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Abstract: The paper investigates the estimation of fundamental and harmonic components in power system signal using
stochastic estimator concept. The power system signal is approximated with a stochastic linear system model
where the phase and amplitude components are estimated using a Kalman filter (KF) and an Ensemble Kalman
filter (EnKF). The power system signal is modeled in both continuous and discrete form and then represented in
state-space approach. Simulation results show that EnKF estimates converge to KF estimates as the ensemble
size increases while reducing the computational complexity for highly-dimensional stochastic systems.

1 INTRODUCTION

Power systems have continued to evolve in recent his-
tory as designers and researchers propose different
power system architecture for commercial and mili-
tary shipboard applications. In shipboard application,
an overwhelming power system architecture proposal
has been one that integrates the propulsion (mobility)
with all mission and support load to form an inte-
grated power system (IPS) (McCoy, 2015). Further,
the IPS is improved with zonal electrical distribution
(ZED) model for increase flexibility and reliability
as the system can source power from several direc-
tions without compromising performance due to un-
foreseen system faults. However, the integration of
propulsion and service or mission load still presents
power quality challenges in shipboard non-hybrid or
hybrid-based micro-grid. These micro-grids while
AC/DC in nature, are clusters of distributed genera-
tors, active and passive devices, energy storage sys-
tem and linear/nonlinear loads (Wang et al., 2019).

Similarly, the widespread utilization of power
electronics interfaces, proliferation of nonlinear loads
and power-electronics-based industrial load devices
have led to power quality concerns due to the result-
ing harmonic disturbances (Wang et al., 2014). Har-
monics are introduced in the power system as a re-
sult of nonlinear behavior of power-electronic inter-
faces and power-electronic-based industrial load to
sinusoidal current. This flow of sinusoidal current
results in eventual non-sinusoidal periodic current.
The non-sinusoidal periodic current propagates and
interacts with the system impedance resulting in non-
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sinusoidal periodic load voltage otherwise referred to
as voltage harmonics.

In frequency domain, harmonics are spectral com-
ponents of a distorted periodic signal whose frequen-
cies are integral multiples of the fundamental fre-
quency. These harmonics are undesirable in power
system networks due to the immediate and long-
term detrimental effects on power quality such as
degradation of electrical equipment, overheating of
transformers and malfunction of metering devices
(Farzanehrafat and Watson, 2013). To alleviate or
mitigate or possibly eliminate harmonic distortion, it
is imperative to be able detect, identify and classify
them. In this work, harmonic parameter estimation
for a linearly modeled system is explored to gain an
understanding into possible harmonic identification
process.

Earlier studies of power system harmonics estima-
tion were reported in (Girgis et al., 1991), (Ma and
Girgis, 1996) while the more recent studies in har-
monics analysis and estimation have been described
in (Farzanehrafat and Watson, 2013), (Medina et al.,
2013) and (Wang et al., 2014). Girgis et al. (Girgis
et al., 1991) considered harmonics in power systems
based on optimal measurement scheme while the au-
thors in (Ma and Girgis, 1996) considered the identi-
fication and tracking of harmonic sources using KF.
In (Farzanehrafat and Watson, 2013), the researchers
investigated power quality state and three-phase state
transient state estimation. The authors in (Medina
et al., 2013), presented an overview of frequency-
domain, time-domain and hybrid frequency-time har-
monic analysis. In addition, the constraints and draw-
backs were highlighted for practical power network.
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In (Wang et al., 2014), the modeling and anal-
ysis for harmonic stability problems in AC power
electronics-based power systems were performed to
gain insights into stability issues. Harmonic elimina-
tion or mitigation approaches have been through pas-
sive, active and hybrid filtering involving integrated
passive/active filter combination. In addition, discrete
fourier transforms (DFT) and fast fourier transforms
(FFT) have been applied to harmonics filtering in-
volving stationary signal. However, both transform
techniques exhibit poor results in time-varying fre-
quency systems (Girgis et al., 1991).

Traditionally, linear system filtering application
has employed Kalman filters as optimal estimators.
EnKF has been proposed for signal processing of
harmonics in (Ray and Subudhi, 2012). The main
application for EnKF has been in geophysical sci-
ence for weather forecasting, hydrological model-
ing (Evensen, 1994) and more recently in medical
science such as epidemiology modeling (Lal et al.,
2021). EnKF is a random sampling implementation
of KF for high-dimensional, possibly nonlinear and
non-gaussian state estimation problem. It is related
to particle filter where the particle is the ensemble.
The starting point for EnKF is choosing a set of sam-
ple point (that represent an ensemble of the state esti-
mates) to capture the initial probability distribution of
the state. The final states are estimated by assimilat-
ing the observation into the state model. For a tutorial
on EnKF including application areas, see (Evensen,
2009), (Roth et al., 2017).

The contributions in this study include formula-
tion of harmonic signal in continuous and discrete
fourier series form, detailed formalized equations for
the linear estimators and performance evaluation of
the estimators. The remainder of this paper is or-
ganized as follows: Section 2 models the harmonic
signal in both discrete and continuous form. In addi-
tion, the signal system is formulated in state space ap-
proach. Section 3 describes the KF and EnKF includ-
ing the recursive equations and the algorithm while
Section 4 illustrates a simulation example as a case
study. Finally, the conclusions including future direc-
tions are given in Section 5.

2 HARMONIC SIGNAL MODEL

2.1 Signal Model

The power system harmonic signal is modeled as a
distorted waveform in both continuous and discrete
form.

2.1.1 Continuous Harmonic Signal

Let the power system harmonic signal Y (t) at time
t be modeled as a distorted waveform in continuous
form as:

Y (t) =
N

∑
i=1

Ai sin
[
wit +θi

]
+

N

∑
i=1

ωi(t), (1)

where i = 1,2, . . . ,N with N as the harmonic order.
The angular frequency, amplitude and phase angle of
the harmonic signal are given by wi, Ai and θi respec-
tively. The fundamental frequency is given as f with
wi = i2π f . For instance, w1 = 2π f , w2 = 4π f and
w3 = 6π f . The ωi(t) is the additive noise component
with ω1 = ω2 = ω3 = . . .= ωN .

2.1.2 Discrete Harmonic Signal

Similarly, let the power system harmonic signal Yk at
k time step be modeled as a distorted waveform in
discrete form as:

Yk =
N

∑
i=1

Ai sin
[
wikTs +θi

]
+

N

∑
i=1

ωik, (2)

where Ts is the sampling time. The ωik is the additive
noise component. Similarly, the angular frequency,
amplitude and phase angle of the harmonic signal are
given by wi, Ai and θi similar to the continuous signal
case. The signal is nonlinear in phase and linear in
amplitude. In parametric form, the signal in (2) can be
converted to linear form as shown below by applying
trigonometric identities giving:

Yk =
N

∑
i=1

Ai sin(wikTs)cos(θi)+Ai cos(wikTs)sin(θi)

+
N

∑
i=1

ωik.

(3)
In compact form, the signal depicted in (3) can be

represented as:

Yk = MkL+
N

∑
i=1

ωik, (4)

Mk =
[

sin(w1kTs) cos(w1kTs) . . . . . .

. . . . . . sin(wNkTs) cos(wNkTs)
]

k
,

(5)

L =
[
A1 cos(θ1) A1 sin(θ1) A2 cos(θ2) A2 sin(θ2)

. . . . . . AN cos(θN) AN sin(θN)
]T

,

(6)
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with L as the vector of in-phase and quadrature phase
components. The state equation (xk) in linear form
for the signal system (3) can be modeled as:

xk =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0
0 0 . . . 0 1




x1
x2
...

x2N−1
x2N


k

+Wk, (7)

where x1 = A1 cos(θ1), x2 = A1 sin(θ1) and x2N−1 =
AN cos(θN), x2N = AN sin(θN). The Wk is the additive
noise component. In addition, the measurement equa-
tion (zk) in linear form for the signal system (3) can
be modeled as:

zk =


sin(w1kTs)
cos(w1kTs)

...
sin(wNkTs)
cos(wNkTs)


T 

x1
x2
...

x2N−1
x2N


k

+Vk, (8)

where Vk is the additive noise component.

3 ESTIMATOR MODEL

In this section, the estimators will be modeled based
on the harmonic signal structures in earlier section.

3.1 Kalman Filter

The Kalman filter is an optimal estimator for a linear
stochastic system corrupted by gaussian noise. The
details of the Kalman filter in discrete-time format are
given as follows. Let the linear state and measurement
dynamics be given as:

xk = Φk−1xk−1 +wk−1,

zk = Hk−1xk−1 + vk−1,
(9)

where Φk−1 is the state transition matrix, Hk−1 is the
observation matrix, xk ∈R2n is the state vector, wk and
vk are gaussian random processes defined on a proba-
bility space (Ω0,F,P) where Ω0 is a nonempty set, F
is a σ-algebra of Ω0 and P is a probability measure on
(Ω0,F). The initial state vector x̂0 = E(x0) has initial
covariance matrix P0 = E

[
(x0 − x̂0)(x0 − x̂0)

T
]

and z0
is the initial output vector. The gaussian random pro-
cess wk has zero mean and covariance of E(wkwT

k ) =
Qk. Similarly, the gaussian random process vk has
zero mean and covariance of E(vkvT

k ) =Rk. The noise
processes wk, vk and x0 are assumed uncorrelated.
The following Φk−1,Hk−1 are assumed to have appro-
priate dimensions. The sequential recursive computa-
tion steps for the Kalman estimator is summarized as

follows (Crassidis and Junkins, 2012):

x̂k/k−1 = Φk−1x̂k−1/k−1,

Pk/k−1 = Φk−1Pk−1/k−1Φ
T
k−1 +Qk,

Kk = Pk/k−1HT
k−1

(
Hk−1Pk/k−1HT

k−1 +Rk−1
)−1

,

x̂k/k = x̂k/k−1 +Kk
(
zk −Hkx̂k/k−1

)
,

Pk/k =
(
I −KkHk−1

)
Pk/k−1.

(10)

The first-two lines in (10) are the prediction or time
update steps while the last-three lines in (10) are the
analysis or measurement update steps. The analysis
steps adjust the prediction steps. In this sub-section,
the estimator described was envisaged for linear ap-
plication. However the nonlinear equivalent of (9) is
given as:

xk = F(xk−1)+wk−1,

zk = G(xk−1)+ vk−1,
(11)

where F(.) and G(.) are nonlinear functions of state.
Remark: In general, extended Kalman Filter (EKF)
is applied for nonlinear gaussian systems estimation
while KF remains the optimal estimator for linear
gaussian system.

3.1.1 Algorithm 1

Data: Actual signal
Result: Amplitude and Phase
initialize the state;
initialize the covariance;
while for a fixed output size N do

estimate the state;
estimate the covariance;
compute the filter gain;
estimate the output error;
update the state with measurement;
update the covariance with measurement;

end

Algorithm 1: KF Estimator Algorithm.

3.2 Ensemble Kalman Filter

The Ensemble Kalman filter is an estimator with ap-
plication to large-dimensional nonlinear system. For
large states, maintaining the state covariance matrix
can lead to computational instabilities, thus EnKF al-
lows sample covariance instead of state covariance to
be utilized in the process. In addition, the state distri-
bution in EnKF is represented by ensemble of a fixed
size forecasted state estimates with random noise.

Let the ensemble Z0 be represented as:

Z0 =
[
x(1), x(2), . . . , x(N−2), x(N−1), x(N)

]
, (12)
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where Z0 is an n×N matrix, whose columns of Rn

are the samples from prior distribution. In terms of a
harmonic signal Xk,

Xk =
[
x(1)k , x(2)k , . . . , x(2N−2)

k , x(2N−1)
k , x(2N)

k

]
,

(13)
with Xk defined as n× 2N matrix, whose column are
Rn. As in equation (10), the sequential recursive com-
putation steps for the EnKF is summarized as follows
(Crassidis and Junkins, 2012), (Gillijns et al., 2006):

x̂(i)k/k−1 = Φk−1x̂k−1/k−1 +w(i)
k−1,

x̄k/k−1 =
1

2N

2N

∑
i=1

x̂(i)k/k−1,

z(i)k/k−1 = Hk−1x̂(i)k/k−1,

z̄k/k−1 =
1

2N

2N

∑
i=1

z(i)k/k−1,

Exk =
[
x̂(1)k/k−1 − x̄k/k−1 , . . . , x̂

(2N)
k/k−1 − x̄k/k−1

]
,

Ezk =
[
z(1)k/k−1 − z̄k/k−1 , . . . ,z

(2N)
k/k−1 − z̄k/k−1

]
,

P̂xzk =
1

2N −1
Exk(Ezk)

T ,

P̂zzk =
1

2N −1
Ezk(Ezk)

T ,

Kk = P̂xzk(P̂zzk)
−1,

ẑ(i)k/k−1 = zk/k−1 + v(i)k ,

x(i)k/k = x̂(i)k/k−1 +Kk
(
ẑ(i)k/k−1 − z(i)k/k−1

)
,

(14)

where the ensemble mean for the input and output are
given as x̄k/k−1 and z̄k/k−1. The ensemble cross co-
variance and covariance are given as P̂xzk and P̂zzk .
The perturbed measured signal is ẑ(i)k/k−1 while the
measured signal is zk/k−1. The first-four lines in (14)
are the prediction or time update steps while the last-
seven lines in (14) are the analysis or measurement
update steps. The analysis steps adjust the prediction
steps through the use of new measurement.

For additional signal parameter analysis, the am-
plitude Ai,k and phase θi,k at any time step k can be
computed following trigonometric identities as:

Ai,k =

√(
x̂2

2i−1,k + x̂2
2i,k

)
,

θi,k = arctan
(

x̂2i,k

x̂2i−1,k

)
,

(15)

where i = 1,2,3 . . . ,N −2,N −1,N.
Remark: For linear gaussian systems, EnKF esti-

mates should converge to KF estimates with increas-
ing ensemble size.

3.2.1 Algorithm 2

Data: Actual signal
Result: Amplitude and Phase
initialize the state;
initialize the covariance;
initialize the ensemble;
while for a fixed output size N do

estimate the ensemble;
estimate the perturbed output;
estimate the cross covariance;
estimate the covariance;
compute the filter gain;
update the ensemble;

end
Algorithm 2: EnKF Estimator Algorithm.

4 SIMULATION EXAMPLE

Consider the following signal harmonic which con-
sists of sinusoidal continuous signal plus random
noise given as:

X(t) = 5
[

sin(2×π× f1 × t +70◦)

+0.2sin(2×π× f3 × t +50◦)
+0.12sin(2×π× f5 × t +45◦)
+0.07sin(2×π× f7 × t +30◦)

+0.04sin(2×π× f9 × t +25◦)
]

+0.002µ(t),

(16)

where the gaussian random signal µ(t) has a mean of
zero with covariances R> 0, Q> 0. The problem is to
estimate the harmonic signal amplitudes and phases
using the KF and EnKF estimators. The following
parameters are defined:

E(wk) = 0, E(wkwT
k ) = Qk,

E(wkwT
j ) = 0;( j ̸= k), E(vk) = 0,

E(vkvT
k ) = Rk, E(vkvT

j ) = 0;( j ̸= k),

E(wkvT
j ) = 0;( j∀k), fs = 3.0 kHz,

f1 = 60 Hz, f3 = 180 Hz, f5 = 300 Hz,
f7 = 420 Hz, f9 = 540 Hz,
P0/0 = 0.002I10x10,

x0 = 5[0.34 0.93 0.12 0.15 0.08 0.08 0.06

0.03 0.03 0.01]′.
R = 3.6e−3, Q = 3.6e−3I10x10.

(17)

Figures 1, 2 and 3 show the amplitude and phase
estimation for Kalman filter-based algorithm while
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Figures 4, 5 and 6 show the corresponding amplitude
and phase estimation for the Ensemble Kalman filter-
based algorithm for the fundamental and harmonic
components of the given signal. For linear systems,
EnKF-based algorithm results converges to KF-based
algorithm results as expected for increased number of
ensembles (Roth et al., 2017).

Figures 7, 8 and 9 show the estimated signal for
both filters against the true signal and the signal fre-
quency spectrum. The frequencies can be estimated
by adjusting the formulation in (5) and (6) respec-
tively. Figures 10, 11 and 12, the mean square error
(MSE) for the signal estimation was captured for dif-
ferent ensemble sizes. From the MSE figures, it can
be observed that as the ensemble size increased, the
estimated signal mirrors the true signal.

0 0.01 0.02 0.03 0.04 0.05 0.06

Time (sec)

0

1

2

3

4

5

6

7

8

A
m

pl
itu

de
 (

p.
u)

Figure 1: Kalman Filter Amplitude Estimate for A1,A3.
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Figure 2: Kalman Filter Amplitude Estimate for A5,A7,A9.

5 CONCLUSION

In this paper, an application of Kalman filter and En-
semble Kalman filter estimator to power system har-
monic analysis was performed to get insights into sig-
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Figure 3: Kalman Filter Phase Estimate for φ1,φ3.
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Figure 4: Ensemble Kalman Filter Amplitude Estimate for
A1,A3.
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Figure 5: Ensemble Kalman Filter Amplitude Estimate for
A5,A7,A9.

nal detection in the presence of noise harmonics. A
representative signal of the distorted harmonic signal
was modeled and utilized in the simulation. The sim-
ulation study results show the effectiveness of the fil-
ter algorithm. It was observed that the error covari-
ance parameter adjustments improved estimation re-
sults.
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Figure 6: Ensemble Kalman Filter Phase Estimate for
φ1,φ3.
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Figure 7: Kalman Filter Signal of Actual (Real) and Esti-
mate.

0 0.01 0.02 0.03 0.04 0.05 0.06

Time (sec)

-8

-6

-4

-2

0

2

4

6

8

10

A
m

pl
itu

de
 (

p.
u)

Real
Estimated

Figure 8: Ensemble Kalman Filter Signal of Actual (Real)
and Estimate.

A further investigation is to consider time-varying
harmonic signal in amplitude and phase with addi-
tional estimators for evaluation. Another area of re-
search is analyzing captured data from a system im-
plementation to compare with simulation results.
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Figure 9: Single-Sided Amplitude Spectrum for the Actual
Signal.

0 0.01 0.02 0.03 0.04 0.05 0.06
Time (sec)

0

1

2

3

4

5

6

7

8

M
S

E

109

Figure 10: EnKF MSE for five (5) Ensembles.
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Figure 11: EnKF MSE for ten (10) Ensembles.
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Figure 12: EnKF MSE for fifty (50) Ensembles.
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