
On the Development of a Collaborative Knowledge Platform for
Engineering Sciences

Jonas Jepsen a, Arthur Zamfir b, Brigitte Boden c, Jacopo Zamboni d and Erwin Moerland e

Institute of System Architectures in Aeronautics, German Aerospace Center, Hein-Saß-Weg 22, Hamburg, Germany

Keywords: Knowledge-Based Engineering, Semantic Web Technologies, Web Application, Corporate Amnesia,
Knowledge Management, Collaboration, Knowledge Platform, Codex.

Abstract: Knowledge is undoubtedly one of the most important assets for all organizations. Losing knowledge that once
was considered part of an organization always poses a problem. When knowledge is concentrated on single
individuals, as is often the case in research environments, this is particularly difficult to avoid. This is also
true for software developed by individuals such as Knowledge-Based Engineering (KBE) applications. In
this paper we show how the Codex Framework, which is based on Semantic Web Technologies (SWT), can
be used for creating, maintaining and inspecting formalized knowledge in a way which also fosters its reuse
and execution. We show use cases where Codex was applied and discuss the advantages and shortcomings
compared to a conventional Object-Oriented Programming (OOP) approach. From these experiences we then
draw conclusions on why the adoption rate of Codex is below expectation and present a newly developed
collaborative knowledge platform which is designed to overcome the identified challenges.

1 INTRODUCTION

Organizational knowledge, the valuable pool of infor-
mation and insights within a company, serves as the
foundation for success in the fast-paced world of busi-
ness (Nonaka and Takeuchi, 1995). However, an of-
ten overlooked and consequential challenge that com-
panies face is corporate amnesia — the gradual ero-
sion or forgetting of this vital institutional knowledge,
experience, and lessons learned over time (Dalkir,
2005). As employee turnover rates rise and industries
undergo technological transformations, organizations
become increasingly fragile to losing their collective
memory. This loss hinders their ability to make in-
formed decisions, replicate past achievements, and
avoid repeating previous failures, ultimately impact-
ing their overall performance and long-term viability.
In this section we discuss causes and effects of cor-
porate amnesia in research environments as well as
means to improve its prevention.

a https://orcid.org/0000-0002-3307-1978
b https://orcid.org/0000-0001-7579-9628
c https://orcid.org/0000-0002-2326-2762
d https://orcid.org/0000-0003-3207-4138
e https://orcid.org/0000-0003-4818-936X

1.1 Corporate Amnesia in Engineering
Research

In engineering research environments, avoiding cor-
porate amnesia poses a unique challenge. Individu-
als typically enter these environments after complet-
ing their master’s degrees and often continue their
stay to conduct PhD studies. Moreover, researchers
frequently dedicate their efforts to highly specialized
topics, resulting in the accumulation and creation of
a substantial amount of knowledge throughout their
thesis work. As a result, the risk of corporate amne-
sia increases due to the transient nature of researchers
and the significant personal expertise they develop
within their specific knowledge domain. While a con-
densed portion of their knowledge is eventually doc-
umented in the form of a PhD thesis, it is crucial to
recognize that a considerable amount of knowledge
remains undocumented or is not reusable unless high
effort is involved.

Nowadays, PhD theses in the field of engineer-
ing often include the development of some kind of
software. Whether it is for demonstrating a new al-
gorithm, method or methodology, performing simula-
tions or analyses, or creating a design tool whose ex-
tent can vary from using simple handbook methods to
fully fledged Knowledge-Based Engineering (KBE)

208
Jepsen, J., Zamfir, A., Boden, B., Zamboni, J. and Moerland, E.
On the Development of a Collaborative Knowledge Platform for Engineering Sciences.
DOI: 10.5220/0012189600003598
In Proceedings of the 15th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2023) - Volume 2: KEOD, pages 208-215
ISBN: 978-989-758-671-2; ISSN: 2184-3228
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



applications (La Rocca, 2012). This software is often
written, maintained and run by a single person. Al-
though it contains a set of explicit instructions, operat-
ing the software requires a deep understanding of the
underlying assumptions which are often only present
as tacit knowledge gained while conducting the PhD.

The ease of extracting knowledge from software
or adapting it to meet new requirements varies de-
pending on how it was developed. In situations where
the original creator is no longer accessible, these tasks
can become highly challenging. As a consequence, a
significant portion of the knowledge generated within
the software is effectively lost when an individual de-
parts, resulting in a notable case of corporate amnesia.

From our experience the quality of software writ-
ten in research institutions covers the complete spec-
trum from legacy codebase with poor architectural co-
hesion, to a professionally crafted architecture and
modular set of well written software applications.
In between these extremes are many different lev-
els of software quality, but the majority of scien-
tists would rather focus on developing their domain
knowledge than mastering the craft of software de-
velopment (Kelly and Sanders, 2008).

Knowing that there are multiple angles from
which corporate amnesia should be addressed by or-
ganizations, this paper focuses on technical solutions
for solving two of the identified challenges — a suit-
able way for knowledge representation and means
to reduce software development related tasks not di-
rectly contributing to doing science.

1.2 Preserving Organizational Memory

There are multiple approaches to knowledge manage-
ment for keeping existing knowledge inside an orga-
nization and to support the creation of new knowl-
edge. The authors of (Nonaka and Takeuchi, 2021)
group knowledge in two major categories, explicit
knowledge and tacit knowledge. While explicit
knowledge is formal and systematic, like words, au-
dio recordings and images, tacit knowledge is far
more difficult to express and resides “within the heads
of knowers” (Dalkir, 2005). Depending on the con-
text, other types of knowledge are also addressed. The
authors of (Li and Gao, 2003) argue that although of-
ten used synonymously, implicit knowledge should be
distinguished from tacit knowledge since it refers to
knowledge that can be articulated but for some rea-
sons is not. It is crucial to acknowledge that all three
mentioned types of knowledge, with their respective
strengths and weaknesses, are essential for knowledge
creation and fostering innovation. Although being a
significant asset in driving innovations within compa-

nies, methods for retaining tacit knowledge is outside
the scope of this paper. In this paper, our focus is
on preserving organizational memory by encouraging
scientists to externalize a significant portion of their
explicit and implicit knowledge into a formalized and
reusable model. In order to achieve that, each indi-
vidual needs to be provided with an incentive to do
so. The presented research attempts to free scientists
from the burden of traditional software development.

In Section 2, we show how the Codex framework
has been used for the development of KBE applica-
tions and discuss its advantages and disadvantages.
Section 3 deals with the transition from Codex frame-
work to the collaborative knowledge platform and
presents the current state of the platform. In Section
4 we conclude with a summary and an outlook on the
next steps.

2 SEMANTIC WEB
TECHNOLOGIES TO THE AID

As arguments and dispute are integral to scientific
progress, an effective knowledge structure for knowl-
edge modelling should adopt a flexible and open-
minded paradigm that allows for different opinions
about the same subject to exist. By making use of
Semantic Web Technologies (SWT) such as the Re-
source Description Framework (RDF) and the Web
Ontology Language (OWL) as the base modelling
language, it even supports explicitly interconnecting
models from different domains or disciplines, which
is one of the challenges for KBE applications identi-
fied by (Verhagen et al., 2012).

Schema-free languages such as RDF and OWL
are an alternative to a central schema-based data ex-
change format such as CPACS (Alder et al., 2020).
These languages provide a more flexible approach,
without the need for building a consensus on a single
data structure. This flexibility promotes interoperabil-
ity between different domains since data can be rep-
resented, extended and shared without strict schema
constraints. RDF and OWL enable the representation
of data with rich semantics and relationships. This
promotes better understanding and integration of data
across domains. Moreover, collaboration can benefit
from a shared understanding of the meaning and con-
text of data, leading to more effective data integration
and knowledge discovery.

The authors of (Zamboni et al., 2020) elaborate
how a generic language such as RDF can be used
to overcome the challenges of collaboration in multi-
domain environments. The combination of a highly
abstract base language and more expressive additions

On the Development of a Collaborative Knowledge Platform for Engineering Sciences

209



such as OWL allows easier cross-domain knowledge
integration while simultaneously enabling indepen-
dent and effective capturing of the precise meaning
of each individual domain.

In the next section we give a brief introduction to
the SWT-based Codex framework. We discuss spe-
cific characteristics of the different modules and give
examples on how they are used. We then summa-
rize the experiences made and discuss the benefits and
shortcomings of the framework.

2.1 The Codex Framework

The COllaborative DEsign and eXploration (Codex)
framework is a software framework for the devel-
opment of KBE applications based on SWT. At its
core, Codex makes use of SWT as a domain neutral
knowledge representation in order to naturally sup-
port the integration of knowledge from multiple do-
mains. SWT, especially RDF and OWL, are explic-
itly designed for linking knowledge and allow users to
combine data from multiple domains. Codex enables
users to model their knowledge in domain-specific
knowledge bases which, if well designed, can be eas-
ily integrated, reused and build upon.

This knowledge base is made up of several do-
mains, each of which describes a specific aspect or
component of the aircraft model, such as the mission
to be performed or its wings and tail. By using the for-
malized knowledge the tool computes aircraft masses,
geometrical and performance properties as a function
of external requirements in an automated way.

At the heart of codex is the codex-semantic mod-
ule, an implementation of semantic modelling using
RDF and OWL, as well as additional syntaxes such
as Manchester Syntax and Functional Syntax. It al-
lows users of the framework to efficiently model their
knowledge using Domain Specific Languages (DSL),
and to define and execute logical rules such as those
defined by the OWL 2 Profiles specification (World
Wide Web Consortium [W3C], 2012). Since Codex
is a framework for developing KBE applications, in
addition to the core module for semantic modelling,
Codex includes multiple other modules, each provid-
ing its own functionality needed for KBE applica-
tions. The three most important of these modules are:

codex-rules provides an interface to a production-
rule engine. Rule engines such as Drools (Red Hat,
2021) make it easy to formalize and execute rules that
systematically “produce” connected entities within a
model in a declarative way. Each rule has a Left-
Hand-Side (LHS) which is basically a graph query
similar to SPARQL SELECT. This LHS is compared
against the dataset and, if not configured otherwise,

rules are executed once on every match in the corre-
sponding model. When triggered, these rules can add
new statements to the model or execute user defined
code.

codex-parametric adds the capability to define
mathematical constraints which can then be evaluated
by a solver. It serves as a means to describe, analyze,
and solve a parametric system through a DSL imple-
mented specifically for this purpose. For solving the
system of equations codex-parametric implements a
Solution Path Generator which analyses the system of
equations and groups them into Strongly Connected
Components (SCC) (Bölling, 2015). SCC have cyclic
dependencies and can only be solved simultaneously.
By looking at the amount and individual sizes of the
SCC, we can get an idea of the problem complexity.
In addition to problem complexity, this module analy-
ses whether a set of constraints is either well defined,
over determined, or underdetermined. When well de-
fined it can solve the system of equations and return
results for the missing parameter values.

codex-geometry provides the user with a large
number of Computer Aided Design (CAD) function-
alities which are essential for the development of
KBE applications (La Rocca, 2012). It defines its
own DSL to allow users to model their geometry effi-
ciently.

Although each module implements its own DSL
to provide a simple and intuitive way for modelling
the corresponding knowledge, in the current version,
it is still necessary to have a good understanding of
programming.

2.2 Experiences with KBE Applications

During the past two years the Codex framework has
been applied in different use cases. In this section
we briefly present three of them and discuss the bene-
fits of using the Codex framework over more conven-
tional implementations.

Fighter Design

The authors of (Zamboni et al., 2022) give a great
example on how a complex knowledge base that de-
scribes several aircraft systems, components and their
relationships is effectively combined to provide a tool
for the conceptual design of combat aircraft (Fig-
ure 1).

Compared to a previous Python-based imperative
implementation the Codex framework offers many
advantages when it comes to reusing the knowledge
base. The higher degree of granularity provided
by the splitting of component’s model and rule-sets

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

210



allows users to precisely control which knowledge
should be used.

Fuel System Verification

The authors of (Boden et al., 2022) present how the
Codex framework and particularly codex-geometry
is used in combination with codex-rules to generate
CAD geometry for aircraft fuel systems (Figure 2).
This geometry is then used for validating geometrical
requirements using codex-rules.

The use of the Codex framework in this approach
provides the user a great deal of flexibility when cre-
ating a design and makes it easy to extend the system
with custom requirements and rules.

Liquid Hydrogen Fuel Tank

Another example for the use of the Codex framework
is a KBE tool for the development of liquid hydrogen
fuel tanks for aircraft. It was used for research on
liquid hydrogen storage design trades for short-range
aircraft (Burschyk et al., 2021).

The declarative approach of Codex framework al-
lows the user to decide freely whether the design
should be performed from the inside out, from out-
side in or even a combination of both.

2.3 Towards Wider Adoption

Our experiences from using the Codex framework
indicate a number of advantages for using a more
declarative approach based on SWT for the develop-
ment of KBE applications. In addition to advanced
modelling capabilities, such as support for parame-
ter metadata covering dimensions, units, numerical
boundaries and computational tolerances, the Codex
framework presented also simplifies extensibility. By
separating components and rules it improves reusabil-
ity of existing knowledge. For research software,
where use cases might change quickly, the declara-
tive approach is particularly useful as it makes the tool
significantly more versatile. The flexibility to easily

Figure 1: Combat Aircraft Design.

switch inputs and outputs allows KBE tools to be used
in a variety of ways. As long as a user provides values
for a sensible set of parameters, these parameters can
be freely chosen.

Despite the listed significant advantages, we have
observed some barriers in the adoption of the ap-
proach. In its current implementation, users still need
to be familiar with the Kotlin programming language
to use the Codex framework efficiently. Users still
need to spend time on software related tasks, which
however also holds true for the approach nowadays
mainly taken by the engineering community which
bases on the application of conventional OOP meth-
ods to create KBE tools. Users still need to invest
time in software-related tasks, a requirement that also
applies to the prevalent approach in the engineer-
ing community today, where conventional Object-
Oriented Programming (OOP) methods are used to
develop Knowledge-Based Engineering (KBE) tools.
Finally, debugging a set of declarative rules can be
more difficult than debugging imperative code. When
the execution order of rules is determined by a rather
complex algorithm there is no clear execution path to
follow when debugging.

With this indication of the usefulness of SWT for
the development of KBE applications and the main
barrier of requiring to spend time on software de-
velopment tasks, it became apparent that Codex has
to be taken one step further. In the next section we
present the concept and implementation of a collabo-
rative knowledge platform.

3 A COLLABORATIVE
KNOWLEDGE PLATFORM

Despite the demonstration of the value of Codex
framework for the development of KBE applications,
as indicated by the examples given in Section 2.1,
the number of people adopting their developments to
the framework was very limited. All adopters were

Figure 2: Fuel System Design.

On the Development of a Collaborative Knowledge Platform for Engineering Sciences

211



people with an affinity towards software development
and were either willing to learn, or already familiar
with the Kotlin programming language. In addition,
the developers also had at least a basic understanding
of SWT. Although there are parallels between OOP
and modelling in OWL, the learning curve can still be
quite steep when switching from one to the other. Es-
pecially understanding the implications of the open
world assumption and non-unique naming assump-
tion can be difficult at first.

Recognizing that scientists prefer to engage in sci-
entific work rather than software development (Kelly
and Sanders, 2008), a web application was initiated
to relieve users from the traditional software develop-
ment demands. In order to achieve that, we decided
to make even further use of SWT and also describe
parametric and production rules in RDF. While this
insight is significant, it is also crucial to enable the
”power users” who favour working with code over a
GUI to do so. This led us to the implementation of
the web-based Codex platform, described in the cur-
rent section. Even though the original intent is creat-
ing a platform for developing KBE applications, we
decided to build the core of the platform in a way
that makes as few assumptions on its use as possible.
Users should have full access to the core platform via
a web API, enabling them to implement their own ap-
plications on top of the platform. The core of the col-
laborative knowledge platform serves as the backbone
for client applications, such as graphical user inter-
faces, without prescribing their specific use-cases. It
provides the community with a platform for effective
knowledge collaboration as well as the ability to ex-
tend the capabilities of that platform without the need
of maintaining their own server infrastructure.

3.1 Platform Concept

In (Zamboni et al., 2022) and (Boden et al., 2022)
we established that SWT are an excellent medium for
precise knowledge capture and cross-domain knowl-
edge exchange. Despite these advantages, however,
it is not widely used outside a few select domains
that rely mostly on logical inference capabilities. By
considering the analogy of RDF as a ”protocol for
knowledge exchange,” to TCP/IP as a protocol for in-
formation exchange (Internet Engineering Task Force
[IETF], 1981), we can deduce a hypothesis that might
help explain its limited adoption despite its clear ben-
efits. Protocols such as TCP/IP are extremely use-
ful and at the core of what made the Internet suc-
cessful and widely adopted. However, most peo-
ple who actually use the Internet on a daily basis
are completely unaware of its inner workings, and

in particular have no idea how TCP/IP works or that
it even exists, nor should they. Such infrastructure
technology is essential for a system to work but it
fades into the background as more abstraction layers
are built on top of it (International Organization for
Standardization [ISO], 1994) and what remains vis-
ible are domain-specific and easy to use interfaces
such as web, desktop, or mobile applications where
the individuals can focus on their task at hand in-
stead of thinking about TCP/IP packets. Such lay-
ers of abstraction are mostly absent from the RDF
“knowledge-protocol”. Of course, there are exist-
ing applications with graphical user interfaces, such
as Protégé (Musen, 2015) but in order to effectively
use these applications you still need to be familiar
with the “knowledge-protocol” layer and understand
RDF and OWL. Therefore, our hypothesis for the lack
of wider adoption of SWT in engineering design is
the result of missing high-level abstraction layers that
will make the low-level protocol layer fade into the
background and make effective knowledge collabora-
tion based on SWT more accessible to non-experts.

With this hypothesis in mind, the aim was to cre-
ate a collaborative knowledge platform utilizing open
SWT standards. The expectation is that the platform
will improve cross-disciplinary knowledge exchange
upon its adoption by a dynamic community, espe-
cially in engineering sciences, such as the complex
field of aerospace engineering. In order to achieve
these goals and overcome the challenges described
above, the platform must meet several essential re-
quirements. The following is a condensed selection
of the top-level requirements that comprise the key
aspects of a collaborative knowledge platform.

Managing & Publishing RDF models Users
MUST be able to create, read, update, delete and
publish RDF models in a persistent data storage.

Access Control Capabilities User access to mod-
els MUST be controlled and manageable by users
with corresponding permissions.

User Management There MUST be capabilities to
manage (identify, add, update, and remove) users.

Authentication There MUST be capabilities to au-
thenticate users.

Document Resource Storage There MUST be a
document storage system for storing and sharing
arbitrary data files (as resources, including pub-
lished models).

Real-Time Synchronization Updates from users
working on the same model SHALL be synchro-
nized. This implies users inspecting a model are
informed of updates from other users in real-time.

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

212



Figure 3: Collaborative Knowledge Platform.

Figure 3 illustrates that these six pillars, based on
a persistent storage, are the foundation for the col-
laborative knowledge platform and can be used for a
large variety of client applications. In Section 3.3,
we provide an example of how these basic features
can be utilized to implement a client for collabora-
tive knowledge modelling, acting as the aforemen-
tioned higher-level abstraction layers on top of the
RDF ”knowledge-protocol”.

This is largely in contrast to the Codex framework
implementation where all the models are stored in
memory only, unless explicitly exported to file. When
deciding to directly store all the knowledge in RDF
models, the exchangeability and reusability is signifi-
cantly increased.

In the next section, we give a more detailed
overview of the architecture and implementation of
the core of our extensible collaborative knowledge
platform.

3.2 Platform Implementation

Based on the listed requirements, the groundwork for
the collaborative knowledge platform has been estab-
lished. The resulting system provides a simple but
powerful foundation for all additional application fea-
tures. It improves extensibility by focusing on a lim-
ited set of basic features and then implementing ad-
ditional features as client applications of this basic
service. This includes the user interface as well as
the features connected to KBE as described in the use
cases from Section 2.2. Every service that is build on
top of the platform core could be replaced by a custom
implementation, thus providing the community with
an environment to build their own tools. Thanks to
the open approach, the community can construct tools
whilst making use of already existing tools, much like
software libraries utilizing other software libraries.
This implies that once domain knowledge is imple-
mented and shared, others can easily leverage it to
develop new domain-specific tools.

Figure 4 illustrates the current architecture of the

collaborative knowledge platform. Looking at the re-
quirements from the previous section one can map the
responsibilities as follows.

The platform consists of a Gateway that is used to
deliver the front-end application to the user’s browser.
It also delegates requests to the Real-Time Service
(RTS), Core Backend Service (CBS) and Document
Resource Service (DRS) as needed.

The Core Backend Service (CBS) is at the cen-
ter of the Codex platform. It implements user man-
agement, access control, and RDF model registration.
Access control is implemented on a very fundamen-
tal level. There are four types of access which can
be granted for each model, which are read, write,
delete, and manage. More complex types of authen-
tication can always be implemented by client appli-
cations which then act as a delegator for these fun-
damental permissions. Published models can either
be stored in a separate dataset on the server or in the
DRS. While storing published models in a separate
dataset has the advantage of allowing SPARQL re-
quests on those models directly, saving them in a con-
tent addressed DRS can provide several useful char-
acteristics, such as verifying data integrity, guaran-
teeing immutability, and providing resilience to data
loss. The latter aspect is especially useful since one
of the challenges of SWT is to assure that a resource
can be long-term locatable (dereferenceable).

The Real-Time Service (RTS) provides the abil-
ity to synchronize data across multiple users in (near)
real time. It uses a modern approach to conflict reso-
lution (Nicolaescu et al., 2016) that works in both cen-
tralized and decentralized (peer-to-peer) collaborative
environments. Our implementation also supports the
continuation of work when the network connection is
lost, and the changes can be synchronized later in a
conflict-free manner.

Authentication is outsourced to an Authentica-
tion Server (AS).

In the next section the first client application
which is implemented using this platform is pre-
sented.

Figure 4: Codex Server Architecture.

On the Development of a Collaborative Knowledge Platform for Engineering Sciences

213



Figure 5: Resource view of the web application.

3.3 A User Interface for Knowledge
Modelling

As a first client implementation a Knowledge Mod-
elling Interface for RDF and OWL models is currently
being developed. It serves as a proof of concept for
the platform and its extensibility, and also as the base
for the migration of the additional KBE features de-
scribed in Section 2. The client’s scope is reduced in
comparison to the Codex framework and so far, cov-
ers the modelling aspect and some client specific fea-
tures (user settings, user feedback and admin panel).

The web interface shown in Figure 5 allows users
to create and manage their models and the corre-
sponding access control. To store additional infor-
mation about the user’s model, the client actually re-
quests two models to be created on the platform, one
for the user’s model data and the other one containing
meta data on the model. This is one of the advan-
tages of having a simple open platform, it does not
force clients into a predefined structure beyond the
few simple implications of RDF, but allows them to
define their own custom data structure in a semantic
way. If desired a client specific meta-model ontology
can be defined and also stored on the platform either
privately or openly to share it with others.

One of the most important features for the client
is the capability for users to collaborate with each
other on a model in real-time. Therefore, updates
to the model are exchanged between all users cur-
rently “connected” to the model in real-time. To raise

awareness on which users are currently connected to
a model, this information is indicated by the client on
the left side of the view as shown in Figure 5. Users
connected to the same model are shown by their user
icons. OWL imports play a special role for models
since they provide a mechanism to link different mod-
els to each other. It allows for simple reuse of models
and is also important for integrating between different
models. Due to this special role the client provides
a specialized interface for managing model imports.
In the model settings, users with manage permissions
can manage access control for all users.

4 CONCLUSIONS & OUTLOOK

“Scientists are primarily interested in doing science,
not software.” (Kelly and Sanders, 2008). In engi-
neering research environments, this inherent fact can
be linked to cases of corporate amnesia, implying a
loss of organizational knowledge. In this paper, the
discussion centers around why engineering research
organizations are particularly affected by corporate
amnesia, and it is demonstrated how technical solu-
tions such as SWT can be leveraged to preserve or-
ganizational knowledge While the field of knowledge
management is wide, this research focuses on the do-
main of KBE. As illustrated in Section 2, previous
efforts have shown the value of SWT for the develop-
ment of KBE applications. It enhances the reusability
of knowledge, simplifies extensibility, and provides

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

214



the flexibility to choose inputs and outputs, result-
ing in more versatile applications. In this respect,
the Codex framework has generally been proven valu-
able. However, experience has shown that the barrier
to using the Codex framework is currently too high
for widespread adoption by scientists. To broaden
the accessibility of technological solutions to a larger
user group, a decision was made to develop a web-
based application using the current framework. This
application offers a collaborative user interface that
enables non-experts in SWT to engage in effective
knowledge collaboration.

The platform concept, as discussed in Section 3.1,
and its implementation (covered in Section 3.2), serve
as a foundation for a wide range of applications.
While the usability of the platform is demonstrated
through the implementation of the web application for
knowledge modeling in Section 3.3, it is yet to be de-
termined whether the goal of achieving widespread
adoption can be realized. This depends on the effort
required for modeling domain knowledge on the plat-
form, and whether the Return on Investment (ROI)
justifies this effort. The answer to this question can
only be provided once additional KBE features and
domain-specific interfaces for engineering are devel-
oped and tested. Therefore, after finalizing the publi-
cation of models, the KBE related services will be ad-
dressed and additional user interfaces are going to be
developed. Meanwhile, even in the absence of those
specific KBE features, the platform will be utilized
for knowledge capturing and integration tasks. This
way, it aims to prevent corporate amnesia and instead
foster a robust corporate memory.

REFERENCES

Alder, M., Moerland, E., Jepsen, J., and Nagel, B. (2020).
Recent Advances in Establishing a Common Lan-
guage for Aircraft Design with CPACS. In Aerospace
Europe Conference 2020.

Boden, B., Cabac, Y., Burschyk, T., and Nagel, B. (2022).
Rule-based Verification of a Geometric Design using
the Codex Framework. In 33rd ICAS.

Burschyk, T., Cabac, Y., Silberhorn, D., Boden, B., and
Nagel, B. (2021). Liquid hydrogen storage design
trades for a short-range aircraft concept. In DLRK
2021.

Bölling, M. (2015). Lösungspfadbasierte Analysen im En-
twurf komplexer Systeme. PhD thesis, University of
Stuttgart.

Dalkir, K. (2005). Knowledge Management in Theory and
Practice. Elsevier.

International Organization for Standardization [ISO]
(1994). Information technology — Open Systems

Interconnection — Basic Reference Model: The
Basic Model. ISO/IEC 7498-1, ISO.

Internet Engineering Task Force [IETF] (1981). Transmis-
sion Control Protocol. Technical Report RFC 793, In-
ternet Engineering Task Force.

Kelly, D. and Sanders, R. (2008). Assessing the Quality of
Scientific Software. First International Workshop on
Software Engineering for Computational Science and
Engineering, Leipzig Germany, May 2008.

La Rocca, G. (2012). Knowledge based engineering: Be-
tween AI and CAD. Review of a language based
technology to support engineering design. Advanced
Engineering Informatics: the science of supporting
knowledge-intensive activities, 2012(26):159–179.

Li, M. and Gao, F. (2003). Why Nonaka highlights tacit
knowledge: a critical review. Journal of Knowledge
Management, 7(4):6–14.

Musen, M. A. (2015). The protégé project: a look back and
a look forward. AI Matters, 1(4):4–12.

Nicolaescu, P., Jahns, K., Derntl, M., and Klamma, R.
(2016). Near Real-Time Peer-to-Peer Shared Editing
on Extensible Data Types. In Proceedings of the 2016
ACM International Conference on Supporting Group
Work, page 39–49, New York, NY, USA.

Nonaka, I. and Takeuchi, H. (1995). The knowledge-
creating company: How Japanese companies create
the dynamics of innovation. Oxford University Press,
New York.

Nonaka, I. and Takeuchi, H. (2021). Humanizing strategy.
Long Range Planning, 54(4):102070.

Red Hat (2021). Drools Documentation 7.49.0.Final. Avail-
able at: https://docs.drools.org/7.49.0.Final/drools-
docs/html single/index.html. Accessed: 20 June
2023.

Verhagen, W. J., Bermell-Garcia, P., van Dijk, R. E.,
and Curran, R. (2012). A critical review of
Knowledge-Based Engineering: An identification of
research challenges. Advanced Engineering Informat-
ics, 26(1):5–15.

World Wide Web Consortium [W3C] (2012). OWL 2 Web
Ontology Language Profiles (Second Edition). W3C
Recommendation, World Wide Web Consortium.

Zamboni, J., Zamfir, A., and Moerland, E. (2020). Semantic
Knowledge-Based-Engineering: The Codex Frame-
work. In 12th IC3K, volume 2, pages 242–249.

Zamboni, J., Zamfir, A., Moerland, E., and Nagel, B.
(2022). A semantic knowledge based engineering
framework for the rapid generation of novel air ve-
hicle configurations. In 33rd ICAS.

On the Development of a Collaborative Knowledge Platform for Engineering Sciences

215


