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Abstract: We are interested in the design of satabilizing event-driven controllers for linear time-invariant systems. We

assume that the plant state is partially known and the feedback signal is sent to the controller at discrete-time

instants via a digital channel and we synthesize an event-triggered controller based solely on the available plant

measurement. The event-triggering law that we construct is novel and only verified at periodic time instants,

i.e., periodic event-triggering mechanism, which is more adapted to practical implementation. The proposed

approach ensures a global asymptotic stability property for the closed-loop system under mild conditions. The

overall model is developed as a hybrid dynamical system to truly describe the mixed continuous-time and

discrete-time dynamics. The stability is studied using appropriate Lyapunov functions. The efficiency of the

technique is illustrated on a numerical example.

1 INTRODUCTION

Event-triggered control (ETC) is an implementation

technique in which the transmission instants of the

feedback measurements are generated by a state-

dependent rule instead of the traditional periodic sam-

pling approach. This allows for more efficient uti-

lization of the limited bandwidth of the shared com-

munication channel in different domains of applica-

tions such as networked control systems (Zhang et al.,

2017), sensors networks (Alajmi et al., 2022), cyber

physical systems (Lu and Yang, 2020), multi-agent

systems (Samy et al., 2022), (Filho et al., 2023) and

distributed control systems (Ge et al., 2017).

A significant amount of research work on ETC

is based on the continuous verification of the trig-

gering condition to decide the next transmission in-

stance, e.g., (Tabuada, 2007), (Abdelrahim et al.,

2013), (Wu et al., 2022), (Yang et al., 2023). How-

ever, a major challenge in this type of continuous ETC

is to prevent the accumulation of transmission in-

stants, i.e., Zeno phenomenon (Borgers and Heemels,

2014). Alternatively, periodic event-triggered control

(PETC) has been proposed such that the triggering

rule is only checked at periodic time instants, which

is more adapted to practical implementation and au-

a https://orcid.org/0009-0002-3940-9711

tomatically rules out Zeno behaviour (Heemels et al.,

2013b), (Postoyan et al., 2013), (Li et al., 2023),

(Wang et al., 2020), (Sun and Zeng, 2022), (Yu et al.,

2020), (Liu and Hao, 2015), (Borgers et al., 2018),

(Abdelrahim et al., 2015).

In this paper, we consider the problem of peri-

odic event-triggered control of output feedback lin-

ear time-invariant (LTI) systems. We assume that

only an output of the plant is known and we con-

struct an appropriate periodic ETC to decide whether

to release a transmission at the next periodic instant.

The proposed periodic ETC is novel and equipped by

a dynamic variable, i.e., dynamic periodic ETC, to

further reduce the amount of transmissions. More-

over, the periodic sampling interval is designed based

on the approach of (Carnevale et al., 2007) to de-

rive the maximally allowable transmission interval

(MATI) for the case of time-triggered control. The

proposed approach is designed by emulation where

we first ignore the effect of network and stabilize the

plant in continuous-time. Then, we consider the sam-

pling due to the network and we construct a periodic

ETC mechanism such that the closed-loop stability

is preserved. The overall system is formulated as a

hybrid dynamical system to truly describe the mixed

continuous-time and discrete-time dynamics of the

system. Sufficient conditions are provided in terms of

a linear matrix inequality (LMI) to properly identify
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the parameters of the event-triggering mechanism in

a systematic manner. The stability is investigated by

using appropriate Lyapunov functions. The effective-

ness of the approach is demonstrated via numerical

simulations.

The problem of PETC synthesis has been stud-

ied in several works of the literature, see e.g., (An-

tunes et al., 2012), (Heemels et al., 2011), (Fu and Jr.,

2018), (Wei et al., 2023), (Sun et al., 2023), (Heemels

et al., 2013a), (Li et al., 2023), (Postoyan et al., 2013),

(Sun and Zeng, 2022). It is noted that the majority of

previous works are adapted to the case of state feed-

back control, which is not feasible in many practical

situations. The proposed approach in this paper is

adapted to the case of output feedback control, which

is more challenging than when the full state measure-

ment is available. Moreover, the setup that we con-

sider and the obtained stability property are different

from existing techniques of the literature.

The main contribution of this paper is summarized

below

• we construct a novel PETC for linear systems

based on partial state information;

• the sampling period is designed as the maximally

allowable transmission interval;

• the closed-loop system is modelled as a hybrid dy-

namical system;

• sufficient conditions are formulated in terms of an

LMI condition.

The rest of the paper is organised as follows. Pre-

liminaries are given in Section 2. The problem is for-

mally stated in Section 3. The hybrid model is given

in Section 4. We present the main results in Section

5. Numerical simulations are given in Section 6. Con-

clusions are provided in Section 7.

2 PRELIMINARIES

Let R := (−∞,∞), R>0 := [0,∞), N := {0,1,2, . . .}

and N>0 := {1,2, . . .}. Standard notation are ddopted

in this paper.

We consider hybrid systems of the following form

(Goebel et al., 2012; Cai and Teel, 2009)

ẋ = F(x) x ∈ C , x+ ∈ G(x) x ∈ D, (1)

where x ∈ R
nx is the state, C is the flow set, F is the

flow map, D is the jump set and G is the jump map.

Solutions to system (1) are defined on hybrid time do-

mains, see (Goebel et al., 2012), (Cai and Teel, 2009)

for more detail.

3 PROBLEM FORMULATION

We consider plant models with the following dynamis

ẋp = Apxp +Bpu

y = Cpxp,
(2)

where xp ∈ R
np is the plant state, u ∈ R

nu is the

control input, y ∈ R
ny is the measured output, and

Ap,Bp,Cp,Ep are matrices of appropriate dimensions.

The plant is stabilized by the following dynamic con-

troller

ẋc = Acxc +Bcŷ

u = Ccxc +Dcŷ
(3)

where xc ∈ R
nc is the controller state, ŷ ∈ R

ny is the

last transmitted value of y, and Ac,Bc,Cc,Dc are ma-

trices of appropriate dimensions. The feedback law

(3) is designed by emulation, that is we first stabi-

lize the plant (2) in continuous-time assuming perfect

communication, i.e., ŷ = y. Then, we take into ac-

count the sampling effects.

3.1 Implementation Scenario

The implementation scenario is shown in Figure 1.

We consider the case where the controller is co-

located with the plant while the sensors and the con-

troller are communicating over a shared network. We

assume that the plant state xp is not available for mea-

surement and only an output y(t) can be transmitted

to the controller.

Plant

Sampler

PETC
mechanism

Controller

y(t)

y(ts
i )

ŷ(t
y
j )

u(t)

Figure 1: Periodic event-triggered output feedback control.
(solid line) continuous-time; (dotted line) periodic instants;
(dash line) event-triggered instants.

We consider that the output y(t) is sampled at

periodic sampling times ts
i , i ∈ N. Then, an event-

triggering mechanism is employed to decide wether to

submit the output value y(ts
i ), where the time instants

at which y(ts
i ) is released are denoted by t

y
j , j ∈ N,
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leading to the so-called periodic event-triggered con-

trol (PETC), and we refer by ŷ(ty
j ) the most recent

value of y(ts
i ) at the controller at time t

y
j , j ∈ N, see

Figure 1. Hence, if we define

Ts = {ts
i }, i ∈N

Ty = {t
y
j}, j ∈N,

(4)

where Ts and Ty denote the increasing sequence of

periodic time instants and transmission instants, re-

spectively. Then, it hold that Ty ⊆ Ts.

It is important to note here that the periodic event-

triggering mechanism is assumed to have access to

both the actual output value, i.e., y(t), and the last

transmitted value ŷ(tk
j ), j ∈N.

The objectives of this paper include

• Synthesis of periodic sampling interval and peri-

odic event-triggered controller by emulation;

• Derivation of hybrid dynamical model of the over-

all system;

• Providing sufficient conditions to ensure the

closed-loop stability;

• Preventing the occurrence of Zeno behaviour.

4 HYBRID MODEL

In this section, we derive the dynamic behaviour

of the closed-loop system and formulate it as a hy-

brid dynamical system. We define the sampling er-

ror es(t) : Rny → R
ny and the network induced error

ey(t) : Rny → R
ny between two transmission times as

follows, for all t ∈ [ty
j , t

y
j+1)

es(t) := y(ts
i )− y(t) ∀t ∈ [ts

i , t
s
i+1), i ∈ N

ey(t) := ŷ(ty
j )− y(ts

i ) ∀t ∈ [ty
j , t

y
j+1), i, j ∈N.

(5)

Between two periodic sampling times [ts
i , t

s
i+1], the

sampled output y(ts
i ) is kept constants using ZOH.

At each periodic sampling time ts
i , i ∈ N, the value of

y(ts
i ) is reset to y(t). Moreover, between two transmis-

sion instants [t
y
j , t

y
j+1], the last transmitted value of the

output y(ty
j ) is kept constants using ZOH and at each

transmission instant t
y
j , j ∈ N, ey(t) is reset to y(ts

i ).

Define the total error e(t) as the difference be-

tween the last transmitted value of the output ŷq(t
y
j )

and the current output measurement y(t), that is

e(t) := ŷ(t
y
j )− y(t) ∀t ∈ [t

y
j , t

y
j+1)

= es(t)+ ey(t).
(6)

Then, it holds that

ė(t) = −ẏ =−Cpẋp t ∈ [ty
j , t

y
j+1)

e(t
y+

j ) = es(t
y+

j )+ ey(t
y+

j )

= 0.

(7)

The last property implies that the total error e(t) is re-

set to zero at each transmission instant t
y
j , j ∈ N since

y(ts
i ) is updated to y(t) at each t

y
j , j ∈ N.

Let x = (xp,xc) ∈ R
nx . Then, in view of (2), (3),

(6), we obtain

ẋ =


Ap +BpDcCp BpCc

BcCp Ac


x+


BpDc

Bc


e

=: A1x+B1e

(8)

and

ė =
[
−Cp(Ap +BpDcCp) −CpBpCc

]
x+

[
−CpBpDc

]
e

=: A2x+B2e.
(9)

We define two auxiliary time variables τs,τy :

R≥0 →R≥0 as follows

τ̇s(t) = 1 t ∈ [ts
i , t

s
i+1)

τs(t
s+

i ) = 0 t ∈ {ts
i }i∈N

(10)

and

τ̇y(t) = 1 t ∈ [ty
j , t

y
j+1)

τy(t
y+

j ) = 0 t ∈ {t
y
j} j∈N.

(11)

The time variable τs will be used to describe the time

between two periodic sampling instants [ts
i , t

s
i+1] and

it is reset to zero at each periodic instance ts
i , i ∈ N.

Similarly, the time variable τy will be used to track the

time between two transmission instants [t
y
j , t

y
j+1] and it

is reset to zero at each transmission instance t
y
j , j ∈N.

These two time variables τs and τy will be helpful to

construct the hybrid dynamical model of the system

as explained in the sequel.

In order to complete the description of the over-

all system, we outline below the general structure

of the proposed periodic event-triggering mechanism,

which will be clearly developed in the next section.

We synthesize a PETC based on a dynamic variable

η, which has the following dynamics, see also (Gi-

rard, 2015; Dolk et al., 2017; Postoyan et al., 2015),

η̇(t) = Ψ(y,e,η) t ∈ [ts
i , t

s
i+1)

η(t+) = gs(y,e,η) t ∈ Ts \Ty

η(t+) = gy(y,e,η) t ∈ Ty,

(12)

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

208



where the functions Ψ,gs and gy will be specified in

Section 5. Note that the functions Ψ,ηs and ηy de-

pend only on locally available information (y,e,η)
at the event-triggering mechanism. The sequence of

transmission instants are generated by the following

mechanism

t
y
j+1 = min{t > t

y
j | t ∈ Ts ∧gs(y,e,η)6 0}, (13)

where t
y
0 = 0.

In view of (7)-(12) we obtain the following impul-

sive model

ẋ = A1x+B1e

ė = A2x+B2e

η̇(t) = Ψ(y,e,η)

τ̇s(t) = 1

τ̇y(t) = 1





t /∈ Ts

u =Ccxc +Dcŷq

y =Cpxp

τs(t
+) = 0

η(t+) = gs(y,e,η)

}
t ∈ Ts \Ty

e(t+) = eq(t)

η(t+) = gy(y,e,η)

τs(t
+) = 0

τy(t
+) = 0





t ∈ Ty

(14)

Let ξ := (x,e,η,τs,τy) ∈ X be the concatenation

of the state variables, with X = R
nx ×R

ny ×R>0 ×
R>0 ×R>0. Then, we obtain the hybrid dynamical

system

ξ̇ = F (ξ) ξ ∈ Cs

ξ+ ∈ G(ξ) ξ ∈ Ds,
(15)

where the flow set Cs and the jump Ds are defined as

Cs :=
{

ξ ∈X : τs ∈ [0,T ]
}

Ds :=
{

ξ ∈X : τs = T
}
,

(16)

where T > 0 is the periodic sampling interval and to

be designed. We also define the jump set Dy ⊂ Ds to

identify the transmission instants as follows

Dy :=
{

ξ ∈ X : τs = T and gs(t)6 0
}
. (17)

It is evident from (16) and (17) that mathcalDy ⊂ Ds.

The flow map F (ξ) and the jump map G(ξ) in (15)

are given by

F (ξ) =




A1x+B1e

A2x+B2e

Ψ(y,e,η)

1

1




(18)

and

G(ξ) :=






{
Gs(ξ)

}
ξ ∈ Ds

{
Gy(ξ)

}
ξ ∈ Dy

{
Gs(ξ),Gy(ξ)

}
ξ ∈ Ds ∩Dy

/0 ξ /∈ Ds ∪Dµ

(19)

with

Gs(ξ) :=




x

e

gs

0

τy



, Gy(ξ) :=




x

0

gy

0

0




(20)

The system flows on Cs when τs 6 T , i.e., between

two periodic instants, otherwise the system experi-

ences a jump. The jump map in (20) can be inter-

preted as follows. When ξ ∈ Ds \Dy, only the vari-

ables τs and η are updated but no transmission is gen-

erated. When ξ ∈ Dy, implying that the triggering

condition is violated, the variables e,η,τs,τy are ud-

pated.

5 MAIN RESULT

We present here the main result. First we state the

following lemma on system (15).

Lemma 1. Consider system (15). If there exist

εx,εy,γ > 0 and a positive definite symmetric real ma-

trix P such that


AT
1 P+PA1+ εxInx +AT

2 A2 + εyC̃
T
p C̃p PB1

BT
1 P −γ2

Ine



6 0,

(21)

where C̃p := [Cp 0], then the Laypunov function

candidate V (x) = xT Px satisfies, for all e ∈ R
ne and

almost all x ∈ R
nx

〈∇V (x),A1x+B1e〉 ≤−εx|x|
2 −|A2x|2 − εy|y|

2

+γ2|e|2.

(22)

�

Proof of Lemma 1.

Let V (x) = xT Px. Consequently, it holds that, for

all e ∈ R
ne and almost all x ∈ R

nx

〈∇V (x),A1x+B1e〉 = xT (AT
1 P+PA1)x

+xT PB1e+ eT BT
1 Px.

(23)
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By post- and pre-multiplying LMI (21) respectively

by the state vector (x,e) and its transpose, we obtain

xT (AT
1 P+PA1)x+ xT PB1e+ eT BT

1 Px ≤−εxxT x

−xT AT
2 A2x− εyxTC̃T

p C̃px+ γ2eT e

(24)

which implies

xT (AT
1 P+PA1)x+ xT PB1e+ eT BT

1 Px ≤

−εx|x|
2 −|A2x|2 − εy|C̃px|2 + γ2|e|2

=−εx|x|
2 −|A2x|2 − εy|y|

2 + γ2|e|2

(25)

and the conclusion of Lemma 1 holds. �

Lemma 1 establishes an L2-gain stability property

for the system ẋ = A1x+B1e from |e| to (|A2x|, |y|),
see also e.g. (Carnevale et al., 2007; ?; Dolk et al.,

2017).

5.1 Event-Triggering Mechanism

We define W (e) := |e|, then n view of (15), it holds

that for all x ∈ R
nx and almost all e ∈ R

ne

〈∇W (e),A2x+B2e〉6 |A2x|+L|e|, (26)

where L := |B2|.
The dynamics of the triggering function η in (12)

is defined by the functions Ψ, ηs and ηy, which are

given by

Ψ(y,e,η) := εy|y|
2 −ϑη

gs(y,e,η) := γ(λ− 1
λ )|e|

2 +η

gy(y,e,η) := γλ|e|2 +η

(27)

where λ ∈ (0,1), λ̃ ∈ [λ,λ−1), γ̃ := γ2 + γ2λ̃2 + 2γλ̃L̃

with L̃ := L+ ν for any ν > 0 and L = |B2|, and the

constant γ comes from Lemma 1. The sampling pe-

riod T is designed as the maximally allowable trans-

mission interval (MATI) of time-triggered systems

(Carnevale et al., 2007), which leads to

T (λ, λ̃,γ, L̃) :=






1
L̃r

arctan

(
r(1−λλ̃)

γ
L̃
(λ+λ̃)+1+λλ̃

)
γ > L̃

1
L̃

1−λλ̃
λλ̃+λ+λ̃+1

γ = L̃

1
L̃r

arctanh

(
r(1−λλ̃)

γ
L̃
(λ+λ̃)+1+λλ̃

)
γ < L̃

(28)

with r :=

√∣∣∣( γ
L̃
)2 − 1

∣∣∣. Note that when λ̃ = λ in (28),

we recover the MATI bound of time-triggered con-

trollers in (Carnevale et al., 2007). By designing the

sampling period T as the MATI bound, we opt to fur-

ther reduce the amount of the transmissions by using

the PETC mechanism.

Remark 1. It is important to note that in view of (27),

we have that η̇(t) = εy|y|
2 −ϑη > −ϑη. Moreover,

since η(t) is reset to gs(y,e,η) when gs(y,e,η) > 0

and η(t) is reset to gy(y,e,η), which is strictly pos-

itive, when gs(y,e,η) 6 0. Consequently, by using

the comparison principle, it hold that η(t)> 0 for all

t ∈ R>0. This property is crucial in establishing the

stability of the closed-loop system as will be shown

later.

5.2 Stability Result

We obtain the following result.

Theorem 1. Consider system (15) with the flow and

the jump sets as in (16). Suppose that the LMI (21) in

Lemma 1 is satisfied. Then, there exists a K L func-

tion β such that any solution ξ(t, j) ∈ X satisfies

|ξ(t, j)| 6 β(|ξ(0,0))|, t + j). (29)

�

The proof is omitted due to space limit. Theorem

1 implies that the closed-loop system (15) is globally

asymptotically stable under the proposed PETC.

Remark 2. It is clear from the proposed PETM (13)

that there exists a tradeoff between the periodic sam-

pling interval T and the generated amount of trans-

missions. That is, when the value of T is enlarged, the

generated number of transmissions will be increased

and vice versa. This tradeoff can be adjusted by the

user to satisfy desirable performance of the PETC.

6 ILLUSTRATIVE EXAMPLE

Consider the following LTI control system

ẋp =



 0 1

−2 −1



xp +



 0

−1



u, y = xp1

ẋc =


0 −2

0 −3


xc +


0

1


 ŷq, u =

[
−1 −2

]
xc

(30)

We develop the hybrid model (15) as described in

Section 4. We check the required conditions of

Lemma 1 and found that the LMI condition (21)

is feasible and we obtain the following values εy =
0.7861, L = 0, γ = 3.7634. By setting λ = 0.5,

λ̃ = 0.6 and ν = 0.01 and substituting in (28), we get

T = 0.1204 and γ̃= 23.778. Finally, we pick ϑ= 0.01

and thus all parameters of the PETM (27) are set.

We examine the approach on MATLAB simula-

tion with the initial conditions xp(0,0) = (−20,20),
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xc(0,0) = (10,−10), e(0,0) = 0, η(0,0) = 0,

τs(0,0) = 0, τy(0,0) = 0, µ(0,0) = 0.35, conse-

quently, the output magnitude |y(0,0)| initially is

within the range (ℓin µ(0,0), ℓout µ(0,0)).
By running the simulation for 40 seconds, the

obtained minimum and average inter-transmission

times were found to be τmin = 0.1295 and τavg =
0.4298, respectively. As expected, the minimum

inter-transmission time τmin is typically equal to the

periodic sampling interval T , however, the average

inter-transmission time τavg is larger than T , which

supports our analysis and justifies the benefit of the

approach compared to periodic sampling. The closed-

loop response is shown in the figures below.

0 5 10 15 20 25 30 35 40 45 50
-20

-10

0

10

20

30

Figure 2: State trajectories of the plant and the controller.

Figure 2 shows that the plant and the controller

states converge asymptotically to the origin as ex-

pected.

0 5 10 15 20 25 30 35 40 45 50

-6

-4

-2

0

2

4

Figure 3: Sampling induced errors.

Figure 3 shows the evolutions of sampling

induced-errors e(t), which is reset to zero at each

transmission instant as explained.

Figure 4 shows the trajectory of η(t), where we

note that η(t)> 0 as stated in Remark 1.

The periodic time instants and the transmission in-

stants are shown in Figure 5. We note that the trans-

mission instants generated by the PETC is much less

than the periodic sampling instants, which supports

the effectiveness of the proposed approach.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 4: Evolution of η(t) for first 3 sec.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

Figure 5: Periodic and transmission instants.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 6: Periodic and transmission instants for first 4 sec.

A zoom in on the first 4 seconds for the periodic

and the transmission instants is shown in Figure 6 to

clearly highlight the fact the event-triggering condi-

tion is only verified at periodic sampling instants and

not in continuous-time.

7 CONCLUSION

We studied the problem of periodic event-triggered

control for linear systems based only on the output

measurement. The proposed solution is well adapted

to practical implementation since the event-triggering

mechanism is checked only at periodic time instants

rather than continuous-time verification. The problem

is formulated as a hybrid dynamical system to truly

describe the dynamic behaviour. By using appropri-
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ate Lyapunov function, we show that the closed-loop

stability is ensured while automatically ruling out the

Zeno phenomenon. The effectiveness of the approach

was proven by numerical simulation.

Future work includes extending this approach to

nonlinear plant models and the investigation of dif-

ferent implementation scenarios such as multi-agent

systems and distributed control architectures.
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