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Abstract: Controlling a soft robot poses a challenge due to its mechanical characteristics. Although the manufacturing
process is well-established, there are still shortcomings in their control, which often limits them to static
tasks. In this study, we aim to address some of these limitations by introducing a neural network-based
controller specifically designed for the throwing task using a soft robotic arm. Drawing inspiration from
previous research, we have devised a method for controlling the movement of the soft robotic arm during
the ballistic task. By employing a feed-forward neural network, we approximate the relationship between the
actuation pattern and the resulting landing position. This enables us to predict the input sequence that needs to
be transmitted to the robot’s actuators based on the desired landing coordinates. To validate our approach, we
conducted experiments using a 2-module soft robotic arm, which was utilized to throw four different objects
towards ten target boxes positioned beneath the robot. We considered two actuation modalities, depending
on whether the distal module was activated. The results indicate a success rate, defined as the proportion
of successful trials out of the total number of throws, of up to 68% when a single module was actuated.
These findings demonstrate the potential of our proposed controller in achieving successful performance of
the throwing task using a soft robotic arm.

1 INTRODUCTION

Soft robots, often inspired by biological systems
(Laschi et al., 2016; Polygerinos et al., 2017), are con-
structed using hyper-elastic materials with a Young’s
modulus comparable to that of biological skin (Rus
and Tolley, 2015), typically ranging from 104 to 109

Pa. These robots offer several advantages over tradi-
tional robots, including the potential for low-cost and
safe human interaction due to their energy-absorbing
capabilities during collisions. Despite their unique
characteristics and wide range of potential applica-
tions, soft robots have yet to realize their full potential
(Katzschmann et al., 2018; Holland et al., 2017), pri-
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marily due to sensing and control limitations.
While soft robots have been evaluated for dynamic

tasks such as trajectory tracking, there are still nu-
merous real-world dynamic tasks that remain unex-
plored (Fischer et al., 2022). In (Fischer et al., 2022),
the authors demonstrate the potential of soft robots in
various dynamic tasks, including ballistic tasks where
objects are thrown along linear trajectories. How-
ever, there is a lack of control strategies specifically
tailored for achieving ballistic tasks with soft robots,
particularly in accurately tossing an object into a user-
defined target box. Therefore, the objective of our
work is to develop a control strategy to enable soft
robots to perform ballistic tasks, precisely throwing
objects into predetermined target boxes.

Despite classical robots, which are designed to
maximise the performance of an operation, soft robots
thanks to their materials are characterised by low-
cost fabrication, high deformability, and compliance.
However, this has a cost in terms of accuracy and
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payload. These properties make them suitable for
delicate handling(Li et al., 2017) and operation in
unstructured environments as scenarios like assistive
robotics(Manti et al., 2016) and search and rescue
missions(Hawkes et al., 2017) can represent. How-
ever, the non-linearity of the materials combined
with the fact that soft robots show virtually infinite
degrees-of-freedom, and that their properties depend
on the environment in which they work, require in-
novation in the control systems(Wang and Chortos,
2022) because it is challenging to apply directly the
conventional robotic control theory which has been
developed for rigid robots.

The main challenges that a soft robotic control
system must face are high dimension morphology and
the time-varying combined with the non-linear be-
haviour of the soft material. For these reasons, it
is really challenging to model them. Furthermore,
we need an accurate and computationally efficient
representation to create a controller over the model.
However, achieving both characteristics is difficult for
a soft robotic model. Indeed, with Finite Element
Analysis(Ilievski et al., 2011) (FEM) we can achieve
the biggest accuracy among the other type of models
which make some exemplificative assumptions, such
as the Constant Curvature (Webster and Jones, 2010)
(CC), the Piecewise Constant Curvature(Runge and
Raatz, 2017) (PCC) and Cosserat rod models (Gaz-
zola et al., 2018) (Alessi et al., 2023).

A promising alternative is represented by Machine
Learning (ML) algorithms which could discover the
underlying structure of the data that in our case is
the model of the robot without any assumptions. ML
techniques have already been used to create static and
dynamic controllers (Laschi et al., 2023) even if there
are some limitations. Firstly, since it is a data-driven
approach to work properly it requires a (large) dataset
whose collection may be time-consuming. Then,
data might not represent the whole behaviour of the
robot but just part of it i.e., the one captured in the
dataset. In (Giorelli et al., 2013), the authors de-
veloped the earliest machine-learning controller for a
non-redundant soft robot. They demonstrated the uti-
lization of a neural network as an approximation of
the inverse kinematics of the robot.

Later, this work has been extended in
(George Thuruthel et al., 2017) to account for
redundancies based on previous works (Vannucci
et al., 2014; Vannucci et al., 2015). However,
achieving a dynamic task with a quasi-static model or
in general with a model that relies on the steady-state
assumption is impossible since its accuracy during
fast movements is limited. Due to severe limitations
in speed, throwing would not be possible with

controllers based on these models.
To overcome these limitations, model-free dy-

namic controllers have been developed. Different
open-loop strategies (Thuruthel et al., 2019), (Cen-
turelli et al., 2021) are present in the literature to con-
trol the manipulator dynamic in a trajectory tracking
task. Both works represent a model-free approach in
which recurrent neural networks are deployed to ob-
tain the model of the soft robot. Then in (Centurelli
et al., 2022) the authors designed a closed-loop con-
troller able to deal with different payloads attached
to the manipulator end-effector thanks to a deep rein-
forcement learning method. Recently, this tolerance
to external payloads has been achieved with contin-
ual learning in (Piqué et al., 2022), where the authors
learnt the dynamic models of the robot with differ-
ent attached weights without encountering the well-
known problem of catastrophic forgetting.

All the proposed approaches, have been devel-
oped for a specific task, the trajectory following, and
are not suitable for ballistic movements, where reach-
ing the realising point with a specified velocity de-
termines the range of the throws. Indeed, for rigid
robots, this ability has been implemented for exam-
ple (Fang et al., 2021) and (Raptopoulos et al., 2020).
Both experienced an increased work capacity and effi-
ciency of a robot, especially in a weakly structured lo-
gistics sorting scene. While in (Büchler et al., 2022),
the authors show the ballistic movement of a muscu-
lar robot, in particular, they highlight the issues as-
sociated with this fast movement on rigid robot hard-
ware components. Instead in (Zeng et al., 2019), the
authors deployed a hybrid controller to grasp an ob-
ject with an anthropomorphic robot and then toss it
at a specific target placed in front of it. The analyti-
cal model of the robot is used to make an estimation
of the control parameters once the physical problem
is solved thanks to some constraints imposed on the
movement. As stated above, this approach is diffi-
cult to implement with a soft robot since the dynamic
model of the robot is not always available or in gen-
eral accurate. However, lately, this task has been ex-
plored also with soft robots. The feasibility of the
ballistic task has been demonstrated by (Fischer et al.,
2022). Meanwhile, two controllers have been devel-
oped, first in simulation and then on an real robot, for
throwing an object into a target box. These controllers
are described in (Bianchi et al., 2022) and (Bianchi
et al., 2023). The simulation-based work utilizes an
optimization process that provides the desired landing
position and predicts the actuation patterns needed to
reach it. In (Bianchi et al., 2023), the authors present
a real-time controller that employs a deep reinforce-
ment learning method.
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In this work, we present a learning-based inverse
dynamic controller approach to performing the toss-
ing task with a soft robot. It is an open-loop con-
troller in which we trained an artificial neural network
to learn the relationship between the landing positions
and the actuation patterns necessary to reach them.
Since it is based on a single neural network, the in-
verse model of the task, the controller works in real-
time because it instantaneously predicts the actuation
pattern given a new goal position. We tested this real-
time methodology on a modular pneumatic platform
with which we tossed objects of different shapes and
weights in several directions to explore the robot’s ca-
pabilities and our controller.

2 MATERIALS AND METHODS

In this section, we will first present an overview of the
approach we developed throughout the work. Then,
after describing the experimental setup used to test the
controller we will pass through the two main phases
that brought to its development, i.e., the dataset col-
lection and the training of the neural network on
which our controller is based.

2.1 Our Approach

Target Predicted
actuation pattern

TRAINING

Landing positions Actuation pattern

Inverse model of the task

Figure 1: Neural Network-based open-loop controller.

Our approach is described in Figure 1. By learning
the relationship between the landing positions and the
actuation patterns to reach them in the training phase,
our learning-based inverse dynamic controller is able
to predict the actuation pattern according to the de-
sired target position.

We defined the throwing trajectories before gath-
ering the dataset to train the neural network. Inspired
by (Braun et al., 2012), we opted for a planar tra-
jectory. To enhance the dynamics of the soft robot
we choose to perform a back-swing before moving
toward the target goal. We can identify two distinct
phases in the robot’s movement: 1) the run-up phase;
and 2) the forward phase. We established that the ob-
ject should be released when the robot passes for the
lowest position of the trajectory after the back-swing.

Once collected, we used the dataset to train a feed-
forward artificial neural network, the inverse model
of the task, to approximate the relationship between
landing positions and actuation patterns, i.e., the com-
mands that we sent to the robot. Each actuation pat-
tern includes the commands responsible for the two
phases of the movement.

Once trained, we used the inverse model of the
task to perform the throws into target boxes. In this
phase, we assess the effectiveness of the approach that
is threatened by the approximation error of the neu-
ral network and the exemplifications made during the
dataset collection. We conducted tests on our con-
troller using objects of various shapes and weights, as
well as different target locations.

Figure 2: Experimental setup. A) The I-support robot
equipped with a pneumatic gripper is positioned over ten
designated target boxes used for the experiments. B) The
control box used to actuate the robot. C) Various objects,
including a toy lemon, a marker, and a ping-pong ball, were
thrown as part of the experiments and were also utilized in
training the neural networks.

2.2 Experimental Setup

We tested our controller on a modular robot, the I-
Support (Manti et al., 2016)(Figure 2A). Each mod-
ule presents three pairs of pneumatic McKibben-like
actuators equally spaced on a circumference and there
are several plastic disks to arrange the chambers in the
module. To inflate the six chamber (pmax = 1 bar) we
used a custom actuation unit made of several pneu-
matic pressure regulators controlled with ArduinoDue
(Figure 2B).

The robot is mounted on an aluminium frame in
a vertical downward position to reduce the effect of
the gravitational force and due to weight concerns,
the two modules have different sizes. The two mod-
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ules are connected together, thanks to a plexiglass in-
terface, with an offset of 60 °. The fixed-end of the
robot is 1000 mm distant from the ground in which
we placed the target boxes(Figure 2A). Each box is
geometrically equivalent to a square prism, whose di-
mensions are [140×140×100] mm.

In the experiments, we toss in the target boxes
with different objects (Figure 2C) whose mass and di-
mensions are shown in Table 1.

Table 1: Tossed objects. Physical characteristics of the ob-
ject used during the experiments.

Object Characteristic
dimension [mm] Mass [g]

Ping-pong ball 36 0.8
Lemon (toy) 62 4.8

Marker 26 3.2
Tomato (toy) 63 10.2

To hold an object during the linear trajectory
we equipped our robot with a two-finger gripper.
Each finger is made of 3D-printed surfaces joined to-
gether with thermoplastic polyurethane (TPU) cham-
bers. We characterised the gripper’s opening time. To
do that we perform fifty closing-and-opening cycles
where we measure the time interval from the instant
in which the command is sent and the one in which
the distance between the two fingers in ∼ 60 mm (ap-
proximately the dimension of the biggest object taken
into account). We assessed that the opening time of
the gripper is equal to ∼ 0.2±0.01 s.

To detect the position of the sections of interest we
used a vision-based motion capture system (VICON
Motion Capture Ltd) thanks to which we were able to
track the movement of the object and the robot.

2.3 Dataset collection

The first phase of our approach is the collection of the
dataset. We decided to have a linear movement and
to divide it into two different phases: 1) Run-up; and
2) Forward, as in (Braun et al., 2012). This division
aims to increase the speed of the robot in the over-
all movement which results in an increased throwing
capacity.

To respect the counter-movement condition that
we applied to the trajectory we realised a geometri-
cal model of the throwing trajectory. Let us take as
an example the model illustrated in Figure 3A. We
can identify six bending directions associated with the
different chambers of the robot (1, 2, 3 for the proxi-
mal module and 4, 5, 6 for the distal one), and let us
identify a local reference frame (xy). In relation to its
working principle, if we inflate chamber 1 of the soft

robot it will bend along the negative y-axis. To avoid
interference we need to prevent the simultaneous in-
flation of the chamber placed in the same direction,
such as 3 and 4.

Figure 3: Training datasets. A) On the left, the identification
of the major bending direction while on the right, the geo-
metrical model of the throwing trajectory. B) represents the
dataset used to train the neural networks for the controller in
the two actuation scenarios analysed, respectively the par-
tial and complete. These datasets have been obtained by
averaging the dataset collected with the following objects:
1) ping pong ball; 2) vicon marker; 3) lemon (toy).

By knowing the coordinates of the goal point
TG(xTG ; yTG), we can find the throwing direction that
enables us to toss an object in that direction, which is
represented by the line that passes for this point and
the origin of the reference system. Instead, to find
an approximative relationship between the actuations,
we first took the desired point TG, and we identified
the objective point T (xT ; yT ) by taking the symmet-
ric of the goal point to the origin of the reference sys-
tem, in other words, T = (−yTG ; −xTG). Then, we
projected the objective point on the circle of radius
equal to one centred in the centre of the reference sys-
tem. To obtain the relationships and conditions pre-
sented in Table 2, starting from the previously found
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point T ′(xT ′ ; yT ′), we calculated the projection of it
on the six bending axes. The length of the projection
is proportional to the pressure we have to send to the
actuator.

Table 2: Input patterns generation. To enable the move-
ment of the I-Support robotic arm to respect the counter-
movement constraint, the actuation inputs (i.e., pressure
signals) are adjusted based on the geometric relationship.
Specifically, the point TG, representing the desired goal
point, is symmetrically reflected across the origin of the
axes to obtain a new point T . This new point is projected
onto the circumference of a unit radius (T ′).

Dir xT ′
i

yT ′
i

Condition
1 0 yT ′ y1 ≥ 0

2 3xT ′+
√

3yT ′
4

√
3xT ′+yT ′

4 x2 ≤ 0; y2 ≤ 0

3 3xT ′−
√

3yT ′
4

yT ′−
√

3xT ′
4 x3 ≥ 0; y3 ≤ 0

4 3xT ′−
√

3yT ′
4

yT ′−
√

3xT ′
4 x4 ≤ 0; y4 ≥ 0

5 0 yT ′ y5 ≤ 0

6 3xT ′+
√

3yT ′
4

√
3xT ′+yT ′

4 x6 ≥ 0; y6 ≥ 0

We imposed that the first phase has to last
trun−up = 0.50 s while the overall movement ttra j =
2.00 s. The object is manually placed between the
gripper fingers and then it is released at te ject = 0.97 s,
i.e., approximately the time instant in which the robot
passes through the lowest point of the trajectory after
the run-up phase. We collected more than one thou-
sand trajectories by randomly sampling the point P
in the xy plane. The overall process lasted two hours
and fifteen minutes. For each trajectory, we saved the
simulated landing position and the actuation pattern
sent to the robot. To obtain the landing position co-
ordinates, starting from the positions and velocities
given by the motion tracking system we simulated the
throws with the projectile equations.

We repeated this process twice to collect the data
in the two actuation scenarios analysed in this work:
1) Partial, in which the distal module, i.e., the one
on which is attached the gripper, is passive; 2) Com-
plete, where all the six chambers are combined. In
each case we collected the dataset with three different
held objects the ping-pong ball, the marker and the
lemon (toy) and then we average them to obtain the
final dataset. The datasets are averaged to develop
a controller that is not object-specific. The weight
of the end effector impacts the dynamics of a robot,
including its trajectories and controller performance
during throwing tasks with various objects. This ef-
fect can be amplified when combined with a size-
independent opening time. Figure 3B represents the
average dataset in the partial and complete actuation
scenario on which we trained, as shown in the next
section, the neural networks.

2.4 Neural Network Training

With the datasets represented in Figure 3B, with a
feed-forward neural network we mapped the landing
positions with the actuation pattern associated with
them, as in (1).

(τrun−up,τ f orward) = f (xLP) (1)

Where the first term is the entire actuation input com-
posed of the run-up phase and the forward one.

The model is represented by an artificial neural
network (ANN) with one hidden layer. We performed
a model selection based on the average error on the
actuation components to choose the best combination
of hyperparameters. We have changed the number of
units of the hidden layer, their activation function, and
the type of input normalisation. Default values have
been used for the different hyperparameters collected
in Table 3. In addition, to expedite the learning pro-
cess, the early stopping method has been considered.

In both cases, the input layer presents three neu-
rons, i.e., the coordinates of the landing position,
while the output layer depends on the actuation sce-
nario. Indeed, we have six units and twelve units
respectively with partial and complete actuation. In
both cases, the output layer implements the ReLU ac-
tivation function because the predictions of the ANN
are pressure values. The results of the model selection
are reported in Table 3.

3 RESULTS

To test our controllers, the robot performed throws
towards ten target boxes of objects different in size
and weight Figure 2A. We selected the box positions
to test the controller in different directions. We per-
formed our tests in two scenarios: 1) partial actuation,
in which just the module attached to the frame is actu-
ated, and 2) complete actuation, where all the cham-
bers of the bi-modular robot can be inflated. In our
experiments we decided to perform two types of tests:
1) quantitative ones, in which we tracked, thanks to
the motion capture system, the movement of the ob-
ject, i.e., its trajectory; and 2) qualitative tests (shown
in Figure 4), in which we recorded the movement of
the overall system to assess if the task was successful
or not. We have success if the object fell inside the
target box, with or without bouncing on the box bor-
ders. In both types of tests, we analysed the ability
of the robot to generate actuation patterns to allow the
soft robot to toss the object into the desired target. We
performed three trials for each combination of param-
eters (object type, qualitative/quantitative test, target
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Table 3: Neural network training. In this table, we collected the different hyperparameters that we changed and keep fixed
during the training of the inverse model of the task, in the two distinguished actuation scenarios.

Default values
learning rate 0.001 Optimiser Adam
batch’s size 16 Loss function MSE

number of epochs 4000 Training/test partition 0.90
Best combination of the changed parameters

Hyperparameter Partial Actuation Complete actuation
Number of units 64 128

Activation function ReLU tanh
Normalisation Z-score Z-score

Figure 4: An example of the qualitative experiment. A
throw toward the target box “I” with the Lemon (Toy) in
the complete actuation scenario.

position), that led to 240 throws for each actuation
modality (partial and complete). The results of the
qualitative and quantitative tests are summarised re-
spectively in Figure 5 and Figure 6. Here we have an
idea of the performance of the controllers in the two
actuation scenarios. Figure 5 is obtained by analysing
the recorded trials to check if the trials were success-
ful or not (object in/object out). We defined success

rate as the ratio between the number of successful
throws and the total number of throws performed.
This index is equal to 55.83 % for the complete ac-
tuation modality and 68.33 % for the other.

The boxplots in Figure 6 illustrate the perfor-
mance of the controllers based on the quantitative
tests. These boxplots represent the distribution of er-
rors, specifically the Euclidean distance between the
desired target (the centre of the box) and the actual
landing position. The tests were conducted across
three trials for each combination of object targets.

Based on the results shown in the boxplots, the av-
erage error for the partial actuation scenario is 61.34
mm, while for the complete actuation scenario, the
average error is 80.87 mm. These values indicate the
average discrepancy between the desired and actual
landing positions, providing a quantitative measure of
the performance of the controllers.

4 DISCUSSION AND
CONCLUSION

In this work, we show that despite the lower dy-
namic and a more challenging control than traditional
robotics, a soft robot can perform a task as complex
as tossing an object inside different target boxes.

Our results show that the neural network-based
controller reaches a performance in successfully toss-
ing objects to target locations, as high as ∼ 56÷68 %
on average (depending on the actuation pattern used).
These results are highly influenced by the impossibil-
ity of the controller to generate appropriate actuation
patterns for some targets. Indeed, if we describe the
performance of the controller based on the median,
which is less sensitive to the outliers than the average,
we will obtain for the complete and partial actuation
scenario an average error of 65.69 mm and 54.44 mm
respectively.

These values are comparable to those found in
the state-of-the-art. In their publication, Bianchi et
al. (Bianchi et al., 2023) utilized a real-time open-
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Figure 5: Qualitative results for the neural network-based controllers. The results are shown with respect to the object and
each column is proportional to the successful trials. The maximum number of throws for each target is 12, as three attempts
are made for each object.

Figure 6: Comparison between the controller in different
actuation scenarios based on the distance from the target
position, which was reconstructed by recording the falling
trajectories of the object during a toss with the Motion Cap-
ture System.

loop controller for a bi-modular robot based on a
deep reinforcement learning (RL) method. The RL-
based controller was tested in both partial and com-
plete actuation scenarios, and the authors achieved a
success rate of approximately ∼ 62 ÷ 63 %. Com-
pared to the current state of the art, this study presents
a controller that exhibits similar real-time characteris-
tics and comparable or slightly better performance in
certain instances. Significantly, the inverse dynamic
method requires only a fraction of the time needed
to train the neural network compared to the training
time of the RL agent. However, the method described

in (Bianchi et al., 2023) shows the same performance
in both actuation modalities.

From Figures 5 and 6, the difference between the
performance in the two scenarios is clear. . The neu-
ral network in the complete actuation scenario has a
poor ability to generate appropriate patterns due to the
ill-posed problem. In this case, we are asking the net-
work, given three input values (the desired landing
coordinates), to predict the twelve values to perform
both the run-up and forward phases. On the contrary,
the problem is simpler in the case where the robot has
a passive module, as we will have only six values to
predict.

However, the performance of the controllers can
be improved by acting in several levels of the pro-
posed approach. Firstly, we could improve the collec-
tion of the data by trying to pass from a geometrical
model of the throwing trajectory (equations collected
in Table 2) to a model-free approach or in general a
more detailed model. Additionally, in every trial, the
object can have different initial conditions since we
manually place it which increases the variability of
our experimental data.

The gripper has a remarkable influence on the
overall experiments because it influences the initial
kinematic conditions of the object in its free-fall for-
ward target box. In our experiments, we determined
an opening time based on the biggest object that we
planned to toss and we consider that in our throwing
task specification. However, the objects are consid-
erably different from each other, so the small objects
were released before the ideal realising instant. That
led to an increased variability of the data and a lower
accuracy of the controller.
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