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The global increase in population necessitates enhanced food security, yet current agricultural practices are in-
adequate in feeding everyone and are detrimental to the environment. Consequently, agriculture faces the task
of increasing production while minimizing resource usage and prioritizing sustainability. To assist farmers,
new technological tools using Al, Robotics and IoT have been developed in a new field called Smart Farming.
Unfortunately, these tools are primarily employed in unsustainable farming practices, such as mono-cropping.
However, sustainable methods like Agroecology exist, which involve observing how plants interact with their
environment to devise crop management strategies that work harmoniously with nature, requiring minimal re-
sources and ensuring sustainability. In this paper, we propose an Internet of Things (IoT) platform that utilizes
an ontology and a set of rules to provide farmers with recommendations for optimizing crop development
while adhering to agroecology principles. This platform employs Knowledge-based reasoning to correlate
crop requirements with local environmental data obtained through a wireless sensor network deployed on the
farm. It can suggest crop layouts, crop calendars, detect relevant events, and manage irrigation. Our sys-
tem has been tested in a simulated environment and yielded promising results, leaving ample room for future

improvements and developments.

1 INTRODUCTION

1.1 Context

By 2050, it is projected that the global population
will grow to approximately 9 billion, according to
estimates. In order to ensure food security world-
wide, the Food and Agriculture Organization (FAO)
of the United Nations suggests that food production
needs to increase by approximately 60% by that time
(Ranganathan et al., 2018). In response to this grow-
ing concern, the agricultural industry is being trans-
formed by Smart Farming (SF) technologies, also
known as Precision Agriculture (PA), with the aim
of enhancing productivity and sustainability. These
SF tools utilize information and communication tech-
nologies (ICT) like Artificial Intelligence (Al), Inter-
net of Things (IoT) platforms, and Robotics to of-
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fer modern and sustainable solutions (Walter et al.,
2017).

10T plays a crucial role in revolutionizing agricul-
tural practices. IoT is a network of physical objects
or devices that are embedded with sensors, actuators
and connectivity capabilities, allowing them to col-
lect and exchange data with other devices and systems
over the internet. After the perception of data, they
are processed with different algorithms using big data
analytics methods and Al to make a decision about
actions to implement. This interconnected system en-
ables real-time monitoring, control, and automation
of various processes and tasks (Elijah et al., 2018).
One use case example involves the deployment of IoT
sensors in crop fields. These sensors can collect data
on soil moisture levels, temperature, humidity, and
other environmental parameters. The collected data
is transmitted to a central platform or system via the
Internet. Farmers and agricultural experts can then ac-
cess this data remotely and make informed decisions
about irrigation, fertilization, and pest control. For ex-
ample, an [oT platform can decide to open or not an
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Figure 1: Simple IoT platform for Smart Farming.

irrigation valve regarding the value of the soil mois-
ture sensor attached to it as depicted in figure 1. By
leveraging IoT in this manner, farmers can optimize
resource usage, improve crop yields, and reduce en-
vironmental impact through precise and data-driven
farming techniques (Misra et al., 2020). IoT plat-
forms commonly handle more substantial quantities
and diverse arrays of data, encompassing locally ac-
quired data from sensors and remotely acquired data,
such as satellite observations. It is also notewor-
thy to acknowledge the increasing usage of emerging
smart sensors that incorporate Al analysis. These ad-
vancements enable the direct interpretation of com-
plex data, such as sound or images, at the source of
data collection (Chollet et al., 2022).

Regrettably, IoT, similar to numerous Smart
Farming techniques, is predominantly employed to
enhance production using fewer resources while dis-
regarding the ecological consequences of inherently
unsustainable farming practices (Bronson, 2018).
Hopefully, true sustainable farming method exist such
as Agroecology. Agroecology is an agricultural tech-
nique that relies on careful observation of the crop-
growing environment to collaborate with it rather than
oppose it (Altieri, 2018). In particular, it encom-
passes various techniques such as crop rotation to
safeguard against soil nutrient depletion (Ball et al.,
2005), intercropping to encourage beneficial plant in-
teractions and deter pest and insect development (Ge-
bru, 2015), and the utilization of genetically diverse
crop varieties that are well-suited to particular cli-
matic conditions (Hajjar et al., 2008). An actual illus-
tration of Agroecology can be seen in the ancient agri-
cultural practice known as the Three Sisters farming
strategy, which was discovered by Native Americans

Figure 2: Three sisters planting method.

thousands of years ago. Remarkably, this method
continues to be employed by a significant number
of rural small-holder farmers in South America to-
day (Lopez-Ridaura et al., 2021). It involves inter-
cropping three main crops: corn (maize), beans, and
squash. These crops are grown together in a mutu-
ally beneficial way. The corn provides a trellis for the
beans to climb, while the beans enrich the soil with
nitrogen, a fertilizer, through nitrogen fixation. The
squash serves as a ground cover, shading the soil and
reducing weed growth while retaining moisture. The
process is depicted in Figure 2. This interdependence
among the three crops creates a sustainable and pro-
ductive farming system. Therefore, the core princi-
ples of agroecology are observation and interpretation
through knowledge of the environment and plant bi-
ology. Those are difficult processes to implement in
real-life scenarios for farmers who wish to transition
to sustainable farming as they require an important
amount of time and workload.

1.2 Proposal

To facilitate the transition of farmers towards agroe-
cology, our research endeavors to deploy an Internet
of Things (IoT) platform to acquire an extensive range
of environmental data from various sources. This en-
compasses the utilization of both conventional and in-
telligent sensors for local data acquisition, as well as
accessing global weather databases for remote data
retrieval. Subsequently, the IoT platform undertakes
the task of interpreting these data in accordance with
agroecological principles, thereby proposing action-
able measures to farmers for effective farm manage-
ment. For example, sensor management (layout and
maintenance), crops spatial distribution, rotation, pro-
visional schedule, irrigation procedure, and event de-
tection (pest development). In this paper, we take
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Figure 3: Overall view of the IoT platform.

a focus on the decision process. For the system to
make the best decision, it needs to have knowledge
about agroecology, crops, and sensors while manag-
ing a vast amount of data. Knowledge is defined as
the explicit functional associations between informa-
tion and/or data items. To allow computer systems
to understand agroecology, we need to use knowl-
edge engineering, which is the process of develop-
ing knowledge-based systems in a field (Kendal and
Creen, 2007). Knowledge Engineering, also known
as Knowledge Representation and Reasoning (KRR),
proposes numerous tools to achieve the desired goals,
such as ontology. Ontologies have demonstrated their
effectiveness in handling organized and structured
data. Consequently, the primary objective of this
study revolves around the establishment of a knowl-
edge base (KB) utilizing an ontology for Agroecology
IoT platforms. The performance of this knowledge
base will be assessed through the examination of var-
ious case-study scenarios. The overall view of the IoT
platform is depicted in figure 3.

1.3 Structure of the Paper

Section 2 of this paper is dedicated to the definition
of knowledge engineering and a brief state of the Arts
for Knowledge-base regarding agriculture and IoT.
The third section describes the architecture of our sys-
tem and the ontology-building process. Afterward,
we’ll use our ontology in different use-case scenar-
ios described in section 4. Finally, we will share our
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conclusion and future work orientation in section 5.

2 RELATED WORK

2.1 Definition

Knowledge Engineering refers to the process of de-
signing, creating, and managing knowledge-based
systems. It involves capturing, representing, orga-
nizing, and reasoning with knowledge to develop in-
telligent systems that can perform tasks, make deci-
sions, and solve problems. Knowledge is base on data
and information as depicted in figure 4 (Kendal and
Creen, 2007).

To avoid discomfort, put a coat
Knowledge on

Information Itis cold outside

Data Temperature is 5°C

Figure 4: Data, information, and Knowledge.

Ontology, on the other hand, plays a significant
role in Knowledge Engineering as a key component
of knowledge representation. An ontology is a formal
and explicit specification of concepts, relationships,
and properties within a particular domain. It serves
as a shared vocabulary or conceptual framework that
enables effective communication and understanding
among humans and computer systems. In Knowledge
Engineering, ontologies provide a structured and stan-
dardized way to represent and organize knowledge.
They define the entities, their attributes, and the rela-
tionships between them, allowing for clear conceptual
modeling and knowledge representation. By defining
a common vocabulary and formal semantics, ontolo-
gies facilitate knowledge sharing, integration, and in-
teroperability between different systems and domains.
A fully developed and populated ontology, containing
a comprehensive collection of individuals, rules, and
properties, is commonly referred to as a knowledge
base. In technical terms, the knowledge base con-
sists of two components: the Tbox (Terminological
Box) and the Abox (Assertion Box). The Tbox repre-
sents the ontology itself, where information is stored,
while the Abox encompasses the rules and properties
associated with it. Ontologies enable intelligent rea-
soning and inference over the represented knowledge.
They allow for the application of logical rules and au-
tomated reasoning techniques to derive new knowl-
edge or make deductions based on existing knowledge
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through the use of a reasoner. A reasoner is a tool that
enables the deduction of logical conclusions based on
a given set of facts, thereby facilitating the classifi-
cation process within an ontology. For instance, if
we define an instance V as a Car, and the class Car
is a subclass of Vehicle, the reasoner can infer that
V is also a Vehicle. In more intricate scenarios, cer-
tain reasoners can incorporate SWRL rules (Semantic
Web Rule Language) (O’connor et al., 2005). SWRL
is a logic description language that allows the com-
bination of diverse rules to construct more intricate
axioms. The official documentation provides a basic
example to define the syntax: : hasParent(?x1,?7x2)
“:hasBrother(?x2,?x3) then :hasUncle(?x1,?x3) . By
combining the two axioms, namely, :hasParent and
:hasBrother, the hasUncle relationship can be applied
to individuals, thus establishing the individual X1 as
the child of X2 and the nephew of X3. This reasoning
capability helps in solving complex problems, mak-
ing intelligent decisions, and generating logical out-
puts from input information (Staab and Studer, 2010).

2.2 State of the Art

In this section, we will highlight various Knowledge
Bases that mainly utilize ontologies and are specifi-
cally designed for the domains of 10T, agriculture, or
both.

2.2.1 Knowledge Base for IoT

The widespread presence of smart devices in Inter-
net of Things (IoT) applications has led to a signifi-
cant challenge in achieving interoperability due to the
diverse and heterogeneous nature of these “’things.”
The other issue with IoT is the vast amount of data
that have to be fusion together to make an effective
decision. Both of these issues can be solved with
Knowledge Engineering and ontologies. This area
of research has been widely studied over time, and
good surveys have been done by the authors in (Szi-
lagyi and Wira, 2016), (Bajaj et al., 2017), (Graf
et al., 2019). Two notable observations can be drawn
from the literature: Firstly, ontologies developed in
the IoT domain often focus on specific application
areas, addressing the unique requirements and char-
acteristics of those domains. Secondly, a signifi-
cant portion of these ontologies is built upon the Se-
mantic Sensor Network recommendation proposed by
the World Wide Web Consortium (W3C) (Neuhaus
and Compton, 2009). Briefly, in a traditional sen-
sor network, sensors collect raw data and transmit
it to a central processing unit for analysis. How-
ever, in a semantic sensor network, additional meta-
data and semantic annotations are associated with the

sensor data. This metadata provides contextual infor-
mation about the data, such as the sensor type, lo-
cation, time of measurement, and the observed phe-
nomenon but also maintenance data such as battery
level or firmware version. By incorporating seman-
tic annotations, SSNs enable enhanced data interpre-
tation, discovery, and integration.

2.2.2 Knowledge Base for Agriculture

Knowledge in Agriculture has been a widely explored
area of research. Their main aim is to model botanical
knowledge about cultivated crops, and environmen-
tal knowledge about various ecosystems and farm-
ing practices. Firstly there is general purposes on-
tology: The Food and Agriculture Organization of
the United Nations (FAO) developed AGROVOC,
which is recognized as the most extensive and com-
prehensive semantic resource in the agricultural do-
main (Caracciolo et al., 2013). AGROVOC serves as
a controlled vocabulary, encompassing 35,000 con-
cepts and 40,000 terms. Its scope extends beyond
agriculture to include domains such as food, nutri-
tion, fisheries, forestry, and the environment, aligning
with the FAO’s wide-ranging purview. AGROVOC
is a multilingual resource, available in 27 languages,
including English, Arabic, and Chinese. Furthermore,
AGROVOC adheres to the Linked Open Data Schema
(LOS), ensuring compatibility with modern data inte-
gration practices. Despite being utilized in numerous
case studies, AGROVOC exhibits certain limitations.
For instance, it lacks the ability to identify specific
types of fertilizers, diagnose crop diseases, or clas-
sify soil types, which restricts its coverage across var-
ious domains. Furthermore, while AGROVOC serves
as a vocabulary system or thesaurus, it falls short of
being a complete ontology. Other noteworthy gen-
eral purposes agricultural ontologies are the Crop on-
tology (Shrestha et al., 2011) , CIARD Ring (Pesce
et al., 2010), Planteome (Cooper et al., 2018). To
explore this domain further, the authors in (Drury
et al., 2019) have proposed a comprehensive survey.
Apart from general purpose ontology, a large num-
ber of ontologies have been constructed for specific
domains within the Agricultural scope, like the pota-
toes ontology which focuses on the cultivation of this
vegetable from seeding to distribution (Haverkort and
Top, 2011) or the wheat ontology to model its pheno-
type (Nédellec et al., 2020). Other specific ontologies
focus on agricultural practices like vertical farming
(Sivamani et al., 2014), or aquaponics (Abbasi et al.,
2022) or even general organic farming in (Abayomi-
Alli et al., 2021). Most of those specific ontologies,
can be found in a large repository called Agroportal
(Jonquet, 2017).
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2.2.3 Knowledge Base for Agricultural IoT
Platforms

The objective of knowledge bases in the context of
IoT and agriculture is to establish connections be-
tween information relative to IoT device hardware
and data, and agricultural knowledge necessary for
effective farm management. Two notable studies,
conducted by the authors in (Bhuyan et al., 2022)
and (Ngo et al., 2018), present comprehensive sur-
veys of such ontologies. One prominent ontology
widely used in Agricultural IoT is AgOnt (Hu et al.,
2011), which introduced a foundational model for
this domain. Additionally, the recently developed
OAK system proposes a comprehensive knowledge
base, demonstrating promising results but highlight-
ing scalability limitations (Ngo et al., 2020). Fur-
thermore, numerous use-case-specific IoT and agri-
cultural knowledge bases exist, catering to specific
needs such as managing orchid farms (Kaewboonma
etal., 2020) or coffee plantations (Suarez et al., 2022).

2.3 Limitation

Knowledge-base systems are extensively employed in
the fields of IoT and agriculture primarily for sensor
data management. These systems facilitate the fusion
of diverse data sources and enable the control of fun-
damental systems like irrigation or ventilation. How-
ever, there is a notable scarcity of applications that
combine plant phenotype ontologies with sensor data
to make informed decisions. In the meantime, our
research indicates that only one ontology, proposed
by the authors in (Soulignac et al., 2019), focuses
on agroecology principles. Regrettably, we could not
identify an ontology that specifically integrates both
agroecology and IoT aspects. Hence the purpose of
this paper.

3 ARCHITECTURE PROPOSAL

3.1 Scenario

A farmer desires to initiate the implementation of
Agroecology in one of his fields. In order to do so,
he must cultivate crops that align with the ecosys-
tem and climate of the field and its surroundings. To
make the best decision about what to plant, where to
plant and when to plant, the farmer interrogate our
Knowledge Base named Permonto, which focuses on
Agroecology. By providing the field’s location, di-
mensions, and optionally the desired crop types, the

194

Q

'w' Location
1. P

o 1%
Size

Ask
Type of
crops
PermOnto
!‘-\\ ) “~Manage
Propose Detect -
Plant and Irrigation
hardware Events
layout b
- .
Sensor 3 s 4*-’-[
o s & %
&)
Plantation
® 6O
P Harvest
/Sensorx, time
" N ) A
@ @ <irigation™ $

Figure 5: Permonto platform.

farmer queries the system. Subsequently, the sys-
tem retrieves climate data for the specified location
over a certain period of time, as well as information
about the soil type in the region on different server
over the internet. Based on these details, the system
suggests an intercropping arrangement that adheres to
Agroecology principles by proposing the best asso-
ciations. Simultaneously, the system recommends a
layout for the hardware, meaning the irrigation valves
and the sensors to gather additional data about the lo-
cal ecosystem. Once the crops are planted and the
necessary hardware is set up, the system manages
irrigation precisely in accordance with the climate
and the specific requirements of each plant during
their growth. Additionally, intelligent sensors detect
various events and propose corresponding measures.
Leveraging the available data, the system also predicts
the optimal harvest time for each crop type. Finally,
at the conclusion of a farming cycle, the system pro-
poses a new layout for crops and hardware. This pro-
posal takes into account both remote data and the lo-
cally measured data, and previous crops layout, en-
abling the system to continuously improve itself with
each iteration of the growing period.
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3.2 Environment Development

Our work revolves solely around software, and the
hardware components are regarded as theoretical in-
stances for now. We used a computer with 16 GB
RAM and a I7 8th generation processor running
Ubuntu 20.04. To construct our ontology, we used
Protégé 5.5 Software. Protégé software offers a com-
prehensive and adaptable platform for ontology de-
velopment. Its user-friendly interface, flexibility, ro-
bust features, collaborative capabilities, open-source
availability, and seamless integration make it the ideal
choice for projects of any size or complexity (Musen,
2015). We used the Ontology Web langage (OWL)
with SWRL for our ontology. You can find our ontol-
ogy on the Agroportal database. To interact with our
Ontology we developped a simple application using
Python and notably Owlready?2 library. It is a module
for ontology-oriented programming in Python 3. For
more comprehensive details about our project and on-
tology, including aspects that may not be explicitly
covered here, you can visit our GitHub page. There,
you will find additional sources and information that
provide a deeper understanding of our system.

3.3 Structure of the Ontology

In this part we will describe the Ontology we cre-
ated. It is depicted in figure 6. Like any ontology,
it is an explicit but partial representation of a targeted
conceptualization. The assumptions made for our on-
tology may therefore be valid in certain contexts and
not in others where the ontology is not intended to
be used. This is why we refer to ontological com-
mitment to indicate the assumptions made in an on-
tology and the implicit adherence to these assump-
tions by the users of that ontology (Kendal and Creen,
2007). Our goal in this endeavor is to develop an
ontology that enables the inference of relationships
between plants based on agroecology principles and
data gathered from sensors. This ontology is centered
around three primary components: the farm and its
constituent growing fields, the plants, and the IoT de-
vices.

3.3.1 Farm

The class farm regroup the farmers, the field, and
the agricultural procedure. Farmers are regarded as
the key agents responsible for executing an action ef-
fectively. The agricultural procedure class describes
the fundamental actions that farmers have at their
disposal, such as planting, harvesting, and apply-
ing_countermeasures in response to detected events.
The field class ultimately symbolizes an individual

Figure 6: Global representation of Permonto and its main
classes.

plot of land within a farm. A field possesses a location
indicated by GPS coordinates and is associated with
various environmental data. This includes local data
obtained from sensors, such as temperature, humid-
ity, wind_speed, rain_level, soil_type, sun_exposure,
ground_temperature, and ground_humidity. Addition-
ally, remote data pertaining to the same parameters
is retrieved from a global weather database as long
as predicted_weather data. Furthermore, the field en-
compasses the crops and IoT devices described in the
remaining sections of the ontology.

3.3.2 Plants

Within the plant class, there are four subdivi-
sions: vegetable, aromatic, flower, and Agrocecol-
ogy_interaction. The flowers, aromatics, and vegeta-
bles subclasses provide detailed information about the
biological traits of plants. This includes their respec-
tive families, water requirements, temperature range
(minimum and maximum), preferred soil types, and
other significant characteristics. These characteris-
tics, provided as examples, have already been incor-
porated into numerous ontologies related to plant bi-
ology, such as AGROVOC, and are readily accessi-
ble for reference. Our primary emphasis was on the
Agroecology interaction class, where we aimed to
model the advantages and disadvantages of each plant
in relation to various ecosystem parameters. This was
done to enable our system to identify the most fa-
vorable plant interactions. One specific interaction
we focused on was the “three sisters” associations, as
mentioned in the paper’s introduction. By assigning
properties of need and provide to the plants, we can
depict their positive influence on the surrounding en-
vironmental factors. By implementing this approach
across a wide range of plant species, our system can
independently uncover valuable plant interactions on
a large scale. The interaction of three sisters is mod-
eled in Figure 7.

Another instance of interaction we modeled was
the pest protection mechanism. For instance, tomato
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plants are highly susceptible to aphids, which are
small insects that feed on their leaves. However,
marigold flowers act as a natural repellent for aphids.
By representing these facts through properties such
as menaced_by and protect_from on the Aphids class,
as depicted in Figure 8, our system can deduce that
planting tomatoes alongside marigold would offer
protection against aphids.

~
| ‘P menaced_by protect_from @
—a

Marigoid Flower

Tomatoe plant Aphid

Figure 8: Aphids relations.
3.3.3 IoT Devices

The final major class in our ontology pertains to
loT_device. We have incorporated four device types:
ground_sensor, weather_station, smart_sensor, and ir-
rigation_valve. Each device is associated with a spe-
cific location within the farm and operates on battery
power. The weather stations provide information on
air temperature, air humidity, wind speed, and overall
farm rainfall levels. The ground sensors measure sun
exposure, soil temperature, and ground temperature
within a 5-square-meter radius. Each ground sensor
is linked to specific crops based on its location in the
field. The smart sensors observe crops within a desig-
nated 10m radius and can identify the development
of pests (such as aphids or slugs) or diseases (like
mildew or Botrytis). The smart sensor also has two
extra parameters, the firmware version and the accu-
racy of the inferences. Indeed, as explained by the au-
thors in (Chollet, 2022), Smart sensors need firmware
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over-the-air update when their accuracy drops below
a certain point. The irrigation valve also has an effec-
tive 20m radius and is similarly connected to specific
crops.

3.4 Data Fusion

Once our ontology is populates with individuals sen-
sors plants and field, the value from the sensor will be
stored in the different classes. Doing so we perform
Data fusion. It involves combining data from multiple
sources to create a comprehensive and accurate repre-
sentation of information. By integrating diverse data,
such as sensor readings or database information, data
fusion improves accuracy, completeness, situational
awareness, and robustness. It enables the discovery
of hidden patterns and correlations, leading to better
decision-making (Khaleghi et al., 2016).

3.5 Rules Implementation

Once the Agroecology model, which qualifies the
data, has been incorporated into the ontology, it be-
comes necessary to establish rules to standardize the
ontology. These rules serve as the basis for automat-
ing the farming procedure. An example of a rule we
implemented pertains to the irrigation process. In
this rule, plants and sensors are linked to an irriga-
tion valve based on their location. If a sensor de-
tects that the soil’s water level is below the required
amount for a specific plant, the valve will open until
the sensor detects the appropriate water level. Ad-
ditionally, an extra layer of reasoning is included to
consider the rain prediction parameter sourced from a
weather database for the next 24 hours. If the predic-
tion indicates a high likelihood of rain, the irrigation
valve will not be opened. Another example of rule we
implemented was the ones regarding the smart sen-
sors. When a pest development is detected, on one
plant, the farmer is requested to apply a counter mea-
sure on it. On the hardware side, if the battery of a
sensors drops below a certain threshold, farmer is re-
quested to replace it. The rules we have written do not
rely on exact values but rather on fuzzy values, which
are based on the principles of fuzzy logic (Chen et al.,
2001). This means that parameter values are qualified
using fuzzy notions such as “’strong,” ”very strong,” ’a
little bit,” "little,” etc. These fuzzy values are utilized
to infer knowledge from the written rules, allowing
for a more nuanced and flexible approach to reason-
ing.
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4 USE-CASE
EXPERIMENTATION

4.1 Simulator Building

To validate our model, we created a straightforward
command-line interface (CLI) tool. This tool allows
us to input data and obtain query results regarding var-
ious procedures. By utilizing this CLI tool, we can as-
sess the effectiveness of our model based on the gen-
erated outputs.

4.2 Irrigation Management

For this experiment, we selected two fields: one
planted with tomatoes and the other with potatoes.
Each field is equipped with a single irrigation valve
responsible for managing the water supply to all the
plants within it. Additionally, there are four ground
sensors in each field, strategically placed in quarters.
The layout can be visualized in the provided figure9.

Figure 9: Irrigation procedure.

In the first scenario, we observed that the mea-
sured ground soil moisture level on all the sensors
was low, and the weather prediction for the next 24
hours indicated very_low precipitation. As a result,
we noticed that only the irrigation valve in the toma-
toes field opened. This behavior is because toma-
toes require water when the available moisture level is
low, while potatoes necessitate water when the level
is classified as very_low.

In a different configuration, we adjusted half of
the ground sensors in the potato field to a very_low
moisture level, while the other half remained at a low.
As expected, the irrigation valve only opened for the
corresponding half of the potato field.

Lastly, we set all the ground sensors to a very_low
moisture level, but the “rain_prediction” parameter
was set to very_high. As expected, no irrigation valve
opens as they wait for raining.

4.3 Pest Development

In this scenario, we deployed a smart_sensor_camera
to monitor a lettuce field and another one positioned
in front of a tomato field. During the initial test, we
simulated a pest_detection_event specifically for slugs
in the lettuce field. Our system’s response consisted
of two actions: first, it prompted the farmer to remove
the slugs and apply organic slug poison, and secondly,
it recommended planting Lavender around both the
lettuce and tomato fields. This recommendation was
based on the high susceptibility of both crops to slug
infestations, and Lavender’s natural repellent proper-
ties against these insects. This process is described in
figure 10.
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Figure lO:JAPeSt de;elopment.

4.4 Firmware Update over the Air for
Smart Sensors

We also performed a test to evaluate the accuracy of
the smart sensors. In this test, we intentionally set the
”accuracy” parameter of a smart sensor to an “insuf-
ficient” level. As a result, the system automatically
initiated a Firmware Update Over The Air (FUOTA)
procedure, as previously explained.

4.5 Calendar Estimation

To assess the capability of our system in determining
the optimal planting periods for different crops based
on farm location, we conducted simulated tests in two
cities: Marseille in the south of France and Lille in
the north. We queried the system to determine the
ideal timing for planting tomatoes in each location.
The system retrieved temperature data from previous
years for both cities and compared them against the
minimum temperature requirement for tomato plants.
Based on these parameters, the system advised initi-
ating tomato planting from early April in Marseilles
while recommending waiting until the end of May in
Lille.
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4.6 Crops Layout

In our final scenario, we aimed to demonstrate the
system’s ability to identify known beneficial plant in-
teractions based on the provided information. We re-
quested the system to propose a crop layout for a field
measuring 2m by 8m, specifying our desire to plant
corn, squash, peas, tomatoes, and basil. Utilizing the
range parameter of each plant, which represents the
space it requires on the ground, the system gener-
ated a layout map. It strategically positioned squash,
corn, and peas together to foster beneficial interac-
tions among them. Simultaneously, the system sepa-
rated the tomato field from the corn to avoid potential
competition. Instead, it recommended planting basil
alongside the tomatoes to provide shade for the soil.
By considering these factors and employing the range
parameter, the system successfully proposed a crop
arrangement that optimizes beneficial plant interac-
tions within the given field. Each plant was given by
coordinates, we represented the layout in figure 11.
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Figure 11: Crops Layout.

S CONCLUSIONS

The proposed knowledge base demonstrates promis-
ing outcomes, enabling farmers to effectively man-
age essential stages of the farming process. These
include crop layout, care tasks (such as irrigation
and pest detection), and optimal harvest timing, all
in concordance with agroecology principles. Addi-
tionally, the knowledge base facilitates the seamless
integration of IoT devices, allowing farmers to har-
ness the generated data effortlessly. Moreover, the
model possesses the capability to identify advanta-
geous crop interactions based on agroecology prin-
ciples. To advance this research, it is crucial to in-
corporate further knowledge from farmer experiences
into the ontology. Furthermore, aligning our ontol-
ogy with existing plant-related knowledge sources
like AGROVOC would enable the discovery of novel
beneficial relationships between plants, specific to
their respective environmental contexts. In conclu-
sion, this knowledge-based system holds great poten-
tial for farmers seeking to transition towards sustain-
able farming practices with the aid of IoT technolo-
gies.
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