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Abstract:

We proposed a novel and simple selection system that alternates between tournament and Lexicase selection to

tackle the bloat issue. In this way, we used LexiZ, an implementation of Lexicase with lexicographic parsimony
pressure, adopting the number of nodes in our solutions as size measurement. In addition, we increased the
parsimony pressure by adding a penalty, also based on the number of nodes, to the aggregated fitness score.
We analysed different scenarios, including some without extra parameters, in five benchmark problems: 2-bit
Multiplier, 5-bit Parity, Car Evaluation, LED and Heart Disease. We succeeded in all of them in at least one
scenario, reducing the size significantly while maintaining fitness. Beyond error and size, we also included
results for the average number of fitness cases used in each generation.

1 INTRODUCTION

Bloat is a well-known and unwanted side-effect
in evolutionary algorithms used to evolve variable-
length solutions, such as Genetic Programming
(GP) (Koza, 1992) or Grammatical Evolution
(GE) (Ryan et al., 1998). This effect consists of
a sharp growth of these solutions, not accompanied
by an analogous improvement in their respective fit-
ness score (Poli et al., 2008). The immediate effect
of this issue is an increase in the computational cost
since the evaluation of bigger solutions is more time-
consuming. In addition, interpretability is hampered,
and also more complex solutions are more likely to be
overfitted.

The most common method to prevent bloat is to
restrict the maximum size of the solutions by defin-
ing an extra parameter. This is usually the maximum
depth of the individuals generated. However, this pa-
rameter could be difficult to set up, especially when
we have no clue about the size of a good solution, and
also it could constrain the search space making diffi-
cult the task of finding a satisfactory solution.
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Other well-known methods for bloat control in-
clude parsimony pressure, the explicit punishment of
larger solutions in the selection process. The most
basic form is parametric parsimony pressure, where
the fitness of a solution changes proportionally ac-
cording to its size. This proportion is usually linear,
and (Soule and Foster, 1998) presented a comprehen-
sive analysis of when this sort of parsimony pressure
can lead to successful or unsuccessful populations.
This approach adds a new parameter, the changing
factor of the fitness, which can also be difficult to
set up since it depends on the problem. Another op-
tion, with no extra parameters, is lexicographic parsi-
mony pressure (Luke and Panait, 2002), which prefers
smaller individuals only when the fitness scores are
equal. A recently introduced variant of Lexicase,
Lexi’ (de Lima et al., 2022b), applies lexicographic
parsimony pressure to Lexicase selection (Spector,
2012).

Lexi? can find solutions as good as Lexicase selec-
tion while further reducing their size. However, we
suppose that by changing during the evolution from
that method to one which can apply parametric parsi-
mony pressure, we can reduce the size of the solutions
even more while maintaining their quality. We pro-
pose to alternate between Lexi” and tournament selec-
tion with penalised fitness during the evolution. In the
period with the former, we aim to find good solutions,
which although the lexicographic parsimony pressure
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of Lexi? helps to control the bloat, the solutions are
usually bigger relative to those produced with a para-
metric method. In the periods with the latter, we in-
crease the parsimony pressure and, therefore, obtain
smaller solutions. We tried alternating using prede-
fined durations for each period and also an automatic
criterion.

We addressed the 5-bit Parity and the 2-bit Multi-
plier problems. In addition, we addressed some clas-
sification problems used in recent works with Lexi-
case selection (de Lima et al., 2022b; Aenugu and
Spector, 2019): the Car Evaluation and the LED prob-
lems. We also addressed Heart Disease, a multitype
classification problem from the UCI repository (Dua
and Graff, 2017). We used GE to evolve our solutions
due to its flexibility, which facilitates the task of ad-
dressing problems with multiple outputs, but it is rea-
sonable to assume any evolutionary algorithm could
enjoy the benefits of our system.

2 BACKGROUND

GE (Ryan et al., 1998; O’Neill and Ryan, 2001; Ryan
etal., 2018) is an evolutionary algorithm used to build
programs for an arbitrary language. A GE individual
is represented by a variable-length sequence of inte-
ger numbers named codons, which is mapped into a
more understandable representation following a pre-
defined grammar. This mapped representation is the
actual program, which can be evaluated, and receives
a score according to its performance in a pre-defined
fitness function. The grammar assures the programs
are always syntactically correct and also designs the
search space for new programs.

In the evolutionary process, parents are selected
based on their fitness. Then, genetic operators, such
as crossover and mutation are performed in these par-
ents to generate offspring for the following genera-
tion. Some selection methods, for example, tourna-
ment, consider the fitness of an individual as a whole,
which we define as aggregated fitness. A different
approach is employed by Lexicase selection (Spec-
tor, 2012), which considers the fitness of each train-
ing case separately, according to the performance of
an individual in that respective training sample.

In its original proposal, the Lexicase selection pro-
cess places the whole entire population of programs in
a pool of candidates. Then, the fitness of each training
case is checked in random order, one after the other,
each time eliminating from the pool those individu-
als that did not present the best fitness value for the
current training case being checked. This method has
been used in many different scenarios (Helmuth et al.,
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1. Initialise:

(a) Place all individuals with unique error vec-
tors in a pool of candidates
i. When individuals with the same error vec-
tor are found, place the one with the best
value regarding a pre-defined tie-breaking
criterion
ii. If the tie still persists, place a random indi-
vidual within the remaining ones
(b) List all training cases in random order in
cases

2. Loop:

(a) Replace candidates with the individuals
currently in candidates, which presented
the best fitness for the first training case in
cases

(b) If a single individual remains in
candidates, return this individual

(c) Else eliminate the first training case in cases
and re-run the Loop

Listing 1: Algorithm for selecting one individual with
LexiZ.

2016a; Aenugu and Spector, 2019; La Cava et al.,
2016), and its success is usually attributed to its ability
to maintain higher levels of diversity for individuals
than when using methods based on aggregated fitness
values while still pressuring enough for the exploita-
tion of good solutions (Helmuth et al., 2015; Helmuth
et al., 2016b).

Lexi® (de Lima et al., 2022b) applied lexico-
graphic parsimony pressure to Lexicase selection,
achieving at least similar performance while reducing
the size of the solutions. Listing 1 shows the algo-
rithm for selecting a parent with Lexi®, and the key
difference between this and the original algorithm for
Lexicase selection is item 1(a)i. The listing also in-
cludes a prefiltering step, which consists of includ-
ing in the pool of candidates only the individuals with
unique error vectors. This prefiltering is an optional
step for any implementation of Lexicase selection but
is crucial regarding time-consuming since it avoids
useless loops when filtering the pool of individuals
while not changing the results at all (Helmuth et al.,
2022; Helmuth et al., 2020).

3 PROPOSED METHOD

We propose a simple switching during the evolution
between existing selection methods to increase par-
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simony pressure and decrease bloat. The motivation
is that Lexicase selection is a crucial method to im-
prove the quality of the results, but since it does not
use an aggregated value for fitness, we need to apply
a simpler method, such as tournament, to implement
the more aggressive parametric parsimony pressure.

We used Lexi” instead of the original proposal
of Lexicase selection because Lexi’ comes with lex-
icographic parsimony pressure, which already con-
tributes to control bloat. In this work, we break the
ties in fitness with the number of nodes of the individ-
uals, but other size criteria could be considered.

To implement parametric parsimony pressure, we
increase the error score in the aggregated fitness by
the number of nodes divided by 1,000,000. We use
this value for all problems, but the expected effect on
them is different. Firstly, by dividing by such a high
factor, we can assume that the penalty value will al-
ways be a low amount. In small datasets, such as,
for example, the 5-bit Parity problem, where we have
only 32 testcases, the impact of each hit in the fit-
ness score is much more relevant than in big datasets.
Then, in these small datasets, we expect that the
penalty will mostly work as lexicographic parsimony
pressure.

Consider as an example two solutions for the 5-
bit Parity problem, where the first one correctly pre-
dicts 28 testcases, and the second one 29. When using
penalised tournament, the selection of that second in-
dividual against the first one is extremely unlikely to
happen since the difference in the number of nodes
should be in the hundreds of thousands. On the other
hand, in a problem with thousands of testcases, the
minimum value related to the difference in the num-
ber of nodes necessary to impact the selection of an
individual against one with less correctly predicted
testcases is much more likely to happen. However,
for these problems, the impact on fitness, and conse-
quently in the quality of the respective individual, of
a single correctly predicted sample is much smaller.

We assessed this method in several different sce-
narios, as follows, where all periods with tournament
have the fitness score penalised as stated in the previ-
ous paragraph, and all those with Lexi’ break the tie
with the number of nodes.

e switch 1: We start with tournament, and then
we switch to Lexi’ after 10 generations. After
the same amount of generations, we switch back
to tournament, and keep switching within these
methods every 10 generations;

» switch 2: This scenario is essentially the same as
the previous one, except that we start with Lexi?,
instead of tournament;
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e switch 3: This scenario is almost the same as the
switch 1, but we switch every 5 generations;

* switch 4: Again, this scenario is similar to the pre-
vious ones, but we switch every generation;

e switch 5: In this scenario, we start with tourna-
ment, and switch to Lexi?, but the period for tour-
nament is one generation, while for Lexi is 10
generations;

* switch 6: This scenario presents an automatic ap-
proach for switching. We start with tournament,
and after one generation without improving the
fitness of the best individual, we switch to LexiZ.
Again, after one generation with no improvement,
we switch back to tournament, and keep switching
with this criteria;

 switch 7: This scenario is essentially the same as
the previous one, except that we start with Lexi,
instead of tournament.

4 EXPERIMENTAL SETUP

We ran our experiments in Python 3.10.8 and
DEAP 1.3. The GE implementation used was
GRAPE (de Lima et al., 2022a), a library built on top
of the DEAP framework (De Rainville et al., 2012).
Each run was seeded with random. seed (n), where n
is an integer number in the interval [1, 30], referring
to each of the 30 runs. The whole code, as well as the
grammars used, are available in our GitHub reposi-
tory (anonymous).

In this work, we addressed two Boolean problems:
the 5-bit Parity and the 2-bit Multiplier. Moreover,
we addressed three classification problems: the Car
Evaluation, the LED, and the Heart Disease problems.

The 5-bit Parity is a single output Boolean prob-
lem with 32 training cases, while the 2-bit Multiplier
is a multiple output problem with 16 training cases,
each with four outputs. The implementation of the
latter is motivated by (White et al., 2013), which rec-
ommends addressing Boolean problems with multiple
outputs, such as, for example, multipliers, since this
sort of problem is still not over-used as benchmark-
ing, especially because multiple output problems are
not natively addressed by GP.

The Car Evaluation problem is a four-class unbal-
anced dataset comprising six categorical features and
1727 testcases. We encoded these features into 21 bi-
nary ones using one-hot encoding. The LED prob-
lem is a ten-class dataset with seven binary features,
where each one has a probability of 10% of being in



error. Following this probability, we could generate
as many testcases as we want, but we used its original
approach with 500 testcases (Breiman, 1984).

Finally, the Heart Disease problem is a five-
class dataset, commonly used for binary classifica-
tion (Gupta et al., 2020; Murphy et al., 2021), when
four classes, all related to the presence of heart dis-
ease, are grouped into one, while the remaining (and
predominant) class, related to the absence of heart dis-
ease, is kept unchanged. This dataset has 297 test-
cases with five continuous features and nine categor-
ical features, which we encoded into 20 binary ones
using one-hot encoding, summing up 25 features to
be used.

For the 5-bit Parity, LED and Heart Disease prob-
lems, the fitness for each training case is 1 when the
output was correctly predicted and O otherwise. For
the 2-bit Multiplier problem, the fitness is the ratio
of bits correctly predicted for each sample, and since
there are 4 bits, this ratio can assume the values 0,
0.25, 0.5, 0.75 and 1. We follow this approach to in-
troduce more fitness diversity for the population and,
therefore to guide the evolution in a more resource-
ful way (Helmuth and Spector, 2013). We adopt the
same idea for the Car Evaluation problem, where we
use two bits to represent four classes, and the fitness
for each training case can assume the values 0, 0.5 and
1 according to the number of bits correctly predicted.
For all problems, the aggregated fitness is the average
of the scores for the training cases. This score is used
for tournament selection, while the individual fitness
for each training case is used for Lexicase selection.
However, the results regarding fitness reported in the
next section are the mean classification error since,
in the end, we want to check how many testcases a
model can predict correctly, despite using other mea-
surements in the evolution.

Table 1 shows the parameters used in the exper-
iments. The population size is 1,000 for the 5-bit
Parity problem and 500 for the remaining problems.
The results reported in the next section are averaged
over 30 runs. All samples are used as training cases
for the Boolean problems since the target is to evolve
solutions that address all cases correctly. On the
other hand, the target for the remaining problems is
to evolve generalised solutions, and therefore the test
score is assessed. For these problems, we split the
datasets into 75% for training and 25% for testing.
Moreover, we make a different split for each run.

Listing 2 shows the grammars we used. The
Boolean operations are made using only universal
gates in every problem. For the 2-bit Multiplier prob-
lem, we define the multibit output with the variables
from out [3] to out [0], and then the mapping pro-
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Table 1: Experimental parameters.

Parameter type Parameter value

Number of runs 30
Number of generations 200
Population size 500/1,000
Maximum depth 35

One individual
Codon-based integer
flip (Fenton et al., 2017)

Mutation probability 0.01

Crossover method Variable one-point
(Fenton et al., 2017)

Crossover probability 0.8

Elitism size
Mutation method

Initialisation method Sensible (Ryan and
Azad, 2003)

Maximum wraps 0

Codon size 255

Tournament size 6

Lexi? criterion Number of nodes

cess generates expressions for each of them using the
production rule <e>. We also define a multibit out-
put for the Car Evaluation problem since we represent
four classes with two bits, and evolve the expressions
in the same way as the 2-bit Multiplier approach. For
the LED problem, we also included the IF function.
This function executes the IF-THEN-ELSE operation,
which is used to execute operations that return each
of the ten different outputs, defined in the produc-
tion rule <o>. Finally, for the Heart Disease problem,
we also included arithmetic operations since this is a
multitype dataset. Since each individual must present
a Boolean result, these arithmetic operations should
be converted into Boolean. It is made by using the
conditional operations in the production rule <cond>,
whose results can be used as inputs in the Boolean
operations with Boolean features.

Our baseline is the scenario LexiZ, which we com-
pare to all scenarios from switch 1 to switch 7. We hy-
pothesize that we will find similar fitness, while sig-
nificantly reducing the size of the solutions.

We also report results for the following scenar-
ios, but they usually presented worse results than our
baseline.

* tourn: We use tournament every generation, and
the fitness score is not penalised;

* tourn/pars: We use tournament every generation,
and the fitness score is penalised as stated in the
scenarios from switch 1 to switch 7;

» Lexicase: We use the original Lexicase selection
every generation.
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<@> ::= and(<e>,<e>) | or(<e>,<e>)
| nand(<e>,<e>) | nor (<e>,<e>)
[ x[0] | =x[1] | =x[2] | x[3] | x[4]
(a) 5-Bit Parity.
<multi-output> ::= out[3] = <e>;
out [2] = <e>;
out[1l] = <e>;
out [0] = <e>
<e> 1= <op> | <x>
<op> ::= and(<e>,<e>) | or(<e>,<e>) | not (<e>)
<x> = x[0] | x[1] | x[2] | x[3]
(b) 2-Bit Multiplier.
<multi-output> ::= out[l] = <e>;
out [0] = <e>
<e> ::= and(<e>,<e>) | or(<e>,<e>) | not (<e>)
| <x>
<x> ::= x[0] | x[1] | x[2] | x[3] | x[4] | x[5]
[ x[6] | x[7] | x[8] | x[9] | x[10]
| x[11]7] x[12] | x[13] | x[14] | x[15]
| x[16] | x[17] | x[18] | x[19] | x[20]
(¢) Car Evaluation.
<e> ::= <op> | <x>
<op> ::= and(<e>,<e>) | or(<e>,<e>)
| not (<e>) | if (<e>,<o>,<e>)
<x> = x[0] | x[1] | x[2] | x[3] | x[4]
| x[5] | x[6]
<o> = 0112314115161 7]8]29
(d) LED.
<@> ::= <cond> | and_(<e>,<e>) | or_(<e>,<e>)
| not_(<e>) | <bool_feat>
<cond> ::= less_than_or_equal (<op>, <op>)
| greater_than_or_equal (<op>, <op>)
<op> 1:= add(<op>,<op>) | sub(<op>,<op>)
| mul (<op>,<op>) | pdiv(<op>, <op>)
| <nonbool_feat>
<bool_feat> ::= x[1] | x[4] | x[6] | x[8]
[ x[9] | =x[10] | x[11] | x[12]
[ x[13] | x[14] | x[15] | x[16]
| x[17] | x[18] | x[19] | x[20]
| x[21] | x[22] | x[23] | x[24]
<nonbool_feat> ::= <x> | <>
<x> ::= x[0] | x[2] | x[3] | x[5] | x[7]
<e> ::=-0.1 | -0.2 | -0.3 ] -0.4 | -0.5
| -0.6 | -0.7 | -0.8 | -0.9 | -1 | 0.1
[ 0.2 1 0.3 10.410.510.610.7
| 0.8 1 0.9 1
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(e) Heart Disease.

Listing 2: Grammars.

2-bit Multiplier

I

0.2 ---tourn —— tourn/pars ||
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g switch 1 switch 2
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b
4
<

Average best fitness

|
50 100
Generations

Figure 1: Average fitness of the best individual across gen-
erations.

S RESULTS AND DISCUSSION

Figure 1 shows the training fitness throughout gener-
ations for Boolean problems, while Table 2 shows the
number of successful runs for each scenario. A run
is considered successful if it finds at least one solu-
tion that predicts all training cases correctly. As ex-
pected, the scenarios using only tournament selection
presented the worst performance.

5.1 Boolean Problems

We extensively discuss the results of the 2-bit Mul-
tiplier problem, but similar observations apply to the
5-bit Parity problem. Scenario fourn succeeded in a
small number of runs, while scenario fourn/pars did
not succeed in any, which we expect is a consequence
of parsimony pressure hampering the evolution. As
highlighted in the previous section, for a problem with
a small dataset, the penalty works as lexicographic
parsimony pressure, meaning that the smallest indi-



Table 2: Number of successful runs in the 2-bit Multiplier
and 5-bit Parity problems.

Successful runs (out of 30)

2-bit Multiplier ~ 5-bit Parity

tourn 3 0
tourn/pars 0 0
Lexicase 27 12
Lexi’ 29 21
Switch 1 27 9
Switch 2 29 9
Switch 3 29 10
Switch 4 30 7
Switch 5 28 13
Switch 6 30 8
Switch 7 29 8

vidual is selected only when the number of hits is the
same as the best one in the respective tournament.
Even so, this parsimony pressure, when used in ag-
gregated fitness, can push the population too hard to-
wards smaller individuals hampering the evolution, as
we can see in Figure 2, where the size of individuals
in scenario tourn/pars for the 2-bit Multiplier problem
is much smaller than in any other scenario.

In scenario Lexi?, where we also have lexico-
graphic parsimony pressure, the evolution was not
hampered. This is because Lexicase selection can
identify better (and oftentimes bigger) solutions, and
then when using Lexi®, the impact in the size of those
individuals is much less. For example, for the 2-
bit Multiplier problem, in Figure 1, in early gener-
ations, when the scenarios using Lexicase selection
still present a sharp decrease in error, the scenarios
using only tournament start to converge. When ex-
amining Figure 2 in this same stage of the evolution,
the size of the individuals in the scenarios using only
tournament starts to converge, while those scenarios
using Lexicase selection still present a sharp increase
in size.

Despite all scenarios using Lexicase selection pre-
senting very similar performance in Figure 1 for the
2-bit Multiplier problem, we can highlight the signifi-
cant difference in size in Figure 2. Scenario Lexicase,
which used no parsimony pressure method, presented
the largest solutions, converging to an averaged num-
ber of nodes above 100. Scenario Lexi> was able to
significantly reduce the size of the solutions, converg-
ing to a value around 65, but this is still too big when
compared to the gold solutions found with the switch-
ing approaches.

For the 2-bit Multiplier problem, where the inputs
are A1A0 and B1BO, and the output is Y3Y2Y1Y0, an
example of a set of expressions that address each bit
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of the output correctly using only the operators AND,
OR and NOT is as follows.

Y3 = and(and(Al, A0), and(B1l, BO));

Y2 = and(and(Al, Bl), or(not(A0), not(BO)));
Y1l = or(or(and(and(AO B1l), not(Al)),
and (and (A0, B1), not (BO))),
or (and(and (A1, BO), not(A0)),
and (and (A1 BO), not (B1))));

Y0 = and (A0, BO)

The expressions were manually simplified using
the Karnaugh map, and contain a total of 46 nodes,
where each node is an operator or a bit from an input.
Scenarios from switch 1 to switch 7 were not only able
to find solutions of this size, but converged to even
smaller values. For example, a solution found in one
run of scenario switch I is as follows and contains just
34 nodes.

Y3 = and(and(Al, B1), and(BO, A0));

Y2 = and(not (and (B0, AO0)), and(B1l, Al));

Y1 = and(not (and(and (B0, A0), and(Bl, Al))),
r (and (A0, Bl), and(BO, Al)));

Y0 = and(BO, AO0)

In the end, scenario fourn/pars converged to the
smallest individuals so far, but we can ignore that
since their performance was very poor.

For the 5-bit Parity problem, in Figure 1, we can
see the best results were found in scenario LexiZ, fol-
lowed by scenario Lexicase, but the performance in
scenarios from switch 1 to switch 7 were very close,
while greatly reducing the size in Figure 2.

5.2 Classification Problems

Figure 3 shows the mean classification error in the test
set for classification problems, and for all of them, the
baseline Lexi> presented the best results or similar val-
ues to the best one. Scenario switch 5 presented the
most similar results to the baseline for the problems
Car Evaluation and LED. However, this scenario was
not able to reduce the size significantly for these prob-
lems, as we can see in Figure 2. Alternatively, other
scenarios, which presented similar fitness, were also
able to reduce the size significantly, notably scenarios
switch 1 and 7 for the Car Evaluation, and scenar-
ios switch 4 and 7 for the LED problem. Meanwhile,
for the Heart Disease problem, no differences were
clearly observed regarding fitness, and all scenarios
significantly reduced the number of nodes.

5.3 Average Number of Training Cases
Used

Figure 4 shows an extra analysis in this work regard-
ing the average number of cases used in the selection
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Figure 2: Average number of nodes of the best individual across generations.
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3; 7: Switch 4; 8: Switch 5; 9: Switch 6; 10: Switch 7.

process with Lexicase and Lexi?. The first observa-
tion to highlight is that the convergence value is usu-
ally a small ratio to the number of training cases. For
the 2-bit Multiplier and 5-bit Parity problems, this is
around 70% of the training cases. For Heart Disease,
the number of training cases used converges to around
20% of the cases on average. For the LED and Car
Evaluation problems, the values are around 6% and
3.5%, respectively. The high diversity provided by
using Lexicase contributes to filtering the pool faster,
and then the worst scenario, where all training cases
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are used the filter the pool to select one individual, is
unlikely to happen (Helmuth et al., 2022).

Another observation is that, as expected, Lexicase
and Lexi® use a similar number of cases throughout
the evolution since there is no major difference in
their algorithms. For the 2-bit Multiplier problem, the
number of cases increases sharply for an early conver-
gence, while for the 5-bit Parity problem, that number
increases more smoothly. An explanation for this is
evident in Figure 1, where the fitness throughout gen-
erations decreases faster for the 2-bit Multiplier prob-
lem. Going deeper into the fitness analyses, we ob-
served that only a single training case appears really
difficult to be solved for the 2-bit Multiplier problem.
This training case refers to 11 x 11, and it was the
last one to be solved in every run. Furthermore, all
the remaining training cases are solved in early gener-
ations, while that one takes longer to be solved. This
does not happen for the 5-bit Parity problem, where
we did not observe any training case being especially
more difficult to be solved than the other ones.

We have a different curve for the LED problem,
which starts with a sharp increase, and then decreases
until converging. We assume that this happens due
to the structure of the generated individuals. The so-
lutions do not necessarily need to use IF clauses to
predict Classes 0 and 1 correctly, but they do need to
predict all eight remaining classes. In the first gener-
ations, it might be difficult for evolution to determine
that only predicting classes 0 and 1 correctly is not
good enough for achieving a good fitness score.

6 STATISTICAL ANALYSIS

Given the different scenarios analysed in this work
and the multitude of comparisons presented on the
Results and Discussion section, a statistical analysis
was performed to investigate the significance of these
results. The two metrics covered in this analysis were
the fitness scores and individual sizes (given by the
number of nodes) throughout the multiple runs, for
each different scenario. Initially, the resulting metrics
were submitted to the Shapiro-Wilk test for normal-
ity with a p-value threshold of 0.05, where the end re-
sults for both fitness and individual size were found to
be predominantly non-Gaussian for the Boolean prob-
lems, while predominantly Gaussian for the classifi-
cation problems.

The various switching strategies were then com-
pared against the baseline, Lexi?, using the Student’s
T-test for the parametric cases and the Two-sided
Wilcoxon Test for the non-parametric ones. Also,
given the multiple comparisons performed, a Bon-
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Figure 4: Average number of cases used in the selection process across generations.
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Table 3: Boolean Problems: mean and standard deviation of metrics for each approach and p-values between Lexi? selection
and each switching strategy.

2-bit Multiplier 5-bit Parity

Scenario - - - -
Fitness Size Fitness Size
Average Std Dev p-value Average Std Dev  p-value ‘ Average  Std Dev  p-value Average Std Dev  p-value
Lexi™2 5.21E-04  2.80E-03 69.37 21.61 - 1.98E-02  3.65E-02 235.13 122.31 -

1.56E-03  4.69E-03 524E-01 38.17 6.54 2.01E-06 | 5.63E-02 5.56E-02 7.02E-03 100.93  58.37

Switch 1 2.36E-05
Switch2  5.21E-04 2.80E-03 1.00E+00 38.23 5.57 1.71E-06 | 8.02E-02 6.59E-02 2.12E-03 100.07  50.75 5.21E-06
Switch3  5.21E-04 2.80E-03  1.00E+00 38.60 5.98 1.73E-06 | 5.63E-02 5.00E-02 8.93E-03 80.43 30.33 3.18E-06
Switch4  0.00E+00 0.00E+00 7.28E-01  40.17 4.69 2.46E-06 | 5.10E-02 3.99E-02 6.95E-03 119.33  76.71 8.94E-04
Switch 5 1.04E-03  3.90E-03 7.51E-01  39.23 535 2.87E-06 | 4.69E-02 4.82E-02 1.78E-02 134.03  71.65 5.28E-04
Switch6  0.00E+00 0.00E+00 7.28E-01  39.73 3.31 1.73E-06 | 5.00E-02 4.16E-02 1.62E-02 98.33 42.75 5.74E-06
Switch7  5.21E-04 2.80E-03  1.00E+00 40.10 5.97 2.01E-06 | 6.88E-02 5.73E-02 3.61E-03 100.00  51.32 9.32E-06

Table 4: Classification Problems: “Car Evaluation” and “Heart Disease”: mean and standard deviation of metrics for each
approach and p-values between Lexi® selection and each switching strategy.

Car Evaluation Heart Disease

Scenario Fitness - S -
itness Size Fitness Size
Average  Std Dev  p-value Average Std Dev  p-value \ Average  StdDev  p-value Average Std Dev  p-value

Lexi2 1.34E-01 2.71E-02 - 132.40 5447 - 1.92E-01 3.34E-02 - 102.83 4532 -

Switch 1 1.55E-01 3.31E-02 1.09E-02 92.40 40.19 2.35E-03 | 1.89E-01 4.15E-02 7.38E-01 57.70 39.76 1.64E-04
Switch 2 1.58E-01 2.81E-02 1.69E-03 79.57 34.39 444E-05 | 1.89E-01 3.63E-02 7.18E-01 45.73 20.46 6.77E-08
Switch 3 1.58E-01 2.89E-02 2.15E-03 92.00 44.09 2.95E-03 | 1.96E-01 2.84E-02 5.88E-01 50.93 34.99 8.62E-06
Switch 4 1.44E-01 2.67E-02 1.80E-01 103.93  42.80 3.09E-02 | 2.01E-01 3.44E-02 2.84E-01 4543 16.34 2.78E-08
Switch 5 1.33E-01 2.32E-02 8.65E-01 105.03 41.72 3.59E-02 | 1.98E-01 4.41E-02 5.42E-01 67.63 32.30 1.20E-03
Switch 6 1.51E-01 297E-02 245E-02 100.60  48.53 2.23E-02 | 1.96E-01 4.31E-02 6.62E-01 50.37 26.83 1.48E-06
Switch 7 1.48E-01 3.83E-02 1.24E-01 94.13 34.41 2.24E-03 | 1.87E-01 4.55E-02 6.48E-01 48.43 20.16 1.94E-07

Table 5: Classification Problem: “LED”: mean and standard deviation of metrics for each approach and p-values between
Lexi? selection and each switching strategy.

LED

Fitness Size
Average  Std Dev p-value  Average Std Dev p-value

Scenario

Lexi™2 3.60E-01 6.24E-02 - 53.47 22.14 -

Switch 1 4.55E-01 8.18E-02 6.35E-06 32.60 16.89 1.62E-04
Switch2  4.49E-01 7.32E-02 5.89E-06 34.30 14.67 2.65E-04
Switch3 ~ 4.09E-01 7.50E-02 8.84E-03 40.73 15.46 1.38E-02
Switch4 ~ 4.08E-01 7.26E-02 1.00E-02 37.93 11.34 1.37E-03
Switch 5 3.61E-01 6.11E-02 9.78E-01 54.00 17.06 9.19E-01
Switch 6~ 4.12E-01  5.68E-02 1.57E-03 39.37 11.81 3.70E-03
Switch 7 3.97E-01 7.81E-02 5.30E-02 39.17 16.15 6.74E-03

ferroni correction with a factor of 7 was used for a
fairer analysis. Therefore, a stricter p-value threshold
of 0.007143 was adopted for the rejection of the null
hypothesis (no difference between the metrics on the
analysed scenario and the baseline). Tables 3, 4 and 5
present the results from these analyses, where better
performance is highlighted in bold, and statistically
significant differences are underlined for a clearer in-
terpretation. It can be seen that the use of switching
selection methods was capable of reducing the aver-
age size of the individuals in every scenario and with
statistical significance in most of them. Regarding
fitness scores, there is no clear trend for statistical
significance, but for every problem, there is at least
one scenario where fitness was not significantly af-
fected, while the size of individuals was significantly
reduced.

7 CONCLUSIONS

In this work, we proposed a simple selection method
that alternates between tournament and Lexicase se-
lection, aiming to reduce the bloat issue. We achieved
this by applying lexicographic parsimony pressure to
Lexicase, and also a penalty to the aggregated fit-
ness score. In both cases, the parsimony pressure was
given by the number of nodes in the solutions.

We examined several different scenarios and
utilised five benchmark problems. On all problems,
at least one scenario was able to reduce the size sig-
nificantly, while maintaining similar performance to
LexiZ. Our most successful scenario, Scenario switch
7, where we switch automatically starting with Lexi?,
was successful on all problems. Moreover, we did not
need to set up an extra parameter, since in this sce-
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nario, we used an automatic criterion for switching.

In future work, we plan to try different combina-
tions for scenarios using nodes, depth, critical path,
etc. In addition, we intend to use different mea-
surements for size, based on complexity, for exam-
ple defining different weights according to the type of
node.
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