
Too Constrained for Genetic Algorithms too Hard for Evolutionary
Computing the Traveling Tournament Problem

Kristian Verduin1 a, Sarah L. Thomson2 b and Daan van den Berg1 c

1Department of Computer Science, Vrije Universiteit Amsterdam and
Universiteit van Amsterdam, The Netherlands

2Edinburgh Napier University, U.K.

Keywords: The Traveling Tournament Problem, Constraints, Genetic Algorithms, Evolutionary Computing, Constraint
Hierarchy.

Abstract: Unlike other NP-hard problems, the constraints on the traveling tournament problem are so pressing that it’s
hardly possible to randomly generate a valid solution, for example, to use in a genetic algorithm’s initial
population. In this study, we randomly generate solutions, assess the numbers of constraint violations, and
extrapolate the results to predict the required number of samples for obtaining a single valid solution for any
reasonable instance size. As it turns out, these numbers are astronomical, and we finish the study by discussing
the feasibility of efficient sampling of valid solutions to various NP-hard problems.

1 INTRODUCTION

A long long time ago, before computers existed,
American kids played outside to entertain themselves.
Often baseball, a true American invention, which over
the years grew into the number #3 sport on the conti-
nent, having 19.1 million practitioners, and over 35
million TV spectators on a peak day (Bas, 2023).
With such enormous numbers of engagement, North
America is host to Major League Baseball (MLB),
founded in 1876 and consisting of 30 teams from the
United States of America and Canada, holding broad-
casting rights involving billions of dollars (Solberg
and Gaustad, 2022). It is therefore no surprise that
scheduling the matchups of teams is considered a cru-
cial part of the process.

What is a surprise though, is that until relatively
recently, this was done by hand by Henry and Holly
Stephenson, a married couple from Massachusetts.
Perhaps most astonishing is the level of expertise
these people must have possessed in creating these
schedules, especially retrospectively considering the
hardness of the problem. In the day (and maybe still),
teams, players, coaches and unions filed a host of
complicating constraints: “Red Sox must be home on

a https://orcid.org/0009-0005-8754-7635
b https://orcid.org/0000-0001-6971-7817
c https://orcid.org/0000-0001-5060-3342

Patriot’s Day”, “Blue Jays must be home on Canada
Day”, “a team on the road on Memorial Day must
be home on the 4th of July” are just some of the de-
mands the Stephensons processed – by mail – and
incorporated into the huge scheduling task the MLB
presented. But as a typical 21st -century’s informatics
history, computers came along and in 2004, after 24
years of manual labour, the Stephensons were outbid
by the Sports Scheduling Group, who teamed up with
Carnegie Melon and Georgia Tech (Press, 2004).

In time, most if not all human labour will likely
be outclassed by machines, but the timing of the ap-
pearance of MLB’s first planning algorithm might
not have have been completely coincidental. Just a
few years earlier, Easton, Nemhauser and Trick for-
mulated the Traveling Tournament Problem (TTP)1,
which entails scheduling tournament rounds of an
even number of teams (nteams) (Easton et al., 2001).
In TTP, each team must play each other team twice
in the schedule (once at home, once away), which is
known as the double round-robin constraint. Addi-
tionally, when team A plays team B in one round,
the exact inverse match (B playing A) cannot take
place in the consecutive round, which is known as the
noRepeat constraint. Finally, there is the maximum
number of consecutive games any team can play at

1not the to be confused with the Traveling Thief Prob-
lem, also abbreviated to TTP, which is clearly the fault of
Markus Wagner.

246
Verduin, K., Thomson, S. and van den Berg, D.
Too Constrained for Genetic Algorithms too Hard for Evolutionary Computing the Traveling Tournament Problem.
DOI: 10.5220/0012192100003595
In Proceedings of the 15th International Joint Conference on Computational Intelligence (IJCCI 2023), pages 246-257
ISBN: 978-989-758-674-3; ISSN: 2184-3236
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



Figure 1: Left: A valid TTP schedule, with lighter backgrounds designating home games, and darker away. Right: An invalid
TTP schedule that has all three constraints violated: doubleRoundRobin (1) as the Mets play the Phillies at home twice in the
schedule, noRepeat (2) and maxStreak (3). Note that point (1) has a noRepeat violation, in addition to the doubleRoundRobin
violation.

home or away, the maxStreak constraint2. Usually,
maxStreak = 3 meaning any team can at most play
three consecutive rounds at home, or away, anywhere
in the schedule (Thielen and Westphal, 2011). Only
three constraints, but they can be violated many times
per schedule, especially for larger numbers of nteams
(Figure 1). And as constraints go, it only takes one
violation to render the entire schedule invalid.

But the actual problem is not about satisfying
these constraints. The traveling tournament problem,
like the traveling salesman problem (TSP), has a dis-
tance matrix which holds the travel time between sta-
diums (or: cities), and the main task is to minimize
the total travel time. As we will shortly see however,
these three constraints are so asphyxiating, that travel
time optimization almost becomes auxiliary to finding
a valid schedule in the first place.

From here, we will first inspect the complexity
timeline of the TTP in Section 2. It took some time
before the 2001-formulation of the problem was fully
proved to be NP-complete, quite understandably as
these proofs are usually not very easy to construct.
In Section 3, we will discuss some of the algorithmic
approaches to TTP. This history is quite uncommon,
as it has relatively few metaheuristic applications, but
quite a number of approximation algorithms for var-
ious variants as well as for the seminal formulation.
After that, the experiment and the results are laid out
in Sections 4 and 5. Finally, in Section 6 we dis-
cuss how to interpret these results: can NP-hard opti-

2Terminology varies slightly across literature.

mization problems be ranked on their constraints? We
make some suggestions for a classification.

2 COMPLEXITY TIMELINE OF
THE TTP

The traveling tournament problem is hard. Its for-
mal classification history starts in 2009 with a non-
peer reviewed preprint by Rishiraj Bhattacharyya who
showed that every instance of the traveling salesman
problem can be polynomially converted into an in-
stance of the traveling tournament problem (Bhat-
tacharyya, 2009). Thus, if the traveling tournament
could have been solved exactly in polynomial time,
so could the traveling salesman problem. The latter is
not the case: the traveling salesman problem requires
exponential time to solve exactly, and therefore, so
does the traveling tournament problem3. This initial
proof had a loose end though: Bhattacharyya’s proof
involved the TTP without the maxStreak constraint,
and even though he states “even without” this con-
straint the problem is NP-hard, there was no guaran-
tee that addition of this property would not actually
make the problem easier.

But as often happens in science, intuition pre-
cedes proof, and it turned out Bhattacharyya was
right. History threw a curveball though, as the proof

3all assuming P 6= NP, which appears to be the majority
consensus in the scientific community.

Too Constrained for Genetic Algorithms too Hard for Evolutionary Computing the Traveling Tournament Problem

247



of full NP-completeness (including the maxStreak =
3 constraint as originally formulated by Easton &
Trick) appeared in 2011, not by a reduction from
TSP, but by a ‘classic’ reduction from satisfiability
(SAT) (Thielen and Westphal, 2011). Bhattacharyya’s
original ‘streakless’ from-TSP-proof was nonetheless
peer reviewedly published in 2015 by Operations Re-
search Letters (Bhattacharyya, 2016). As a side note,
the terms NP-hard and NP-complete were apparently
used interchangeably in these studies.

Another 5 years later, in 2021, Diptendu Chatter-
jee further widened the insight by proving that indeed
for every maxStreak > 3, the problem is NP-hard. Al-
though the manuscript will undoubtedly walk a sim-
ilar path to a highly regarded journal, it is currently
only available as an arXiv preprint (Chatterjee, 2021).
The takeaway observation here is that it took at least
12 and at most 22 years of hard intellectual work to
obtain a full proof of NP-hardness for the TTP. The
historic trajectory itself is also interesting, as the first
inning encompassed only a ‘no-maxStreak proof’,
the second inning a slightly wider but totally differ-
ent proof for maxStreak = 3, but still a third inning
was needed for the full proof with maxStreak > 3.
Furthermore, the constructed proofs differed substan-
tially, reducing from TSP, SAT and k-SAT respec-
tively, and we hypothesize that for these reasons, it is
quite likely that the maxStreak-constraint plays a key
role not only in the problem’s hardness classification,
but also in the arduous task of solving its individual
instances.

In any case, one NP-hard problem is not the other.
Being in the same class might suggest hardness equiv-
alence, which might be true in a general sense, but is
certainly questionable when looked at with any de-
gree of resolution; the difficulty of finding an opti-
mal solution to an integer partition problem instance
(van den Berg and Adriaans, 2021), a traveling sales-
man problem instance (Liang et al., 2022; Sleegers
et al., 2020) or a traveling tournament problem in-
stance is very different in practice. One complicating
aspect seems to arise from the constraints of a prob-
lem and for TTP, these are pretty severe. In fact, we
will argue, it is almost impossible to generate a pop-
ulation of valid random individuals by the most basic
procedures, simply because its constraints invalidate
the vast majority of instances.

3 ALGORITHMS FOR THE TTP

Could it be for these reasons, the asphyxiating con-
straints on the traveling tournament problem itself,
that genetic algorithms are almost completely absent

from its algorithmic history? Possibly. A study
from 2023 showed that even for a very small in-
stance size of nteams = 30, which corresponds closely
to the MLB’s actual number of teams, the number of
constraint violations in a randomly generated sched-
ule is close to 3800, and increases quadratically in
nteams (Verduin et al., 2023). This means it is non-
trivial to create an initial population of valid indi-
viduals for a genetic algorithm to work with. We
would like to point out to the reader that the situa-
tion is quite different for the “closely related” travel-
ing salesman problem (in the same complexity class,
and one reduces the other) which has seen plethora
of population-based algorithms applied to it (Eiben
et al., 2003; Koppenhol et al., 2022; Potvin, 1996).

Still, a few hill climbing and simulated annealing
approaches have been applied to the TTP; these could
both be regarded as evolutionary algorithms with a
population size of 1 (Anagnostopoulos et al., 2006;
Lim et al., 2006; Jha and Menon, 2014) (the last one
applied to the mirrored traveling tournament problem,
a special, possibly easier variant of TTP). Also, there
is a non-evolutionary approach with ant colony opti-
mization (Uthus et al., 2009), tabu search (Gaspero
and Schaerf, 2007), an iterative ‘three strike algo-
rithm’ (Ruth et al., 2023), and some integer pro-
gramming in an experiment done by the problem’s
founders themselves (Easton et al., 2003). A rather
complex bound-driven version of beam search was
developed by Nikolaus Frohner and his colleagues,
augmented with a hint of randomness (Frohner et al.,
2020). Nonetheless, optimal solutions found in these
experimental setups usually range from nteams = 10 to
nteams = 16, a staggeringly small number, especially
when compared to the Euclidean traveling salesman
problem, which can be solved exactly by a (non-
general) approach up to many thousands of cities (Ap-
plegate et al., 2009).

There are a few internet documents reporting ap-
plication of a genetic algorithm to the TTP. Most of
these are either non-scientific papers, or provide so
little explanation on their methods that one could bet-
ter start anew. One notable exception is the work by
Meriem Khelifa and her team(Khelifa et al., 2017).
As a rare exception, these authors do report a full-
fledged genetic algorithm for the TTP. It is rather
complicated, and utilizes mutations similar to the sim-
ulated annealing approach by Lim et al. (Lim et al.,
2006). Both approaches use construction of initial
valid schedules which might not be uniformly random
though, and whether the neighbourhood definitions
facilitate homogeneous exploration of the combina-
torial space, such as is the case with n-opt in traveling
salesman, also remains to be seen.

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

248



Quite interestingly, despite the scarcity of meta-
heuristic approaches to the TTP, its algorithmic his-
tory does in fact sport quite a number of approxi-
mation algorithms, which are in some sense of no-
bler blood. Approximation algorithms are usually
more difficult to program, run in polynomial time,
but different from metaheuristics also give a guar-
antee on their solution quality, usually given as a
ratio (or ‘deficiency’) on the optimum. As an ex-
ample, the Christofides-Serdyukov algorithm for the
traveling salesman problem is a 1.5-approximation al-
gorithm, which means that it returns a solution for
a TSP-instance in polynomial time that is at most
50% longer than the optimal tour (Christofides, 1976;
Serdyukov, 1978; Karlin et al., 2021). Pretty good
when considering that an exact solution (which would
be equivalent to a deficiency of 1) requires exponen-
tial time – since the problem is NP-hard. But although
the TTP is arguably harder than the TSP, it does have
a number of approximation algorithms. Quite a few
actually.

On first base, Clemens Thielen and Stephan West-
phal published an (3/2+ 6/(n− 4))- approximation
algorithm for TTP with maxStreak = 2 in 2010 (Thie-
len and Westphal, 2010), and in 2012, the same au-
thors expanded further on the problem in a publica-
tion that might be an extension to the former (Thie-
len and Westphal, 2012). For a more general case,
Stephan Westphal teamed up with Karl Noparlik to
produce a 5.875-approximation algorithm, which was
published in 2014 (Westphal and Noparlik, 2014). As
a forte, the approximation ratio is constant, but only
for nteams ≥ 6 and maxStreak ≥ 4.

On second base, we have the approximation al-
gorithm by Miyashiro et al. from 2010 (Miyashiro
et al., 2012). It is possibly the first approxima-
tion algorithm on TTP, and has a ratio of at most
2+(9/4)/(nteams− 1), but the same team expanded
with Daisuke Yamaguchi published an improved ver-
sion exactly one year later (Yamaguchi et al., 2011).
Interestingly, the performance of the improved algo-
rithm depends on the maxStreak-parameter, which we
intuitively suspect to play a central role in the TTPs
constraint-hardness. Three years later, in 2014, the
same team published a 2.75-approximation algorithm
for the TTP (Imahori et al., 2014). A flummoxing
low ratio, but the algorithm in this case applied to the
‘unconstrained TTP’, which had its maxStreak and
noRepeat constraints removed.

On third base are teams incorporating MingYu
Xiao. In 2016, he and XiaoWei Kou published an ap-
proximation algorithm for the incredibly constraining
variant of TTP with maxStreak = 2, providing a ratio
of (1+4/n), which is very low (Xiao and Kou, 2016).

He improved the ratio to 1+O(1/n) with coauthor
JingYang Zhao in 2021, for TTP with nteams/2 being
odd (Zhao and Xiao, 2021). The most recent addition
to their winning streak is a 2022 paper, this time for
maxStreak = 3, improving the approximation ratio to
1.598+ ε, which is remarkably close to Christofides-
Serdyukov ratio of 1.5 for Euclidean TSP (Zhao et al.,
2022).

So despite the scarcity of evolutionary algorithms
for the TTP, there is a widely developing outfield of
approximation algorithms, the best of which provide
very promising ratios. Whoever hopes for the home
run of a 1-approximation algorithm, however, should
realize that this is very unlikely to happen. A 1-
approximation for the TTP would mean an optimal
solution in polynomial time, which can only happen
if TTP turns out to be in P instead of in NP. From mu-
tual reducibility, this would mean that the entire class
of NP would cease to exist, contradicting the commu-
nity’s consensus that probably P 6= NP. Having said
this, we do hope that the aforementioned teams keep
lowballing the approximation ratios, and are curious
to see whether the magical Christofides bound of 1.5
will be reached, or even broken for TTP as well.

4 EXPERIMENT

To gain insight into the numbers and distributions of
violatable constraints, we devised a naive but fast pro-
cedure that generated 5× 1 million random schedules
for each nteams ∈ {4,6,8...46,48,50}. It did not take
into account any of the three constraints while gener-
ating the schedule, but rather recorded the constraint
violations retrospectively. The reason for making 5×
1 million random schedules lies in the practicality of
getting a somewhat higher resolution of the initial cur-
vature in Figure 2, as well as and a reasonable aspect
ratio; theoretically, it should not make a difference.

A complete schedule for the TTP consists of
2(n− 1) rounds, each of which is randomly filled
up by randomly selecting an opponent, after which
one is designated as ‘home’ and the other ‘away’.
The opponent is then marked as ‘placed’ and can-
not be selected again in the same round. Round
by round, the entire schedule is filled up this way,
which can be done in linear time. Note that although
the method completely disregards the three TTP con-
straints (doubleRoundRobin, maxStreak, noRepeat)
it is still tighter than a complete random fill: by us-
ing the ‘augmented permutation’, we ensure that ev-
ery team has exactly one opponent per round, pretty
much like a permutation in a TSP-instance ensures
every sequence is a full tour. Also, teams cannot play

Too Constrained for Genetic Algorithms too Hard for Evolutionary Computing the Traveling Tournament Problem

249



Figure 2: A run of one million randomly generated TTP schedules, retaining the best sample at each generation, produced
progressively better schedules, but failed to generate a single valid schedule for any value nteams > 4. Shown are values for
10 teams (left subfigure) or 50 teams (right subfigure), averaged over 5 runs, and characterized by a logarithmic function fit
(dashed lines).

themselves, and each match holds one home and one
away team.

After filling up the schedule, the constraint viola-
tions are counted. If team A plays team B more than
twice, each game after the second counts as an addi-
tional doubleRoundRobin violation. If team A plays
team B only once, it is also counted as an additional
doubleRoundRobin violation. If team A does not play
team B exactly once at home and once away, an addi-
tional doubleRoundRobin violation is added. If team
A plays at their home or away venue more than three
games consecutively, each game after the third counts
as an additional maxStreak violation on the schedule.
Finally, if teams A and B play each other in more than
one consecutive round, each consecutive game after
the first counts as an additional noRepeat violation.

For each nteams ∈ {4,6,8...46,48,50}, five runs of
one million randomly generated schedules were com-
pleted, summing up to 120 million schedules. Note
that is is technically not impossible to look at uneven
values for nteams, but a ‘rest’ would be inserted as an
empty entry, which would be assigned twice for every
team in a double round-robin schedule. From the 120
million schedules, we took the following data:
1. For a single run with nteams, we kept track of the

lowest number of violations for generated sched-
ules in a run. The idea was to find out how many
randomly generated schedules are needed for one

valid (zero-violations) schedule. Such random
valid schedules might then be used in creating
an initial population for evolutionary algorithms.
This hope however, turned out to be idle.
Nonetheless this data facilitated a forward projec-
tion. From the five runs, the average was taken on
each of the million points, through which a mono-
tonically decreasing function a · ln(x)+b was fit.
From these characterizations, the required number
of random samples to obtain just one valid sched-
ule was projected for all numbers of nteams, by cal-
culating a · ln(x)+b = 0 (see columns 3, 4 and 5
in Table 1).

2. For each nteams, all 5 million samples were col-
lectively histogrammed, showing distributions for
all 3 violation types, as well as the total number
of violations. These histograms were then charac-
terized by the fit of a normal distribution, which
was then used to assess the probability of sam-
pling a zero-violation schedule. As the normal
distribution is continuous, we took the chance of
the number of conflicts to be under 0.5 (see sec-
ond column in Table 1). Although these values
should correspond to the results of the previous
method, we did not try to reconcile them, as a
tiny difference in fits might result in a huge dif-
ference in extrapolation values. Rather, we think

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

250



Figure 3: Distribution of constraint violations for the traveling tournament problem. An average randomly constructed sched-
ule for 50 teams has no less than 3799 violations, of which 3106 round-robin violations, 594 maxStreak-violations and 99
noRepeat violations (clockwise from top-left respectively).

both measurements will tell the same story from
a different angle: making random schedules hop-
ing for a valid result is idle. Still, calculating
one from the other might give inconsistent results
from reasons of precision. Fits were made with
the scipy.optimize.curve f it-package in python.

3. For all nteams, the minimum, maximum and av-
erage for all 3 types of constraint violations was
characterized by fitting a quadratic function func-
tion through nteams, showing the expected num-
ber for each type of constraint violation, and how
these expected numbers grow through nteams. Re-
sults can be seen in Figure 4.

All generation was done in 24 threads on SURF’s Lisa
Compute Cluster4 running Debian Linux in approxi-
mately one day, and our Python source code is pub-
licly available (Anonymous, 2023).

5 RESULTS

5.1 Numbers of Required Samples

A million samples in a run, retaining the best sched-
ule (having the fewest violations) turns out to be
hugely insufficient for generating anything even re-

4https://www.surf.nl/en/lisa-compute-cluster-extra-
processing-power-for-research

motely valid. Only for 4 teams, zero-violation sched-
ules were found: 606, 618, 619, 649 and 656 times
respectively for each of its 5 runs – an average of just
0.06%. For 10 teams, the number of violations never
dropped below 79, and for 50 teams, no value lower
than 3458 violations was ever found throughout the 5
runs of 1 million samples (Figure 2). The R2 values
for the total number of violations doubleRoundRobin
were quite bad, over 0.63, possibly due to the high ini-
tial segment. The R2 on noRepeat was below 0.003
for both nTeams, possibly for the inverse reason.

There appears to be some degree of indepen-
dence between the violation types. As can be seen
in the right subfigure of Figure 2, the numbers
of maxStreak-, noRepeat- and doubleRoundRobin-
violations can all temporarily increase even when the
total number of violations goes down. A future study
could address this issue; if it turns out that one type of
violation can be minimized with little or no effect on
the others, it might provide a method to generate (ran-
dom) valid schedules much faster. Intuitively, maybe
the noRepeat constraint can be resolved last.

5.2 Distributions of Violations

For each number of nteams, 5 million randomly
sampled schedules produced near-normal distribu-
tions for maxStreak-violations, noRepeat-violations,
doubleRoundRobin-violations, and the total number
of constraint violations (Figure 3 shows the values for

Too Constrained for Genetic Algorithms too Hard for Evolutionary Computing the Traveling Tournament Problem

251



Figure 4: Left: In creating random solutions for the traveling tournament problem, expectancy for most constraint violations
increases quadratically through nteams; only the noRepeat violations increase linearly. The color-filled area is the spread of
the violations (between max and min). Right: Dashed lines are the extrapolations of the violations.

50 teams).
The first thing that stands out is the fickleness of

the noRepeat-constraint. In figure 3, the fit on the
noRepeat constraint has an RMSE of 0.012 while
other fits have an error of at most 0.002 – quite a
difference. Though it would be easy to attribute the
bad fit to the relatively low occurrence of the vio-
lation, something more peculiar seems to be going
on. When assessing the error of the fits of the nor-
mal distributions, they consistently decrease as nteams
increases. This is expected, as a larger range of values
accommodates for smoother distributions, and there-
fore lower fit errors. But while this is true for the fit
errors on doubleRoundRobin-, maxStreak-, and total
number of violations, which drop below 0.01 for all
values of nteams ≥ 14, fits on the noRepeat-violations
only drop below 0.01 three times in the range 4 ≤
nteams ≤ 50, at values nteams ∈ {34,38,40}. A provi-
sional, somewhat unsatisfying explanation might be
found in the fact that the noRepeat violations ‘only’
increase linearly through nteams while violations on
doubleRoundRobin and maxStreak (and thereby also
the total number of violations) increase quadratically
(Figure 4). In any case, the number of noRepeat vio-
lations appears to stabilize much slower into a normal
distribution, and behaves more erratic for all nteams,
whereas all other violation types more clearly stabi-
lize, with progressively lower fit errors.

5.3 Violations Grow Quadratically

From the violation distributions, the maximum, min-
imum and average values for each type of constraint
violation were recorded for each nteams, after which
a quadratic function was fit to the average. On the
left side of Figure 4, the filled area shows the spread
of violations whereas the solid line gives the average.
On the right side, the fitted quadratic functions are
shown, with extrapolated values in dashed lines. Both
the doubleRoundRobin violations and maxStreak vio-
lations show quadratic growth with nteams, as 1.22x2−
1.69x− 0.18 and 0.25x2 − 0.63x respectively. The
noRepeat violations increase linearly with nteams as
2.01x− 12.27. All fits are tight, with RMSE ≤ 0.06
for all fitted functions. Results similar to these were
reported earlier (Verduin et al., 2023), with slightly
different function parameters.

6 CONCLUSION & DISCUSSION

It appears that the semi-naive (but really fast) way
of creating random initial schedules is unusable for
valid schedules of any reasonable nteams. In this ex-
periment, the minimum number of violations over 1
million random schedules with nteams = 10 only was
79 – nowhere near valid. For nteams = 20 this number
had increased to 464, after which it exploded to 1151,
2134 and 3468 for nteams = 30, 40 and 50 respectively.
Trying to generate valid schedules by uniform ran-

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

252



Table 1: Time needed to generate a random valid schedule. The second column is the probability of generating a valid
schedule from the fits of the normal distributions. The third column is the estimated number of samples needed for obtaining
a valid schedule from the logarithmic fits. The fourth and fifth columns give a rough indication of required computation time.

nteams p f easible Req. samples Req. time (sec) Required time
4 2.10×10−3 9.293×10−6 1.369×10−9 < 2 nanoseconds
6 2.96×10−7 2.439×108 7.693×104 ≈ 21 hours
8 1.21×10−13 1.122×1013 6.348×109 > 200 years
10 2.51×10−22 6.110×1020 5.309×1017 > 16.8 billion years
12 1.18×10−31 6.503×1027 8.169×1024 > 107× age universe
14 3.74×10−45 1.074×1040 1.852×1037

16 8.69×10−61 1.253×1031 2.834×1028

18 7.84×10−77 8.463×1034 2.468×1032

20 1.09×10−96 3.995×1056 1.404×1054

22 1.30×10−121 6.842×1040 2.883×1038

24 9.76×10−145 3.142×1061 1.566×1059

26 1.28×10−169 3.572×1047 2.046×1045

28 7.08×10−199 1.375×1081 9.129×1078

30 3.17×10−230 2.100×1050 1.579×1048 > 1030× age universe
32 1.94×10−266 6.599×1061 5.644×1059

34 2.28×10−301 5.297×1068 5.079×1066

36 ≈ 0 3.225×10100 3.632×1098

38 ≈ 0 1.057×1076 1.302×1074

40 ≈ 0 1.104×1063 1.544×1061 > 1043× age universe
42 ≈ 0 3.181×1095 4.858×1093

44 ≈ 0 5.583×1084 9.359×1082

46 ≈ 0 1.277×1095 2.336×1093

48 ≈ 0 9.694×10104 1.946×10103

50 ≈ 0 7.684×10138 1.704×10137 > 10119× age universe

dom sampling knocks the computational budget com-
pletely out of the ballpark, with an estimated 16.8 bil-
lion years of computation time for nteams = 10 on a
single core, up to many times the age of the universe
for nteams = 30 (the MLB size), and rising ever faster
beyond that, just to find a single valid schedule.

No wonder therefore that Anagnostopoulos et al.
generate the initial schedule for their simulated an-
nealing by backtracking by which “[valid] schedules
were easily obtained” (Anagnostopoulos et al., 2006).
That study only uses nteams ≤ 16, and as backtrack-
ing algorithms are of exponential time complexity,
much larger numbers are probably undoable by their
approach. Besides, these authors treat the noRepeat
and maxStreak as ‘soft constraints’ and their muta-
tions might turn valid schedules into invalid ones. So
even for an algorithm as simple as simulated anneal-
ing, the constraints on the TTP appear problematic.
This is also seen in Lim et al. (Lim et al., 2006),

and the GA approach by Khelifa et al. (Khelifa et al.,
2017).

Gaspero & Schaerf (Gaspero and Schaerf, 2007)
and Ribeiro & Urrutia (Ribeiro and Urrutia, 2007)
both represent the schedules using one-factorization
of a graph. They then continue to generate a single
round-robin schedule, which is mirrored and reversed
to combine into a double round-robin. It should be
noted that the subclass of mirrored TTP might be eas-
ier than regular TTP because its defined construction
eliminates the need for the noRepeat constraint. It
might also yield more expensive schedules than regu-
lar TTP, but nonetheless it is an often deployed tech-
nique in North American scheduling practice (Ribeiro
and Urrutia, 2007). Lim et al. (Lim et al., 2006)
(also) generate their initial solutions with the use of
a three-phase approach. These authors also mirror
their solution, and argue that doing so greatly reduces
the required time for finding a valid solution. Maybe

Too Constrained for Genetic Algorithms too Hard for Evolutionary Computing the Traveling Tournament Problem

253



the lesson here is that sacrificing some quality in ex-
change for validity is not a bad tradeoff.

Combining these findings with the results pre-
sented in our study, the following conjectures spring
forth:

• The traveling tournament problem has severe con-
straints, making it hard to either to randomly gen-
erate solutions uniformly, or to mutate one solu-
tion to a TTP instance into another, as many mu-
tation types might turn valid schedules into invalid
ones. For the available mutation types from liter-
ature, the explorability of the resulting neighbour-
hood structure should be explored.

• It is harder to find randomized valid solutions for
the traveling tournament problem than for other
NP-hard problems. This is unlike the number
partition problem, for which any random alloca-
tion of an integer to either subset is valid and
done in linear time (van den Berg and Adriaans,
2021; Sazhinov et al., 2023). This is unlike TSP,
for which any permutation of cities yield a new
subset of edges that forms a closed loop, and
thereby a valid solution. This is unlike the Job
Shop Scheduling Problem, for which most per-
mutations, after a construction phase, yield a new
and valid solution (de Bruin et al., 2023; Weise
et al., 2021) . This is a bit like 2D protein folding
though, in which one can constructively generate
a random solution with relatively little backtrack-
ing, but mutating from one solution to the next
is still problematic (van Eck and van den Berg,
2023; Jansen et al., 2023; Jamil and Yang, 2013).
TTP is on the higher end of this list, with only
(stochastic) backtracking to guarantee a valid uni-
form random initial solution, and mutation being
highly problematic.

• Although all problems mentioned in the previous
point are NP-hard, maybe they can be classified
into a hierarchy of constructibility, in which the
lower end of the scale holds problems with in-
stances for which randomized solutions are read-
ily created, and easily mutated into other solu-
tions, while the higher end of the scale holds prob-
lems for which the generation of valid solutions
takes a lot of time (either stochastically or deter-
ministically). As a complete swing for the fences,
we suggest a hierarchy on the complexity of the
fastest algorithm that generates a random initial
solution from all valid solutions with equal prob-
ability. A random valid solution to the partition
problem or the TSP can be made in linear time,
whereas a random valid solution to protein fold-
ing or the TTP might require exponential time in
the worst case. We are unaware whether such a hi-

erarchical classification already exists, and which
place would be taken by the TTP.

7 STATEMENT

A pilot study on the quadratic fits for the number of
conflicts has earlier been published as a late-breaking
abstract at EvoSTAR (Verduin et al., 2023), for which
the copyright lies with the authors. Although all ex-
periments have been redone, scaled up, this part of the
study might look somewhat similar. All other experi-
ments are new, as are the figures and the background
study on the problem.

ACKNOWLEDGEMENTS

We would like to express our respect to Henry and
Holly Stephensons, the married couple that have
scheduled the MLB baseball season for many years
by hand. I hope that one day, I may talk to you and
hear some of your stories.

A wink to our great colleague Markus Wagner, au-
thor of many papers on the traveling thief problem
(Chagas and Wagner, 2020; Sachdeva et al., 2020;
Yafrani et al., 2022; Chagas et al., 2021; Chagas and
Wagner, 2022b; Yafrani et al., 2017; Yafrani et al.,
2018; Wu et al., 2018; Martins et al., 2017; El Yafrani
et al., 2018; Wu et al., 2017; Wagner, 2016; Faulkner
et al., 2015; Wagner et al., 2018; Polyakovskiy et al.,
2014). The traveling thief problem should be abbre-
viated to “TThP”; that way it would also be more
aligned with the Thief Orienteering Problem, which is
abbreviated to “ThOP” (Chagas and Wagner, 2022a).
“Thief” is should be “Th”.

REFERENCES

(2023). Sports in the united states. Wikipedia. Consulted
June 21st, 2023.

Anagnostopoulos, A., Michel, L., Hentenryck, P. V., and
Vergados, Y. (2006). A simulated annealing ap-
proach to the traveling tournament problem. Journal
of Scheduling, 9:177–193.

Anonymous (2023). Repository containing source material:
https://anonymous.4open.science/r/TTPSchedules-
EE40/README.md.

Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W.,
Espinoza, D. G., Goycoolea, M., and Helsgaun, K.
(2009). Certification of an optimal tsp tour through
85,900 cities. Operations Research Letters, 37(1):11–
15.

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

254



Bhattacharyya, R. (2009). A note on complexity of travel-
ing tournament problem. Optimization Online, 2480.

Bhattacharyya, R. (2016). Complexity of the unconstrained
traveling tournament problem. Operations Research
Letters, 44(5):649–654.

Chagas, J. B., Blank, J., Wagner, M., Souza, M. J., and
Deb, K. (2021). A non-dominated sorting based
customized random-key genetic algorithm for the bi-
objective traveling thief problem. Journal of Heuris-
tics, 27(3):267–301.

Chagas, J. B. and Wagner, M. (2020). Ants can orienteer
a thief in their robbery. Operations Research Letters,
48(6):708–714.

Chagas, J. B. and Wagner, M. (2022a). Efficiently solv-
ing the thief orienteering problem with a max–min ant
colony optimization approach. Optimization Letters,
16(8):2313–2331.

Chagas, J. B. and Wagner, M. (2022b). A weighted-
sum method for solving the bi-objective traveling
thief problem. Computers & Operations Research,
138:105560.

Chatterjee, D. (2021). Complexity of traveling tourna-
ment problem with trip length more than three. arXiv
preprint arXiv:2110.02300.

Christofides, N. (1976). Worst-case analysis of a new
heuristic for the travelling salesman problem. Techni-
cal report, Carnegie-Mellon Univ Pittsburgh Pa Man-
agement Sciences Research Group.

de Bruin, E., Thomson, S. L., and Berg, D. v. d. (2023).
Frequency fitness assignment on jssp: A critical re-
view. In International Conference on the Applications
of Evolutionary Computation (Part of EvoStar), pages
351–363. Springer.

Easton, K., Nemhauser, G., and Trick, M. (2001). The
traveling tournament problem description and bench-
marks. In Principles and Practice of Constraint Pro-
gramming—CP 2001: 7th International Conference,
CP 2001 Paphos, Cyprus, November 26–December 1,
2001 Proceedings 7, pages 580–584. Springer.

Easton, K., Nemhauser, G., and Trick, M. (2003). Solv-
ing the travelling tournament problem: A combined
integer programming and constraint programming ap-
proach. Lecture notes in computer science, pages
100–112.

Eiben, A. E., Smith, J. E., et al. (2003). Introduction to
evolutionary computing, volume 53. Springer.

El Yafrani, M., Martins, M., Wagner, M., Ahiod, B., Del-
gado, M., and Lüders, R. (2018). A hyperheuristic ap-
proach based on low-level heuristics for the travelling
thief problem. Genetic Programming and Evolvable
Machines, 19:121–150.

Faulkner, H., Polyakovskiy, S., Schultz, T., and Wagner, M.
(2015). Approximate approaches to the traveling thief
problem. In Proceedings of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation,
pages 385–392.

Frohner, N., Neumann, B., and Raidl, G. (2020). A beam
search approach to the traveling tournament problem.
In Evolutionary Computation in Combinatorial Op-

timization, pages 67–82. Springer International Pub-
lishing.

Gaspero, L. D. and Schaerf, A. (2007). A composite-
neighborhood tabu search approach to the traveling
tournament problem. Journal of Heuristics, 13:189–
207.

Imahori, S., Matsui, T., and Miyashiro, R. (2014). A 2.75-
approximation algorithm for the unconstrained travel-
ing tournament problem. Annals of Operations Re-
search, 218(1):237–247.

Jamil, M. and Yang, X.-S. (2013). A literature survey
of benchmark functions for global optimisation prob-
lems. International Journal of Mathematical Mod-
elling and Numerical Optimisation, 4(2):150–194.
PMID: 55204.

Jansen, R., Horn, R., van Eck, O., Verduin, K., Thomson,
S. L., and van den Berg, D. (2023). Can hp-protein
folding be solved with genetic algorithms? maybe not.
(submitted).

Jha, S. and Menon, V. (2014). Bbmttp: Beat-based paral-
lel simulated annealing algorithm on gpgpus for the
mirrored traveling tournament problem. In Proceed-
ings of the High Performance Computing Symposium,
pages 1–7.

Karlin, A. R., Klein, N., and Gharan, S. O. (2021). A
(slightly) improved approximation algorithm for met-
ric tsp. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages
32–45.

Khelifa, M., Boughaci, D., and Aı̈meur, E. (2017). An en-
hanced genetic algorithm with a new crossover opera-
tor for the traveling tournament problem. In 2017 4th
International Conference on Control, Decision and
Information Technologies (CoDIT), pages 1072–1077.
IEEE.

Koppenhol, L., Brouwer, N., Dijkzeul, D., Pijning, I.,
Sleegers, J., and Van Den Berg, D. (2022). Exactly
characterizable parameter settings in a crossoverless
evolutionary algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 1640–1649.

Liang, T., Wu, Z., Lässig, J., van den Berg, D., and Weise, T.
(2022). Solving the traveling salesperson problem us-
ing frequency fitness assignment. In 2022 IEEE Sym-
posium Series on Computational Intelligence (SSCI),
pages 360–367. IEEE.

Lim, A., Rodrigues, B., and Zhang, X. (2006). A simulated
annealing and hill-climbing algorithm for the travel-
ing tournament problem. European Journal of Oper-
ational Research, 174(3):1459–1478.

Martins, M. S., El Yafrani, M., Delgado, M. R., Wagner, M.,
Ahiod, B., and Lüders, R. (2017). Hseda: a heuris-
tic selection approach based on estimation of distri-
bution algorithm for the travelling thief problem. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 361–368.

Miyashiro, R., Matsui, T., and Imahori, S. (2012). An
approximation algorithm for the traveling tournament
problem. Annals of Operations Research, 194:317–
324.

Too Constrained for Genetic Algorithms too Hard for Evolutionary Computing the Traveling Tournament Problem

255



Polyakovskiy, S., Bonyadi, M. R., Wagner, M.,
Michalewicz, Z., and Neumann, F. (2014). A
comprehensive benchmark set and heuristics for the
traveling thief problem. In Proceedings of the 2014
Annual Conference on Genetic and Evolutionary
Computation, pages 477–484.

Potvin, J.-Y. (1996). Genetic algorithms for the traveling
salesman problem. Annals of Operations Research,
63:337–370.

Press, A. (2004). Husband-wife team out bid after 24
years. ESPN online Numerical Optimisation. (Con-
sulted June 21st, 2023).

Ribeiro, C. C. and Urrutia, S. (2007). Heuristics for the mir-
rored traveling tournament problem. European Jour-
nal of Operational Research, 179(3):775–787.

Ruth, B., Jackson, S. J., and Mays, W. T. S. H. K. (2023).
The threestrike algorithm for winning matches: Say
it Ain’t So Joe. Journal of Baseball Algortihms,
37(1):1101–1503.

Sachdeva, R., Neumann, F., and Wagner, M. (2020). The
dynamic travelling thief problem: Benchmarks and
performance of evolutionary algorithms. In Neural
Information Processing: 27th International Confer-
ence, ICONIP 2020, Bangkok, Thailand, November
18–22, 2020, Proceedings, Part V 27, pages 220–228.
Springer.

Sazhinov, N., Horn, R., Adriaans, P., and van den Berg, D.
(2023). The partition problem, and how the distribu-
tion of input bits affects the solving process (submit-
ted).

Serdyukov, A. (1978). O nekotorykh ekstremal’nykh
obkhodakh v grafakh. Upravlyayemyye sistemy,
17:76–79. Original article in Russian is here: http://
nas1.math.nsc.ru/aim/journals/us/us17/us17 007.pdf.

Sleegers, J., Olij, R., van Horn, G., and van den Berg, D.
(2020). Where the really hard problems aren’t. Oper-
ations Research Perspectives, 7:100160.

Solberg, H. A. and Gaustad, T. (2022). International
sport broadcasting: A comparison of european soc-
cer leagues and the major north american team sports.
Sport Broadcasting for Managers, pages 84–102.

Thielen, C. and Westphal, S. (2010). Approximating the
traveling tournament problem with maximum tour
length 2. In Algorithms and Computation: 21st Inter-
national Symposium, ISAAC 2010, Jeju, Korea, De-
cember 15-17, 2010, Proceedings, Part II 21, pages
303–314. Springer.

Thielen, C. and Westphal, S. (2011). Complexity of the
traveling tournament problem. Theoretical Computer
Science, 412(4-5):345–351.

Thielen, C. and Westphal, S. (2012). Approximation algo-
rithms for ttp (2). Mathematical Methods of Opera-
tions Research, 76(1):1–20.

Uthus, D. C., Riddle, P. J., and Guesgen, H. W. (2009). An
ant colony optimization approach to the traveling tour-
nament problem. In Proceedings of the 11th Annual
conference on Genetic and evolutionary computation,
pages 81–88.

van den Berg, D. and Adriaans, P. (2021). Subset sum and

the distribution of information. In IJCCI, pages 134–
140.

van Eck, O. and van den Berg, D. (2023). Quantify-
ing instance hardness of protein folding within the
hp-model (accepted, publication pending). In IEEE
CIBCB 2023.

Verduin, K., Weise, T., and van den Berg, D. (2023). Why
is the traveling tournament problem not solved with
genetic algorithms?

Wagner, M. (2016). Stealing items more efficiently with
ants: a swarm intelligence approach to the travelling
thief problem. In Swarm Intelligence: 10th Inter-
national Conference, ANTS 2016, Brussels, Belgium,
September 7-9, 2016, Proceedings 10, pages 273–281.
Springer.

Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., and
Hutter, F. (2018). A case study of algorithm selection
for the traveling thief problem. Journal of Heuristics,
24:295–320.

Weise, T., Li, X., Chen, Y., and Wu, Z. (2021). Solving
job shop scheduling problems without using a bias
for good solutions. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 1459–1466.

Westphal, S. and Noparlik, K. (2014). A 5.875-
approximation for the traveling tournament problem.
Annals of Operations Research, 218:347–360.

Wu, J., Polyakovskiy, S., Wagner, M., and Neumann, F.
(2018). Evolutionary computation plus dynamic pro-
gramming for the bi-objective travelling thief prob-
lem. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 777–784.

Wu, J., Wagner, M., Polyakovskiy, S., and Neumann, F.
(2017). Exact approaches for the travelling thief prob-
lem. In Simulated Evolution and Learning: 11th Inter-
national Conference, SEAL 2017, Shenzhen, China,
November 10–13, 2017, Proceedings 11, pages 110–
121. Springer.

Xiao, M. and Kou, S. (2016). An improved approxi-
mation algorithm for the traveling tournament prob-
lem with maximum trip length two. In 41st Inter-
national Symposium on Mathematical Foundations of
Computer Science (MFCS 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Yafrani, M. E., Chand, S., Neumann, A., Ahiod, B., and
Wagner, M. (2017). Multi-objectiveness in the single-
objective traveling thief problem. In Proceedings of
the Genetic and Evolutionary Computation Confer-
ence Companion, pages 107–108.

Yafrani, M. E., Martins, M. S., Krari, M. E., Wagner, M.,
Delgado, M. R., Ahiod, B., and Lüders, R. (2018). A
fitness landscape analysis of the travelling thief prob-
lem. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 277–284.

Yafrani, M. E., Scoczynski, M., Delgado, M. R., Lüders,
R., Nielsen, P., and Wagner, M. (2022). On the fitness
landscapes of interdependency models in the travel-
ling thief problem. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 188–191.

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

256



Yamaguchi, D., Imahori, S., Miyashiro, R., and Matsui,
T. (2011). An improved approximation algorithm
for the traveling tournament problem. Algorithmica,
61(4):1077–1091.

Zhao, J. and Xiao, M. (2021). The traveling tournament
problem with maximum tour length two: A practical
algorithm with an improved approximation bound. In
IJCAI, pages 4206–4212.

Zhao, J., Xiao, M., and Xu, C. (2022). Improved approxi-
mation algorithms for the traveling tournament prob-
lem. In 47th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Too Constrained for Genetic Algorithms too Hard for Evolutionary Computing the Traveling Tournament Problem

257


