-
000034349 (Erasmus+). The authors are grateful to
EPS students working at the smart-house project.

REFERENCES

Adi, P. D. P. and Kitagawa, A. (2019). A review of
the blockly programming on mS5stack board and mqtt
based for programming education. In 2019 IEEE 11th
International Conference on Engineering Education
(ICEED), pages 102-107. IEEE.

Al2 (2015). Mit app inventor extensions. https://mit-cml.
github.io/extensions/ [Accessed:05/07/2023].

Argenox (2020). Introduction to bluetooth classic. https:
/Ishorturl.at/eLTY8 [Accessed:03/07/2023].

Armesto, L. (2015). Facilino extensions for ai2.
https://github.com/roboticafacil/facilino_ai2 [Ac-
cessed:05/07/2023].

Armesto, L. (2016). Facilino. https://github.com/
roboticafacil/facilino [Accessed:29/06/2023].

Armesto, L. (2017). Disefia, fabrica y programa tu
propio robot. https://www.edx.org/es/course/
disena-fabrica-y-programa-tu-propio-robot [Ac-
cessed:29/06/2023].

Armesto, L. (2019). Introduction to the inter-
net of things. https://www.edx.org/course/
introduction-to-the-internet-of-things [Ac-
cessed:29/06/2023].

Armesto, L. (2022). Thingies. https://youtu.be/
2ful.euRaV4U [Accessed:29/06/2023].

180

Cash, . Text-based vs. block-based
coding. https://makelearn.org/2018/06/
06/text-based- vs-block-based-coding/ [Ac-
cessed:29/06/2023].

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine.

Guzdial, M. (2022). Programming in blocks lets far more
people code — but not like software engineers: Re-
sponse to the ofsted report. http://bit.ly/3r83uau/ [Ac-
cessed:29/06/2023].

Hadlow, M. (2018). Visual programming - why it is
a bad idea. http://mikehadlow.blogspot.com/2018/
10/visual-programming-why-its-bad-idea.html [Ac-
cessed:29/06/2023.

Kusmin, M., Kusmin, K.-L., Laanpere, M., and Tomberg,
V. (2019). Engaging Students in Co-designing Wear-
able Enhanced Learning Kit for Schools, pages 97—
120. Springer.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., and
Eastmond, E. (2010). The scratch programming lan-
guage and environment. ACM Transactions on Com-
puting Education (TOCE), 10(4):1-15.

Ouahbi, ., Kaddari, F., Darhmaoui, H., Elachqar, A., and
Lahmine, S. (2015). Learning basic programming
concepts by creating games with scratch programming
environment. Procedia-Social and Behavioral Sci-
ences, 191:1479-1482.

Pasternak, E., Fenichel, R., and Marshall, A. N. (2017).
Tips for creating a block language with blockly. In
2017 IEEE blocks and beyond workshop (B&B), pages
21-24. IEEE.

Ruutmann, T. (2015). Optional stem courses for secondary
schools designed and implemented for enhancement
of k-12 technology education in order to excite stu-
dents’ interest in technology and engineering educa-
tion. In 2014 International Conference on Interactive
Collaborative Learning (ICL), pages 144-150.

Schejbal, A., Putyra, A., Szemik, D., Zielifiski, J., Ba-
siuraD., Castilho, C., SilvaA., Costa, T., Rosa, C.,
SantosC., Pereira, H., Afonso, J., Olesk, P., Oja,
M., and Park, V. (2022). Advancing stem edu-
cation with iot experiments. https://est.edu.pl/iot/
wp-content/uploads/2022/12/IoT_Publication_EN.pdf
[Accessed:03/07/2023].

Trower, J. and Gray, J. (2015). Blockly language creation
and applications: Visual programming for media com-
putation and bluetooth robotics control. In Proceed-
ings of the 46th ACM Technical Symposium on Com-
puter Science Education, pages 5-5.

Winterer, M., Salomon, C., Koberle, J., Ramler, R., and
Schittengruber, M. (2020). An expert review on the
applicability of blockly for industrial robot program-
ming. In 2020 25th IEEE International Conference
on Emerging Technologies and Factory Automation
(ETFA), volume 1, pages 1231-1234. IEEE.

Wolber, D., Abelson, H., Spertus, E., and Looney, L.
(2011). App inventor. ” O’Reilly Media, Inc.”.

(2020).

