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Abstract: We show that for an ordinary differential equation (ODE) with an exponentially stable equilibrium and any
compact subset of its basin of attraction, we can find a larger compact set that is positively invariant for both
the dynamics of the system and a numerical method to approximate its solution trajectories. We establish this
for both one-step numerical integrators and multi-step integrators using sufficiently small time-steps. Further,
we show how to localize such sets using continuously differentiable Lyapunov-like functions and numerically
computed continuous, piecewise affine (CPA) Lyapunov-like functions.

1 INTRODUCTION

In this paper we study the ordinary differential equa-
tion (ODE)

ẋ = f(x), f ∈Cs(Rn;Rn), s ≥ 1, (1)

and numerical methods to approximate its solution for
given initial values. The solution x(t) to the initial
value problem (1) with x(0) = ξξξ is denoted by φφφ(t,ξξξ).

Our ultimate goal is to characterize the long term
behavior of system (1) by computing Lyapunov func-
tions and contraction metrics. As many real-world
systems are modelled by (1), such a characterization
has numerous practical uses in engineering and sci-
ence. In this paper we assume that (1) possesses an
exponentially stable equilibrium at x0 ∈ Rn, i.e. the
Jacobian Df(x0) ∈Rn×n of f at x0 is Hurwitz (the real
part of all its eigenvalues is negative). We denote the
equilibrium’s basin of attraction by

A(x0) := {x ∈ Rn : lim
t→∞

φφφ(t,x) = x0}.

The Lyapunov stability theory is a generalization of
the concept of dissipative energy in physics. It is
the centerpiece of practical and theoretical stabil-
ity analysis and is treated in various detail in virtu-
ally all textbooks and monographs on ODE systems,
cf. e.g. (Hahn, 1967; Yoshizawa, 1966; Zubov, 1964;
Khalil, 2002; Sastry, 1999; Vidyasagar, 2002).
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For a general ODE there is no obvious candi-
date for a Lyapunov function and there are no an-
alytical methods to compute a Lyapunov function.
Hence, various methods for the numerical compu-
tation of Lyapunov functions have been developed.
To name a few, in (Valmorbida and Anderson, 2017;
Vannelli and Vidyasagar, 1985) the computation of
rational Lyapunov functions was studied, in (An-
derson and Papachristodoulou, 2015; Parrilo, 2000)
sum-of-squared (SOS) polynomial Lyapunov func-
tions were computed using semi-definite optimization
(SOS method), see also (Ratschan and She, 2010;
Kamyar and Peet, 2015) for other approaches using
polynomials, and in (Giesl, 2007) a Zubov type PDE
was numerically solved using radial basis functions
(RBF method). For an overview of more methods see,
e.g., the review paper (Giesl and Hafstein, 2015b).
In (Julian et al., 1999; Marinósson, 2002) linear pro-
gramming was used to compute continuous and piece-
wise affine (CPA) Lyapunov functions; this approach
is referred to as the CPA method. In the CPA method
the domain, where the Lyapunov function is to be
computed, is triangulated, i.e. subdivided into sim-
plices, and a feasibility problem is derived, such that
its solution can be used to define a CPA Lyapunov
function for the system. In (Giesl and Hafstein, 2014;
Hafstein, 2004; Hafstein, 2005) it was shown that the
CPA method always succeeds in computing a Lya-
punov function for an ODE with an asymptotically
stable equilibrium, if the simplices in the triangulation
are sufficiently small and non-degenerate in a certain
sense.
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In (Giesl and Hafstein, 2015a), the CPA and the
RBF method were combined to deliver a method that
is as fast as the RBF method and delivers a verified
Lyapunov function as the CPA method. This was
achieved by solving a system of linear equations in the
RBF method rather than a linear optimization prob-
lem as in the CPA method. At the same time, the
obtained function is verified to be a Lyapunov func-
tion by checking that it satisfies the constraints of the
feasibility problem. Further, the authors proved that
this approach is constructive and one is always able
to compute a verified Lyapunov function in any com-
pact subset of an exponentially stable equilibrium’s
basin of attraction. A similar approach uses numer-
ical integration of solution trajectories of the ODE
to generate values for the variables of the feasibility
problem of the CPA method and then verifies the con-
straints, see (Björnsson et al., 2014; Björnsson et al.,
2015; Björnsson and Hafstein, 2017; Doban, 2016;
Doban and Lazar, 2016; Hafstein et al., 2014a; Haf-
stein et al., 2014b; Hafstein et al., 2015; Hafstein and
Valfells, 2017; Hafstein and Valfells, 2019; Li et al.,
2015) and also (Gudmundsson and Hafstein, 2015;
Hafstein, 2019a) for more implementation oriented
papers. This technique works well in practice and
in (Giesl and Hafstein, 2023) it is proved that it al-
ways works, assuming that one can find a compact set
that is positively invariant for both the ODE and for a
numerical scheme to approximate its solution trajec-
tories. The main contribution of this paper is to prove
the existence of such a positively invariant set.

The results in this paper also make an important
contribution in the context of numerical methods for
contraction metrics, see (Giesl et al., 2023c), where
the results of this paper are used to derive a uniform
error estimate on compact sets. Contraction metrics
are Riemannian metrics such that the corresponding
distance of adjacent solution trajectories decreases ex-
ponentially over time. They have received consider-
able attention in the literature (Lewis, 1949; Lewis,
1951; Demidovič, 1961; Krasovskiĭ, 1963; Borg,
1960; Hartman, 1961; Hartman, 1964; Lohmiller and
Slotine, 1998; Aminzare and Sontag, 2014; Simpson-
Porco and Bullo, 2014; Forni and Sepulchre, 2014;
Giesl, 2015). The analytical computation of a con-
traction metric for an ODE is notoriously difficult,
even more difficult than the computation of a Lya-
punov function, as it requires the computation of a
matrix-valued function. Numerical methods for the
construction of contraction metrics include (Aylward
et al., 2008; Giesl and Hafstein, 2013; Giesl, 2019;
Giesl et al., 2023a), see also the recent review (Giesl
et al., 2023b).

Let us give an overview of the paper: In Section
2 we recall some facts about numerical integration
methods of ODEs and prove a theorem about approxi-
mations of solutions with multi-step methods. In Sec-
tion 3 we establish the existence of positively invari-
ant sets, both for the dynamics of the system (1) and a
numerical integration scheme to approximate the so-
lution trajectories in the basin of attraction of an expo-
nentially stable equilibrium; the main result is Theo-
rem 3.5. Such positively invariant sets are very useful,
in fact necessary, to prove that Lyapunov functions
and contraction metrics can be approximated arbitrar-
ily close on compact subsets of basins of attraction,
using numerical integration with subsequent numeri-
cal quadrature. We prove our results using the fourth-
order Adams-Bashforth (AB4) multi-step scheme ini-
tialized with fourth-order Runge-Kutta (RK4), but we
discuss how the results can be extended to AB-RK
numerical schemes of arbitrary order. Finally we con-
clude the paper in Section 4.
Notation: We define N0 := {0,1,2, . . .} as the set
of the natural numbers and N+ := N0 \ {0} as the
set of the positive natural numbers. We denote the
usual p-norms on Rn and the corresponding induced
matrix norms by ∥ · ∥p, 1 ≤ p < ∞. For both vec-
tors in Rn and matrices in Rn×n we write ∥ · ∥max
for the maximum absolute value norm, i.e. ∥x∥max :=
maxi=1,2,...,n |xi| for a vector x ∈ Rn×n and ∥A∥max :=
maxi, j=1,2,...,n |ai j| for a matrix A =

(
ai j

)
∈ Rn×n.

Apart from the usual equivalence estimates for the p-
norms on Rn, recall the norm equivalence ∥A∥max ≤
∥A∥2 ≤ n∥A∥max for a matrix A ∈ Rn×n and that
∥ · ∥max is not sub-multiplicative, but ∥Ab∥max ≤
n∥A∥max∥b∥max for b := B ∈ Rn×n or b := b ∈ Rn.
We denote the closure of a set U ⊂ Rn by U and its
boundary by ∂U .

2 NUMERICAL INTEGRATION
METHODS

For computing Lyapunov functions or contraction
metrics for the ODE (1), initial value problems can
be solved numerically for all vertices of a triangu-
lation of a relevant compact subset of Rn, as dis-
cussed in the last section. As the number of vertices
can be very high, it is advantageous to use multi-step
methods rather than single-step methods, as these are
considerably faster for the same degree of precision.
Additionally, the examples in (Hafstein, 2019b) indi-
cate that the corrector step in the Adams-Bashforth-
Moulton predictor-corrector methods does not deliver
better results than the Adams-Bashforth method with-
out the corrector step. Therefore we will concentrate
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in this paper on the Adams-Bashforth method, and
in order to be concrete, we will concentrate on the
Adams-Bashforth method of order four (AB4) initial-
ized with the usual Runge-Kutta method of the same
order (RK4). However, it is straight-forward to adapt
the proofs to the Adams-Bashforth method of any or-
der initialized with the Runge-Kutta of the same order
and we will elaborate at the appropriate places.

The true solution to the ODE (1) with initial-value
ξξξ is denoted by t 7→ φφφ(t,ξξξ) and its numerical approx-
imations at ti = hi, i ∈ N0, by

φ̃φφi(ξξξ) or φ̃φφi, i.e. φ̃φφi := φ̃φφi(ξξξ),

dependent on whether the initial-value ξξξ is clear from
the context or not. The time-step h > 0 is a parameter
of the numerical method. Thus, we set φ̃φφ0 = ξξξ and for
i = 0,1,2 we use the RK4 formulas

k1 = hf(φ̃φφi) (2)

k2 = hf(φ̃φφi +k1/2)

k3 = hf(φ̃φφi +k2/2)

k4 = hf(φ̃φφi +k3)

φ̃φφi+1 = φ̃φφi +
1
6
(k1 +2k2 +2k3 +k4).

For i ≥ 3 we use the AB4 formula and set

φ̃φφi+1 = φ̃φφi (3)

+
h

24

(
55f(φ̃φφi)−59f(φ̃φφi−1)+37f(φ̃φφi−2)−9f(φ̃φφi−3)

)
.

Let S ⊂Rn be a compact set and f∈C4(Rn;Rn). It
is well known that one can find a constant CRK4 such
that for every ξξξ ∈ S we have

∥φ̃φφ1(ξξξ)−φφφ(h,ξξξ)∥max ≤CRK4h5, (4)

where the constant CRK4 depends on the derivatives of
f, up to and including the fourth order, in a compact,
convex set S̃ ⊃ S, fulfilling φ̃φφ1(ξξξ),φφφ(h,ξξξ) ∈ S̃ for all
ξξξ ∈ S.

The existence of such a set S̃ is clear from the for-
mulas (2). The reason for this is simply that the er-
ror estimate (2) is derived by using Taylor polynomi-
als for t 7→ φφφ(t,ξξξ) and using the fact that φ̇φφ(t,ξξξ) =
f(φφφ(t,ξξξ)). From this it is obvious, that for τ∗ > 0
there exists a constant C such that (4) holds true with
CRK4 = C and all 0 < h ≤ τ∗ and all ξξξ ∈ S. This is
the property we need for the assumptions in Theorem
3.5.

For multi-step methods like AB4 the error esti-
mate is usually formulated differently. Namely that
there exists a constant CAB4 > 0 such that

∥φ̃φφi+1(ξξξ)−φφφ((i+1)h,ξξξ)∥max ≤CAB4h5

if φ̃φφ j = φφφ( jh,ξξξ) for j = i, i− 1, i− 2, i− 3 in formula

(3), i.e. if the previous approximations φ̃φφ j are exact.
Again, the constant CAB4 depends on the derivatives
of f, up to and including the fourth order, in a com-
pact, convex set S̃ ⊃ S, fulfilling φ̃φφi+1(ξξξ),φφφ( jh,ξξξ) ∈ S̃
for j = i, i−1, i−2, i−3 for all ξξξ ∈ S.

In this form the error estimate is not useful for
our application of computing Lyapunov functions and
contraction metrics. Therefore we prove the follow-
ing theorem.

Theorem 2.1. (Error estimate for AB4-RK4 method)
Consider the system (1) and assume that f ∈
C4(Rn;Rn). Then AB4 initialized with RK4 fulfills the
property:

For any compact set S ⊂ Rn there exist constants
C,h∗ > 0 such that for all step-sizes 0 < h ≤ h∗ we
have for any i ∈ N0 that

∥φ̃φφi+1(ξξξ)−φφφ(h, φ̃φφi(ξξξ))∥2 ≤Ch5

whenever

φ̃φφ0(ξξξ), φ̃φφ1(ξξξ), . . . , φ̃φφi(ξξξ) ∈ S.

Proof. Fix a constant 0 < h1 ≤ 1 and a compact, con-
vex set S′ ⊃ S such that φφφ(h,ξξξ) ∈ S′ for all ξξξ ∈ S and
φ̃φφi+1(ξξξ)∈ S′, whenever φ̃φφ j(ξξξ)∈ S, for j = 0,1,2, . . . , i,
i ∈N0, and when using step-size 0 < h ≤ h1 . Further-
more, let 0 < h2 ≤ h1 be a constant and S̃ be a com-
pact, convex set such that φ([−3h2,0],S′)⊂ S̃. Fix an
arbitrary, but constant ξξξ ∈ S for the rest of the proof.

For a fixed step-size 0 < h ≤ h2 denote φφφi(y) :=
φφφ(ih,y), i ∈ Z, and by φ̃φφi, i ∈ N0, the approximation
to φφφi(ξξξ) generated by the numerical method, i.e. AB4
initialized with RK4. There exists a constant CRK4 >
0, independent of ξξξ ∈ S, such that for 0 < h ≤ h2 we
have

∥φ̃φφi+1 −φφφ1(φ̃φφi)∥max ≤CRK4h5, (5)

as long as 0< h≤ h2 and φ̃φφ j ∈ S, j = 0,1, . . . , i, for i=
0,1,2; this is just the classical local truncation error
estimate for RK4.

For the steps with the AB4 method it is advanta-
geous to define

AB4 j=i(x j) :=

xi +
h
24

[55f(xi)−59f(xi−1)+37f(xi−2)−9f(xi−3)]

where either x j = φ̃φφ j or x j = φφφ j(y). Note that x j refers
to the sequence (x j) j, and j in j = i refers to the index
j of the sequence (x j) j. i is the value of the last index
used in the sequence when AB4 j=i(x j) is computed
from xi,xi−1,xi−2,xi−3. In the case x j = φ̃φφ j we have

AB4 j=i(φ̃φφ j) = φ̃φφi+1 if i ≥ 3
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and in the case x j = φφφ j(y) there exist a constant
CAB4 > 0, such that

∥φφφi+1(y)−AB4 j=i(φφφ j(y))∥max ≤CAB4h5 (6)

as long as 0 < h ≤ h2 and φφφ j(y) ∈ S̃ for
j = i, i−1, i−2, i−3, in particular for all y ∈ S′. We
now prove the theorem by induction.

Denote by (I) the proposition:
There exist constants C,C∗,h∗ > 0, such that for

every time-step 0 < h ≤ h∗ we have for any i ∈ N0
that

∥φ̃φφi −φφφ1(φ̃φφi−1)∥max ≤Ch5, (7)

whenever φ̃φφk ∈ S for k = 0,1, . . . , i− 1, and addition-
ally we have for i ≥ 3 and with j = 0,1,2,3, that

∥φ̃φφi− j −φφφ− j(φ̃φφi)∥max ≤C∗h5. (8)

The assertions of the theorem clearly follow from (I).
To prove (I) let us first fix the constants. Let L > 0

be a Lipschitz constant for f on S̃ and set

C := 2max{CRK4,CAB4}, (9)

C∗ := eL(1+ eL + e2L)C, (10)

and

h∗ := min
{

h2,
C−CAB4

5C∗L

}
. (11)

We now show that (I) holds true for i = 0,1,2,3.
Indeed, (7) follows immediately from (5), and (8) fol-
lows immediately from the standard error estimate for
an explicit numerical integrator with local truncation
error Ch5 since 0 < h ≤ h∗, see e.g. (Sauer, 2012).

Now assume that (I) holds true for all natural num-
bers up to and including some i ≥ 3. We assume that
φ̃φφi ∈ S and show that (I) also holds true for i+1.

Let us first consider (7) with i replaced by i+ 1.
Observe that

∥φ̃φφi+1 −φφφ1(φ̃φφi)∥max = ∥AB4 j=i(φ̃φφ j)−φφφ1(φ̃φφi)∥max

≤ ∥AB4 j=i(φ̃φφ j)−AB4 j=0(φφφ j(φ̃φφi))∥max

+∥AB4 j=0(φφφ j(φ̃φφi))−φφφ1(φ̃φφi)∥max (12)

and for the second term on the right-hand-side we
have the bound

∥AB4 j=0(φφφ j(φ̃φφi))−φφφ1(φ̃φφi)∥max ≤CAB4h5 (13)

by (6).
To bound the first term on the right-hand-side of

(12) we use the formula for AB4, that φφφ0(φ̃φφi) = φ̃φφi,

the Lipschitz condition on f on S̃, and induction hy-
pothesis (8), and we get

∥AB4 j=i(φ̃φφ j)−AB4 j=0(φφφ j(φ̃φφi))∥max (14)

=
h

24
∥−59f(φ̃φφi−1)+59f(φφφ−1(φ̃φφi))

+37f(φ̃φφi−2)−37f(φφφ−2(φ̃φφi))

−9f(φ̃φφi−3)+9f(φφφ−3(φ̃φφi))∥max

≤ h
24

(
59∥f(φ̃φφi−1)− f(φφφ−1(φ̃φφi))∥max

+37∥f(φ̃φφi−2)− f(φφφ−2(φ̃φφi))∥max

+9∥f(φ̃φφi−3)− f(φφφ−3(φ̃φφi))∥max

)
≤ hL

24

(
59∥φ̃φφi−1 −φφφ−1(φ̃φφi)∥max

+37∥φ̃φφi−2 −φφφ−2(φ̃φφi)∥max

+9∥φ̃φφi−3 −φφφ−3(φ̃φφi)∥max

)
≤ 105hL

24
C∗h5 < 5C∗Lh6.

Hence, (12), (13), and (14) deliver

∥φ̃φφi+1−φφφ1(φ̃φφi)∥max ≤ 5C∗Lh6+CAB4h5 ≤Ch5, (15)

because

5C∗Lh+CAB4 ≤ 5C∗Lh∗+CAB4 ≤C

by (11).
Hence, the bound (7) in (I) holds true for i re-

placed by i+1.
Let us now consider the bound (8) in (I) for i re-

placed by i+1.
The case j = 0 is obvious and from

∥φ̃φφi+1− j −φφφ− j(φ̃φφi+1)∥max

= ∥φφφ− j(φφφ j(φ̃φφi+1− j))−φφφ− j(φ̃φφi+1)∥max

≤ e jLh∥φφφ j(φ̃φφi+1− j)− φ̃φφi+1∥max

the case j = 1, i.e.

∥φ̃φφi−φφφ−1(φ̃φφi+1)∥max ≤ eLh∥φφφ1(φ̃φφi)− φ̃φφi+1∥max ≤C∗h5

follows from (15) and eLhC ≤ C∗. Here we used the
well known

∥φφφ(t,a)−φφφ(t,b)∥max ≤ eL|t|∥a−b∥max.

The cases j = 2 and j = 3 now follow similarly from
(15) and the induction hypothesis (8). For j = 2 we
have

∥φ̃φφi−1 −φφφ−2(φ̃φφi+1)∥max

≤ ∥φ̃φφi−1 −φφφ−1(φ̃φφi)∥max +∥φφφ−1(φ̃φφi)−φφφ−2(φ̃φφi+1)∥max

≤ eLh∥φφφ1(φ̃φφi−1)− φ̃φφi∥max + e2Lh∥φφφ1(φ̃φφi)− φ̃φφi+1∥max

≤ eLh(1+ eLh)Ch5
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and
eLh(1+ eLh)Ch5 ≤C∗.

For j = 3 we have

∥φ̃φφi−2 −φφφ−3(φ̃φφi+1)∥max ≤ ∥φ̃φφi−2 −φφφ−1(φ̃φφi−1)∥max

+∥φφφ−1(φ̃φφi−1)−φφφ−2(φ̃φφi)∥max

+∥φφφ−2(φ̃φφi)−φφφ−3(φ̃φφi+1)∥max

≤ eLh∥φφφ1(φ̃φφi−2)− φ̃φφi−1∥max

+ e2Lh∥φφφ1(φ̃φφi−1)− φ̃φφi∥max

+ e3Lh∥φφφ1(φ̃φφi)− φ̃φφi+1∥max

≤ eLh(1+ eLh + e2Lh)Ch5,

and
eLh(1+ eLh + e2Lh)C =C∗ ≤C∗.

Thus, we have proved the bound (8) of (I) for i
replaced by i+1, which concludes the proof.

Definition 2.2. (Order of numerical methods)
A numerical method to solve

ẋ = f(x), f ∈Cp(Rn;Rn), (16)

is said to be of order p ∈ N, if for any compact set
S ⊂ Rn there exist constants Cφφφ,h∗ > 0 such that for
all step-sizes 0 < h ≤ h∗ we have for any i ∈ N0 that

∥φ̃φφi+1(ξξξ)−φφφ(h, φ̃φφi(ξξξ))∥2 ≤Cφφφhp+1

whenever

φ̃φφ0(ξξξ), φ̃φφ1(ξξξ), . . . , φ̃φφi(ξξξ) ∈ S.

With Definition 2.2, Theorem 2.1 can be formu-
lated as: Assume f ∈ C4(Rn;Rn) in (1). Then AB4
initialized with RK4 is of order 4 in the sense of Def-
inition 2.2.

Remark 2.3. It is straight forward to adapt the proof
of Theorem 2.1, under the assumption that f in (1)
is in Cp(Rn;Rn), to the Adams-Bashforth method of
order p initialized with Runge-Kutta of the same or-
der. Hence, an AB-RK pair of order p is a numerical
method of order p in the sense of Definition 2.2.

We are now ready to study positively invariant sets
for the ODE (1), that are also positively invariant for
the numerical method.

3 POSITIVELY INVARIANT SETS

A positively invariant set for system (1), i.e. a set
P ⊂ Rn such that φφφ(t,x) ∈ P for all t ≥ 0 whenever

x ∈ P, is not necessarily positively invariant for a nu-
merical procedure to approximate its solution trajec-
tories. The following example is quite revealing for
the general situation; we show for a simple system
and Euler’s Method that

• no matter how small the time-step h> 0 is, the dis-
crete semi-dynamical system defined by Euler’s
Method does not necessarily have the same basins
of attraction as the original system, and

• if we restrict Euler’s Method to certain compact
and positively invariant subsets of the basins of at-
traction of the system, then these sets are also pos-
itively invariant for the discrete semi-dynamical
system defined by Euler’s Method for sufficiently
small step sizes.

Recall that semi-dynamical systems are dynamical
systems, with the exception that solution trajectories
are not defined for negative times.

Example 3.1. Consider the system θ̇ = 1 and ṙ =
−r(1 − r2) in polar coordinates; the origin is an
asymptotically stable equilibrium and the circular
disc B1 := {x ∈ R2 : ∥x∥2 < 1} is its basin of attrac-
tion. In Cartesian coordinates the equations of mo-
tion are(

ẋ
ẏ

)
=

(
−x(1− x2 − y2)− y
−y(1− x2 − y2)+ x

)
=: f(x,y). (17)

Using Euler’s method at z0 :=(0,y) and with step-
size h > 0 delivers the approximation

z :=
(

0
y

)
+h

(
−y

−y(1− y2)

)
at time h. Now, for y2 < 1, we have

∥z∥2
2 = h2y2 +(y−hy(1− y2))2 > 1

if

0 < g(y,h)

:= y2(1+(1− y2)2)︸ ︷︷ ︸
=:a>0

h2 +2y2(y2 −1)︸ ︷︷ ︸
=:b<0

h+ y2 −1︸ ︷︷ ︸
=:c<0

,

i.e. for

h >
−b+

√
b2 −4ac

2a
> 0.

Because g is continuous and limy→±1 g(y,h) = h2, for
a fixed h > 0 we can always find y close enough to 1
(or −1), such that ∥z∥2 > 1. Hence, B1 is not posi-
tively invariant for this system when Euler’s method
is used, no matter how small h > 0 is.

Now fix 0 < r < 1 and consider the compact set
Br := {x ∈ R2 : ∥x∥2 ≤ r}. Note that Br is positively
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invariant for the dynamical system defined by (17). If
h > 0 satisfies

(1+(1− r2)2)h+2(r2 −1) ≤ 0 (18)

i.e. h ≤ 2(1− r2)

1+(1− r2)2 ,

then for all z0 = (x,y) with ∥z0∥2 ≤ r one has

∥z∥2
2 = ∥z0 +hf(z0)∥2

2 ≤ ∥z0∥2
2,

i.e. Br is positively invariant for Euler’s method with h
fufilling (18). Note that condition (18) can be derived
from considering the special case z0 = (0,y).

We now show in Theorem 3.2 and Corollary 3.5
that for general systems, sublevel-sets S ⊂ Rn of cer-
tain Lyapunov-like functions V are positively invari-
ant for both the system (1) and numerical methods of
order p in the sense of Definition 2.2, p ∈ N+ and
1 ≤ p ≤ s, to approximate its solution trajectories in S
and sufficiently small step size h > 0.

Theorem 3.2. (Positively invariant sets) Consider the
system (1), let V ∈C1(Rn;R) and assume S is a com-
pact connected component of {x ∈ Rn : V (x) ≤ m},
m ∈R. Further assume that ∇V (x) · f(x)< 0 and that
∇V (x) points out of S for every x ∈ ∂S. Then S is
positively invariant for (1).

Further, assume that f ∈ Cp(Rn;Rn) and that we
have a numerical method of order p in the sense of
Definition 2.2. Then there is an h′ > 0 such that if
the time-step h of the numerical method fulfills 0 <

h ≤ h′, then φ̃φφi+1(ξξξ) ∈ S, whenever φ̃φφk(ξξξ) ∈ S for k =
0,1,2, . . . , i, i ∈ N0.

Proof. Define

δ :=−1
2

max
x∈∂S

∇V (x) · f(x)> 0

and let ε > 0 be such that ∇V (x) · f(x) ≤ −δ < 0 for
all

x ∈ W := {x ∈ Rn : d(x,∂S)≤ 2ε},
where

d(x,K) := min
y∈K

∥x−y∥2

for a compact set K.
To see that S is positively invariant for (1) consider

that if it is not, then some solution trajectory starting
in S must intersect ∂S at some point x and then leave
S, that is, there exists an x ∈ ∂S and an τ∗ > 0 such
that φφφ(τ,x) ∈ W \S for all 0 < τ ≤ τ∗. Then

m <V (φφφ(τ∗,x)) =V (x)+
∫

τ∗

0

d
dτ

V (φφφ(τ,x))dτ

= m+
∫

τ∗

0
∇V (φφφ(τ,x)) · d

dτ
φφφ(τ,x)dτ ≤ m−δτ

∗,

a contradiction.
In order to prove the desired property for the nu-

merical method, set

V := {x ∈ Rn : d(x,∂S)≤ ε} ⊂ W ,

F := max{max
x∈S

∥f(x)∥2,1}, and

h′ := min{ε/(2max{F,Cφφφ}),1,τ∗,h∗}.
Here and later in the proof Cφφφ,h∗ > 0 are the constants
for the numerical method from Definition 2.2.

Then, for x ∈ S\V and 0 ≤ h ≤ h′ we have

∥φφφ(h,x)−x∥2 ≤
∫ h

0
∥f(φφφ(s,x))∥2ds ≤ hF

and it follows that

d(φφφ(h,x),S\V )≤ ε/2, ∀x ∈ S\V . (19)

Note that from (19), Definition 2.2 and for φ̃φφk(ξξξ)∈
S for k = 0,1,2, . . . , i, x := φ̃φφi(ξξξ), we have

d(φ̃φφi+1(ξξξ),S\V )≤ d(φφφ(h,x),S\V )

+∥φφφ(h,x)− φ̃φφi+1(ξξξ)∥2 ≤ ε/2+ ε/2 = ε.

Hence, φ̃φφi+1(x) ∈ S if the time-step of the numerical
method fulfills 0 ≤ h ≤ h′, whenever φ̃φφk(ξξξ) ∈ S for
k = 0,1,2, . . . , i and φ̃φφi(ξξξ) = x ∈ S\V .

To finish the proof we need to show the statement
in the case φ̃φφk(ξξξ) ∈ S for k = 0,1,2, . . . , i and

x = φ̃φφi(ξξξ) ∈ S∩V .

We assume on the contrary that there are sequences
ξξξ j ∈ S and 0 < h j ≤ h′, h j → 0 as j → ∞, such that

φ̃φφ
j
i j+1(ξξξ j) /∈ S

for all j, although

φ̃φφ
j
0(ξξξ j), φ̃φφ

j
1(ξξξ j), . . . , φ̃φφ

j
i j
(ξξξ j)∈ S, x j := φ̃φφ

j
i j
(ξξξ j)∈ S∩V .

Here

φ̃φφ
j
0(ξξξ j), φ̃φφ

j
1(ξξξ j), . . . , φ̃φφ

j
i j
(ξξξ j), φ̃φφ

j
i j+1(ξξξ j)

is the sequence generated by the numerical method
with initial value ξξξ j ∈ S and step-size h j.

Note that since S is positively invariant for (1)
we have φφφ(h j,x j) ∈ S and therefore V (x j) ≤ m and
V (φφφ(h j,x j))≤m for all j. Further, there exists I ∈N+

such that for all j ≥ I we have φφφ(θh j,x j) ∈ W ∩ S

for all θ ∈ [0,1] and V (φ̃φφ
j
i j+1(ξξξ j)) > m. Moreover,

there is a convex and compact set S̃ ⊃ S such that

φ̃φφ
j
i j+1(ξξξ j) ∈ S̃ for all j. Let LV be a Lipschitz con-

stant for V on S̃ and recall that by Definition 2.2 we
have

∥φ̃φφ
j
i j+1(ξξξ j)−φφφ(h j,x j)∥2 ≤Cφφφhp+1

j .
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Now∣∣∣∣∣∣V (φ̃φφ
j
i j+1(ξξξ j))−V (φφφ(h j,x j))

h j

∣∣∣∣∣∣
≤

LV∥φ̃φφ
j
i j+1(ξξξ j)−φφφ(h j,x j)∥2

h j

≤
LVCφφφhp+1

j

h j
= LVCφφφhp

j ,

V (φ̃φφ
j
i j+1(ξξξ j))−V (x j)

h j
>

m−m
h j

= 0,

and

V (φ̃φφ
j
i j+1(ξξξ j))−V (x j)

h j
=

V (φ̃φφ
j
i j+1(ξξξ j))−V (φφφ(h j,x j))

h j

+
V (φφφ(h j,x j))−V (x j)

h j
(20)

for all j ≥ I.
Define g j(t) := V (φφφ(t,x j)). By the Mean-Value

theorem there exist θ j ∈ (0,1) such that

g j(h j)−g j(0) = g′(θ jh j)h j ≤−δh j

holds for all j ≥ I. From (20) it follows that

0 ≤ limsup
j→∞

V (φ̃φφ
j
i j+1(ξξξ j))−V (x j)

h j

≤ limsup
j→∞

V (φ̃φφ
j
i j+1(ξξξ j))−V (φφφ(h j,x j))

h j

+ limsup
j→∞

V (φφφ(h j,x j))−V (x j)

h j

≤ 0−δ < 0,

which is a contradiction and thus the theorem is
proved.

Remark 3.3. Note that V (x,y) = x2 + y2 is a Lya-
punov function for system (17) on B1 and for 0< r < 1
the set V−1([0,r2]) = {x ∈ R2 : ∥x∥2 ≤ r} ⊂ B1 is a
compact sublevel set that is positively invariant.

Further,

∇V (x,y) · f(x,y) =−2r2(1− r2)< 0

for x2 + y2 = r2, i.e. ∇V (x,y) · f(x,y) is less than a
negative constant at the boundary of V−1([0,r2]). The
last theorem then tells us that there must be an h′ > 0
so small that V−1([0,r2]) is positively invariant for
Euler’s Method with step size 0 < h ≤ h′ too.

In applications it can be more convenient to have
the following version of Theorem 3.2, which can be
used for Lyapunov functions computed by first ap-
proximately solving the Zubov’s PDE

∇V (x) · f(x) =−
√

δ2 +∥f(x)∥2
2

using generalized interpolation in reproducing kernel
Hilbert spaces and then interpolating the values over
the simplices of a triangulation T , see (Giesl and Haf-
stein, 2015a; Giesl et al., 2021) for more details. Note
that in the following theorem, CPA[T ] denotes the
set of these interpolating functions, called continuous
piecewise affine (CPA) functions, which are affine on
each simplex of the triangulation T and continuous
overall. Further, ∇Vν ∈ Rn denotes the constant gra-
dient of V in the interior of a simplex Sν ∈ T .

Theorem 3.4 (CPA version of Thm. 3.2). Let V ∈
CPA[T ] and assume there is a compact connected
component S of {x ∈Rn : V (x)≤ m}, m ∈R. Assume
that ∇Vν points out of S at x for every x ∈ ∂S∩Sν and
every Sν ∈ T , and that there is a constant c > 0 such
that ∇Vν · f(x)≤−c for every x in a neighbourhood of
∂S and every ν such that x ∈Sν. Then S is positively
invariant for (1).

Further, assume that f ∈ Cp(Rn;Rn) and that we
have a numerical method of order p in the sense of
Definition 2.2. Then there is an h′ > 0 such that if
the time-step h of the numerical method fulfills 0 <

h ≤ h′, then φ̃φφi+1(ξξξ) ∈ S, whenever φ̃φφk(ξξξ) ∈ S for k =
0,1,2, . . . , i.

Proof. Essentially, the proof is the same as the proof
of Theorem 3.2; the existence of δ = c/2 and ε > 0
now follow directly from the assumptions. The only
reasoning that needs modification is why

g j(h j)−g j(0)≤−δh j.

For V ∈ CPA[T ] it follows because for

D+V (x) := limsup
h→0+

V (φφφ(h,x))−V (x)
h

we have

D+V (x)≤ max
ν : x∈Sν

∇Vν · f(x)≤−δ,

see e.g. (Hafstein, 2020, Lem. 2.2), and by a gener-
alized Mean Value Theorem, see (Scheeffer, 1884) or
(Walter, 2004, Thm. 12.24).

Finally, we can state and prove the main result of
this paper.

Theorem 3.5. (Positively invariant sets for the system
and the numerical method) Let x0 be an exponentially
stable equilibrium of (1), where f ∈ Cp(Rn;Rn) with

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

50



p ∈ N, and let K ⊂ A(x0) be compact. Then there
exists a compact and connected set S, K ⊂ S ⊂ A(x0),
with the following property:

Assume we have a numerical method of order p
in the sense of Definition 2.2. Then there exists a con-
stant h′ > 0, such that S is positively invariant both for
the original flow φφφ(0,ξξξ) = ξξξ ∈ S, t 7→ φφφ(t,ξξξ), induced
by (1), and for the sequences φ̃φφi(ξξξ), i ∈N0, generated
by the numerical method with step-size h, 0 < h ≤ h′,
for the initial-values ξξξ ∈ S. In other words, φ̃φφi(ξξξ) ∈ S
for all ξξξ ∈ S and all i ∈ N0.

Proof. By (Giesl, 2007, Thm. 2.46) there exists a
Lyapunov function V for the system (1) fulfilling

∇V (x) · f(x) =−∥x−x0∥2

√
1+∥f(x)∥2

2

for all x ∈ A(x0). We set r := max
x∈K

V (x) and S :=

V−1([0,r]). Since V is also a Lyapunov function for
the system

ẋ = f(x)(1+∥f(x)∥2
2)

−1/2,

with a bounded right-hand-side, the set S ⊂ A(x0) is
compact. Since V (φφφ(t,ξξξ))≤ r for all t ≥ 0 and

x0 ∈ φφφ([0,∞),ξξξ)⊂V−1([0,r]) = S

for all ξξξ ∈ S, the set S is also connected. Using this
Lyapunov function and Theorem 3.2 for the numeri-
cal method, the existence of h′ > 0 with the claimed
properties follows.

Remark 3.6. By Theorem 2.1 the AB4 method initial-
ized by RK4 is a numerical method of order 4 in the
sense of Definition 2.2, and thus, fulfills the assump-
tions in Theorem 3.5. By Remark 2.3 the same applies
to the Adams-Bashforth method of any order, initial-
ized with the Runge-Kutta method of the same order.
These results are used in (Giesl and Hafstein, 2023)
and (Giesl et al., 2023c) to prove that Lyapunov func-
tions and contraction metrics can be approximated
arbitrarily close on compact sets using numerical in-
tegration and quadrature.

4 CONCLUSIONS

We have shown that for an ODE with an exponen-
tially stable equilibrium x0 and any compact subset K
of its basin of attraction A(x0), we can find a compact
and connected set S, K ⊂ S ⊂ A(x0), that is positively
invariant, both for the ODE and its numerical approx-
imation. We considered the concrete case of using the
Adams-Bashforth method of fourth order, initialized
with the usual Runge-Kutta method of fourth order,

but we also discussed obvious extensions to an arbi-
trary order. Finally, we demonstrated how such posi-
tively invariant sets can be computed in practice.
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