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Abstract: Failure of large complex structures such as buildings and bridges can have monumental repercussions such 
as human mortality, environmental destruction and economic consequences. It is therefore paramount that 
detection of structural damage or anomalies are identified and managed early. This highlights the need to 
develop automated Structural Health Monitoring (SHM) systems that can continuously allow the safety status 
of structures to be determined, even in the worst and most isolated conditions, to ultimately help prevent 
destruction and save lives. Signal processing is a crucial step to detecting structural anomalies and recent 
work demonstrates the opportunities for neural networks, however the encoding of data for SHM requires the 
extraction of features due to often, noisy data. This paper focuses on feature extraction methods for artificial 
neural networks (ANNs) and spiking neural networks (SNNs) and aims to identify bespoke features which 
enable SNNs to encode data and perform the classification of anomalies. Results show that extraction of 
particular features in large real-world applications improve the classification accuracy of SNNs.  

1 INTRODUCTION 

Large man-made civil infrastructures exercise an 
important role in both the societal and economical 
evolution of the modern world (Khemapech, 
Sansrimahachai & Toahchoodee, 2016; Song et al, 
2020). Structures such as bridges, tunnels and 
buildings are used on a daily basis by billions of 
people worldwide, to complete day-to-day activities 
(Khemapech, Sansrimahachai & Toahchoodee, 
2016). With this in mind it is critical that complex 
structures such as these, are continually fit for their 
intended purpose and are safe for human use (Ibrahim 
et al, 2020). This is a challenging task as throughout 
their operational lifetime, artificial structures are 
highly vulnerable to damage (Li et al, 2015). 
Exposure to a number of environmental, 
anthropogenic and operational factors can all 
contribute to causing structural deterioration 
(Abdeljaber et al, 2017). There are many different 
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types of damage that can surface, for example in the 
forms of corrosion, erosion, degradation or decay, all 
of which have the potential to cause structural 
collapse and require continuous monitoring 
(Abdeljaber et al, 2017). Areas that are incredibly 
difficult to access or that are susceptive to natural 
disasters like landslides, earthquakes or forest fires 
are often affected by such catastrophic devastation 
(Moaveni et al, 2011). Disasters such as these can 
occur without warning so preparation is crucial, 
having functional and well-maintained infrastructure 
is extremely important, as it will reduce the potential 
aftermath of future disasters (Pang et al, 2020). 

Traditionally, the severity of damage to a structure 
is visually assessed by experienced human inspectors, 
who physically examine any structurally unsound 
sites (Pang et al, 2020). Visual analysis, despite the 
extensive efforts of inspectors, experience a number 
of challenges; restricted access to damaged locations, 
lengthy inspection completion times and regular 
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manual structural maintenance assessments 
(Hernandez, Roohi, & Rosowsky, 2018). 

Additionally, localized experimental fault 
detection techniques such as radiographs, thermal 
field methods and acoustic or ultrasonic approaches 
have also, been used to identify structural damage 
(Doebling et al, 1996). However, the issue with these 
methods is that the damaged areas must be known and 
accessible for inspection prior to experimental 
analysis (Doebling et al, 1996). These limitations 
highlight the need to computerise this monitoring 
process to make identifying, locating and determining 
damage more efficient and accurate (Song et al, 
2020).  

This has led to the need to develop automated 
SHM and damage identification systems that can 
detect and monitor infrastructural damage, without 
human interaction (Anton, Inman & Park, 2009; 
Moaveni et al, 2010). These physical SHM systems 
need to be accurate and efficient whilst remaining 
operational for extended periods, for example, in 
buildings, and concealed in concrete infrastructures 
(Abdo, 2014; Yu, Wang, & Meng, 2005). A key 
challenge that needs to be considered is how to 
effectively manage and process large amounts of raw 
data obtained from these systems whilst still being 
able to classify structural damage correctly and 
efficiently. This, therefore, establishes the focus for 
this paper; to investigate the extraction of specific 
features from large real-world datasets, in order to 
achieve the highest degree of accuracy possible when 
applied to brain-inspired solutions. 

The remainder of this paper is organised with 
section 2 outlining an overview of SHM, neural 
networks and the key challenges. Section 3 defines 
the selected SHM dataset/application and the analysis 
of various feature extraction techniques. Section 4 
reports on the accuracy evaluation of both ANN and 
SNN networks based on bespoke extracted features. 
Finally, section 5 discusses future work and provides 
a conclusion.   

2 BACKGROUND 

It is inevitable that structures will degrade over time 
due to a number of factors, including frequent use and 
environmental causes like soil erosion, flooding or 
unexpected anomalies like earthquakes, landslides or 
forest fires (De La Torre et al, 2020). It is therefore 
paramount, for both safety and financial reasons to 
monitor large complex infrastructures such as 
buildings, bridges, dams and railroads, on a regular 
basis (Nuhu et al, 2020). SHM is an engineering field 

that focuses on developing damage identification 
systems that can monitor and evaluate the condition 
and stability of man-made structures (Crémona, 2016; 
Semperlotti, 2009). The techniques used are designed 
to enable early damage detection, allowing preventive 
measures to be implemented to avoid structural 
failure, such as required maintenance and structural 
reinforcement (Couture, 2013).  

SHM has progressed rapidly in recent years, due 
to the evolution of sensor networks, data processing 
and information management (Li et al, 2015). This 
automation has led to the development of increased 
precision and financially feasible data acquisition 
systems, as well as rapid growth in dataset size 
(Crémona, 2016). There are, however, still challenges 
that need to be addressed. 

2.1 Structural Health Monitoring 
(SHM) Techniques 

To achieve a high level of accuracy and reliability, 
SHM systems need to have a well-designed damage 
classification framework, that enables structural 
damage to be detected (Ying et al, 2013). Figure 1 
shows the process of damage identification is 
comprised of four core stages.  The stages include: 1) 
signal monitoring, 2) signal processing, 3) feature 
extraction and 4) classification (Amezquita-Sanchez 
& Adeli, 2015; Goyal & Pabla, 2015). 

Data is obtained from a sensor network and 
digitised during the signal monitoring stage. Signal 
processing methods such as Fourier transforms, 
Hilbert-Huang transforms, statistical time series 
models, Wavelet transforms and Cohen’s class are 
then used, to examine the data in order to extract, 
determine and categorise core features (Goyal & 
Pabla, 2015). Feature extraction, for example the 
orthogonal decomposition technique, is then carried 
out using measured data, to detect anomalous 
information with the goal of revealing non-obvious 
damage states (Eftekhar Azam, Rageh & Linzell, 
2018; Overbey, 2008). Feature extraction, is 
therefore, a key step in the damage identification 
process. A number of techniques have been used 
previously during the classification stage to identify 
structural damage accurately and correctly. These 
methods include clustering algorithms, specifically 
K-means (KM) clustering, Support Vector Machines 
(SVM), Artificial Neural Networks (ANN), Spiking 
Neural Networks (SNN) and Hybrid Classifiers 
(Goyal & Pabla, 2015). 
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Figure 1: Four main damage identification stages within a 
SHM system. 

2.2 Artificial and Spiking Neural 
Networks  

ANNs consist of a number of vastly connected 
processing nodes (neurons) that operate concurrently 
(Keller, Liu & Fogel, 2016). These networks learn as 
a result of training which is performed using datasets 
where the input and output data is known (Keller, Liu 
& Fogel, 2016). This data is used to train the neural 
network and modulate the synaptic weights between 
neurons (Keller, Liu & Fogel, 2016). ANNs are a very 
beneficial tool as they have the functionality to 
extract trends from input data (Notley & Magdon-
Ismail, 2018). However, despite this, factors such as 
power utilisation and the expense of implementing 
them in hardware as edge computing devices, 
presently do not meet practicality requirements for 
anomaly detection in real world, always-on 
applications (Pang et al, 2020). 

The original concept of ANNs has progressed 
rapidly to develop generations of ANNs, which mimic 
more closely the biological principles for learning and 
fault tolerance (Pang et al, 2020). SNNs are considered 
to be the third generation of ANNs (Paugam-Moisy & 
Bohte, 2012). Derived from neuroscience 
advancements and brain inspired natural computing, 
these networks use an adapted version of the spike 
timing of neurons to encode and process information 

(Liu et al, 2017). Similar to biological NN, SNNs 
enable communication through incorporating electrical 
pulses (spikes) (Zhang, Gu, & Pan, 2018) with the 
concept of time illustrated in Figure 2 In SNNs, 
information is communicated via the timing between 
spike events or frequencies. The integration of multiple 
frequencies enables a spiking neuron to aggregate the 
frequencies to reflect a membrane voltage increase 
within the neuron. When a threshold is exceeded, the 
neuron produces a single spike output. This process 
enables temporal patterns to be identified via training 
of synaptic weights which impact on the contribution 
to the neuron’s membrane voltage.  

There are a number of models that have been 
developed to determine the impact of action potential 
spikes on selected neurons, these include the 
Hodgkin-Huxley (HH) model, the leaky integrate-
and-fire (LIF) model and the adaptive exponential 
integrate-and-fire (AdExIF) model (Paugam-Moisy 
& Bohte, 2012). The LIF model is the least 
computationally expensive, in comparison to the HH 
model which is deemed the most expensive (Paugam-
Moisy & Bohte, 2012).  

 

Figure 2: Communicating information in SNNs. 

Research to date has established the ultra-low 
power capability of SNNs in hardware due to the fact 
that energy is only consumed when an input spike is 
received and processed, resulting in an overall saving 
of power (Zhang, Gu, & Pan, 2018). Currently SNNs 
have shown benefit in SHM system development, as 
compared to ANNs, as the hardware expense is more 
cost-effective and power efficiency is improved 
(Pang et al, 2020). 

The key challenge is the extraction of features 
from the SHM data and the encoding of identified 
features which improve the accuracy of the network. 
This is challenging as the data from sensors (e.g. 
accelerometers) is highly variable. 
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3 DATASET & FEATURE 
ANALYSIS  

The identification of suitable benchmark data was a 
key step, and the Qatar University Grandstand 
Simulator (QUGS) (Avci, 2018) was selected due to 
the availability of a full range of structural failures 
across a known structure with labelled data points. 
This dataset has also been used in several other works 
(Abdeljaber et al, 2016; Abdeljaber et al, 2017; Avci 
et al, 2018; Kiranyaz et al, 2021) and will form the 
basis for benchmarking of performance. 

The data was originally used by Abdeljaber et al. 
(Abdeljaber et al, 2017) to develop a 1D 
convolutional neural network (CNN) for vibration 
based SHM, with the primary intention of developing 
damage identification approaches that can efficiently 
monitor present-day infrastructure (Kiranyaz et al, 
2021). The simulator is situated in a laboratory 
environment and is reported as the biggest stadium 
framework constructed in a controlled environment 
(Abdeljaber et al, 2016), shown in Figure 3.  

 

Figure 3: QUGS Sensor Point Locations Identified. Source: 
Adapted from (Abdeljaber et al, 2017). 

Devised to hold 30 observers, the main hot-rolled 
steel shell is 4.2m x 4.2m in size (Abdeljaber et al, 
2017). The QUGS has a total of 30 structural joints 
(shown as 1A to 6E in Figure 3), in which 30 
accelerometers are used to measure the structural 
vibrational response (Kiranyaz et al, 2021). The steel 
frame is equipped with 27 PCB model 393B04 
accelerometers and 3 B&K model 8344 
accelerometers (Abdeljaber et al, 2017). Vibration 
was applied to the structure through the use of a 
modal shaker, that used a SmartAmp power amplifier, 
to implement the signal to the shaker (Abdeljaber et 
al, 2017). Finally, the production of the shaker input 
and recording of the acceleration output are achieved 
through using two 16-channel data acquisition 
instruments (Abdeljaber et al, 2017). 

Structural damage is injected by slackening the 
bolts at a specific joint, which is a very slight 
alteration to the structure’s rotational stiffness 
(Kiranyaz et al, 2021), as displayed in Figure 4.  

 

Figure 4: Demonstration of How Structural Damage is 
Artificially Applied in the QUGS. Source: Adapted from 
(Kiranyaz et al, 2021).       

There were 31 damage tests implemented; 1 
undamaged (healthy) case for benchmarking 
purposes and 30 damaged cases to simulate structural 
anomalies (Avci et al, 2018). Each scenario was 
recorded for 256 seconds, at a sampling frequency of 
1,024Hz, resulting in a total of 262,144 samples per 
joint per test (Avci et al, 2018). This, therefore, results 
in a total of 243,793,920 samples for the entire 
dataset.  

The particular reasons outlined demonstrate that 
the QUGS dataset provides an ideal range of 
anomalies for data training and evaluation purposes 
of the neural networks. 

3.1 Raw Data  

The QUGS dataset has a significantly large number 
of raw data samples, 243,793,920 in total. This data 
when graphically displayed is extremely noisy and 
difficult to discern any visual trend or features, due to 
high frequency sampling. It is therefore very difficult 
to distinguish whether a sample is of a damaged or 
undamaged state as seen in Figure 5. 

Using this data in its raw form will make it 
tremendously challenging for any classification 
technique to determine the structural state accurately. 
Therefore, feature extraction was required to ensure 
that any potentially masked damage states reported in 
the sensor data are identified and to consolidate to key 
element of interest (Amezquita-Sanchez & Adeli, 
2015).  
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Hence, feature extraction is a critical step in the 
damage identification process.  

3.2 Feature Selection 

It is important to select features that best represent the 
data. Certain features may suit specific real-world 
datasets better than others.  The choice of damage-
sensitive parameters for the QUGS dataset is based 
on multiple different factors such as the data type and 
which features will best identify the health status best.  
There may be several features that could determine 
structural health accurately whilst avoiding the effect 
of various environmental and structural conditions 
(Pang et al, 2020).  

 

Figure 5: Displays the comparison of the raw noisy data at 
joint 1 between a) an undamaged sample and b) a damaged 
sample. 

There two different types of sensors used in the 
data acquisition process that measure bolt vibration 
over a period of 256 seconds. This means that time 
and frequency domains, due to the nature of the data, 
can be used to extract specific features. These features 
include mean, standard deviation, variance, energy, 
Zero-crossing rate, and Fourier Transforms (Toivola 

& Hollmén, 2009). Some features proved better than 
others for example, zero-crossing rate only showed 
very minor differences between the damaged and 
undamaged data, when extracted from the noisy raw 
data, as displayed in Figure 6 and therefore was not 
the best feature choice. 

 

Figure 6: Displays the comparison of zero-crossing rate at 
joint 7 between a) an undamaged sample and b) a damaged 
sample.  

A number of MATLAB scripts were created to 
firstly, extract a selection of features. These features 
were then displayed graphically and analysed to 
determine if there were any significant differences in 
the damaged and undamaged data. This was to 
ultimately determine which feature was the best 
choice, in aiding damage identification. After this 
extensive analysis process, several features: absolute 
mean, variance, standard deviation and Fast Fourier 
Transforms (FFT) were chosen, as they showed 
distinguished profiles between undamaged and 
damage data.  

 
 
 
 
 

a 

b 

a

b
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Figure 7: Illustrates the comparison of variance at joint 7 
between a) an undamaged sample and b) a damaged sample. 

3.3 Fast-Fourier Transform (FFT) 

The Fast Fourier Transforms (FFT) proved to be the 
superior feature for this particular dataset, as it 
showed a considerable difference between the 
damaged and undamaged data samples, as illustrated 
in Figure 8. 

This was identified through developing a 
MATLAB script that was able to graphically display 
a double-sided magnitude spectrum for each sample 
and determine the top three highest magnitudes of 
each one.  Interestingly the frequency associated with 
the third highest magnitude in each comparative 
graph showed the largest difference in frequency 
between the damaged and undamaged data. 

This analysis also uncovered that the frequency 
associated with third largest magnitude in the 
undamaged joints, surrounding a damaged joint, 
showed significant variation. In addition, looking at 
these as a collective instead of individually could 
also, prove as another technique to aid data 
classification, as illustrated in Table 1.  

 
 
 

 

 

Figure 8: Displays the comparison between Fast-Fourier 
Transforms at joint 7 for a) an undamaged sample and b) a 
damaged sample. 

Table 1: Displays the frequencies associated with the three 
largest magnitudes for joints 1B, 2A, 2B, 2C and 3B, for 
both the benchmark data (2B-B) and the damaged data (2B-
D) when only the single joint 2B is damaged. 

 

4 NEURAL NETWORK 
APPLICATION 

ANNs are a well-established technique making an 
excellent benchmark for all other future designed 
networks. This research aims to validate that an SNN 
can make a relatively accurate prediction on real 
world data. However, the dataset is extremely noisy 
due a to high frequency sampling rate, making it very 
challenging to classify. Therefore, it requires pre-
processing in extracting and analysing several 

a a

bb 
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features; this establishes the contribution from the 
research.  

Each stage of this research is depicted in Figure 9, 
where the main stages are: 1) Raw data obtained from 
the 30 accelerometers, 2) Extraction of features from 
the raw data, 3) Feature extracted data is inputted into 
neural networks and 4) Output from neural networks 
is determined. 

 
Figure 9: Illustrates a summary of the workflow for this 
research. 

4.1 ANN 

An ANN was established, using the feature extracted 
data as the input data.  This was created to classify 
when an anomaly has occurred, i.e. detect if the input 
data reflects a healthy or unhealthy structural state. 
The Neural Network Toolbox in MATLAB was used 
to develop the ANN. The network had 30 neurons in 
the input layer and three output states: the three 
outputs were predetermined prior to classification; 
undamaged, damaged or unclassified. 

 
 

 

 

Figure 10: Presents the confusion matrixes for the ANN for 
a) training and b) testing. 

The network was trained using 75 percent of the 
feature extracted samples and tested on 25 percent of 
the feature extracted samples. Both phases achieved 
100 percent accuracy, correctly identifying all of the 
damaged and undamaged samples, as shown in the 
confusion matrix of Figure 10. 

These results provide a benchmark to compare 
with the SNN accuracy.    

4.2 SNN  

The QUGS feature extracted data is represented as 
numerical numbers. To enable the development of an 
SNN the data must first be encoded into spike trains 
which represent a frequency, in order to be used as 
input data. 

Using PyCharm with a python package called 
BindsNet, the selection of a new encoding scheme 
was required to best reflect the varied data. The data 
spanned over a large range of frequencies between 
approximately 15Hz – 475Hz. To make this range 
smaller a banding system was created, dividing the 
data into 10Hz wide bands comprising of 47 in total. 
As the band intervals increase in size, so do the length 
of the spike trains, adding additional spikes to each 
band, making each one larger than previous. The total 
spike trains are repeated to provide a 1-second 
duration of stimulus, i.e. to achieve an appropriate 
length of input stimulus for the SNN.  

The SNN consisted of 30 neurons in the input 
layer (one neuron per joint in the dataset) and 2 output 
LIF neurons: undamaged, damaged. The SNN is a 
fully connected network and uses the Spike-Timing 
Dependant Plasticity (STDP) learning algorithm.  

The network was able to achieve an accuracy level 
of 87.5 percent and was able to identify all of the 
undamaged samples and majority of the damaged 

b

a 
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samples, when trained on 75 percent and tested on 25 
percent of the feature extracted data. An equal amount 
of damaged and undamaged samples were used in 
both the training/testing groups. Comparative work 
has been conducted by Zanatta et al, achieving an 88 
percent accuracy level in comparison to the 87.5 
percent accuracy level from this research (Zanatta et 
al, 2021). However, the comparative network is a 
Long Short-Term SNN (LSNN) and is significantly 
more complex with recurrent neurons, and also in 
neuron density with between 50 to 500 input neurons, 
20 recurrent neurons and 2 output neurons (Zanatta et 
al, 2021).  

The proposed SNN was created to determine if the 
QUGS data could be classified correctly, as the vision 
for this work is to incorporate a self-repair element, 
in the form of an artificial astrocyte cell into the SNN 
network, providing the additional capability to 
tolerate failure. Rapid decision-making was not the 
aim of this research but is ultimately a focus of future 
work.  

4.3 Comparing SNN Against ANN 

The ANN proved to have overall, a better level of 
accuracy of 100 percent identifying all of the 
damaged and undamaged structural health states 
correctly, in comparison to the SNN which classified 
87.5 percent of the samples correctly. This is 
demonstrated in Table 2. 

Table 2: Displays the results comparing the accuracy of the 
ANN and SNN, when trained on 75 percent and tested on 
25 percent of the data. 

 

The ANN results provide good benchmark data 
and was expected to have a higher level of accuracy 
compared to the SNN. This is because ANNs are well 
established and not overly complex.  

However, when considering the application of 
SHM require low power and compact edge 
computing capabilities, SNNs can achieve must lower 
area/power performances than ANN equivalents 
(Yang et al. 2021). There is a trade-off between high 
accuracy/high-compute overheads and meeting 
lower-power budgets but with a reduction in 
accuracy.  

SNNs are more complex but possess the ability to 
incorporate a self-repair element into the network; 
ANNs do not have this capability. This network sets 
the foundation for future research.  

5 CONCLUSION AND FUTURE 
WORK 

Feature extraction is a key step when developing 
structural health applications and working with large 
datasets. Based on this work, it is evident that there 
are particular features that suit bespoke datasets better 
than others. FFT demonstrated to be the superior 
feature in the QUGS dataset. This contributed to the 
overall accuracy results achieved by the ANN and 
SNN, as the input data was more discernible between 
damaged and undamaged samples than displayed in 
the raw data. This, therefore, aided data classification. 

Future work could involve incorporating the use 
of ensembles to further improve the accuracy and 
performance of the SNN. However, the main goal is 
to develop the SNN further by creating an astrocyte-
neuron network (SANN), that can monitor and 
classify structural damage as well as realising self-
repairing capabilities (Liu et al 2017). Upon 
achieving a good level of accuracy, the intention is to 
implement the network in FPGA hardware, where the 
systems performance will be benchmarked against 
conventional methods and evaluated, in terms of 
reliability and accuracy. This should enable large 
man-made structures to be monitored for long periods 
of time, without human intervention. 
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