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Abstract: Demand forecasting is highly influenced by the non-linearity of time series data. Deep neural networks such
as long short-term memory networks (LSTM) are considered better forecasters of such data. However, the
LSTM network’s performances are subject to hyperparameter values. This study proposes a hybrid approach
to determine the optimal set of hyperparameters of an LSTM model using Bayesian optimization and genetic
algorithm. Bayesian optimization explores the search space in the direction where the improvement over the
existing solution is likely, based on a fitness function. At the same time, a genetic algorithm is an evolutionary
approach that can achieve global convergence by using selection, crossover, and mutation operators. The pro-
posed hybrid approach utilizes the strengths of both these algorithms to tune the values of the hyperparameter
of the LSTM network to minimize the forecasting error. In the dataset considered, we found that the hybrid ap-
proach reduced the forecasting error by approximately 27% compared to the Bayesian optimization approach.
Additionally, the proposed method is better than the genetic algorithm when performed independently, with a
decrease in error value by approximately 13%.

1 INTRODUCTION

The era of globalization, market competition, and
customer-centric businesses has made demand fore-
casting daunting. The accuracy of the forecast af-
fects the planning cycle of any retail business. A bet-
ter approach to forecasting can streamline the down-
stream supply chain operations and result in a bet-
ter customer experience. Recently, many predictive
approaches to forecasting have shown promising re-
sults. However, the non-linearity in demand, espe-
cially in the retail industry, multiplies the complex-
ity during predicting the target variable (Kumar et al.,
2020). Much work has been done on prescriptive
models in the areas of edge computing infrastructure
resource management (Viola et al., 2020), load fore-
casting in electricity supply (Johannesen et al., 2019),
call center arrival calls (Taylor, 2008), forecasting
of petroleum products (Sagheer and Kotb, 2019) and
others. Unlike in these scenarios, demand forecasting
in retail lacks a stable exogenous variable to guide the

forecasting process (Carbonneau et al., 2008). Thus,
it would be interesting to study and analyze the pat-
tern of demand information and minimize forecast-
ing errors while adopting advanced predictive analyt-
ics techniques. Demand forecasting for effective in-
ventory optimization falls under the purview of time-
series forecasting. Computational intelligence meth-
ods, like recurring neural network (RNN), have a spe-
cial feature of short-term memory, which utilizes the
prevailing input information to create effective future
decisions in case of time-series data (Parmezan et al.,
2019).

The prediction decisions with the memory cell
are categorized as a long short-term memory (LSTM)
network based on their strength of controlling infor-
mation for future decisions. A few issues often ob-
served in such models are variability in fitting the
trend, training procedures, selection of algorithm,
and, most importantly, the selection of the optimal
set of hyperparameters. Often confused with internal
model parameters, hyperparameters are learned be-
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fore the training phase of the actual time-series model.
They help in balancing the trade-off between model
accuracy and model execution by providing the best-
tuned parameters in a reasonable length of time.

As high model accuracy is vital, there is a need
to have the correct set of hyperparameters, the de-
sirable evaluation metric, the right choice of initial-
ization (with or without bias), etc., with reference to
hyperparameters. Theoretically, identifying hyperpa-
rameters has seen much advancement with the evo-
lution of different search techniques. For example,
random or grid search approaches have been tested
and proven to yield good results. With increasing net-
work structure, leading to a larger number of param-
eters and a larger search space, the performance of
such approaches has been observed to reduce (Feurer
and Hutter, 2019). It is interesting to combine meta-
heuristic approaches such as evolutionary-based ones
with BO, considering their abilities to reduce search
complexities, manage multimodal and nonlinear in-
put information, local and global searching strategies,
and achieve global optimum with fewer sets of tune-
able LSTM parameters. This makes the problem in-
teresting to study and motivates the research.

2 RELEVANT WORK

Several methods have been developed to address de-
mand forecasting challenges in retail. Most of them
rely on statistical intelligence methods. (Ramos et al.,
2015) designed a forecasting model based on state
space analysis and ARIMA (AutoRegressive Inte-
grated Moving Average) for a retail network for the
women’s footwear industry. The authors found that
state-space models outperform the ARIMA approach
in the case of out-of-sample data at the cost of high
computational efforts. It is also observed from past
research that the performance of statistical methods
such as ARIMA, moving averages, and exponen-
tial smoothing depreciates in the case of time series
with irregular and highly random features due to non-
linearity and data leakage (Abbasimehr et al., 2020).
Many studies have shown promising results consider-
ing advanced algorithms such as grid search, random
search, BO approach, etc. However, each technique
has disadvantages while training on large data sets.
In the grid search approach, the number of evalua-
tions increases exponentially with an increasing num-
ber of parameters making the grid search unproduc-
tive (Johnson, 2017). While in the random search,
due to higher variability and no intelligent decision-
making in selecting the optimal hyperparameters, the
method suffers from fluctuations in the cost objec-

tive, resulting in relatively slower conversion (Kumar
et al., 2021). Furthermore, gradient-based approaches
are more likely to be trapped in a local optimum
(Frazier, 2018). Additionally, such approaches are
ineffective while handling categorical hyperparame-
ters, which is hardly the case with the BO approach
(Elsken et al., 2019).

On the contrary, the LSTM method under RNN
can create memory and forget cells to improve fore-
casting accuracy by preserving required patterns from
the past. (da Fonseca Marques, 2020) compared the
LSTM model with the seasonality-based ARIMA ap-
proach on a fish market retail network, considering
price, holidays, and whether the model features im-
proved prediction accuracy. Similar findings were ob-
served by (Abbasimehr et al., 2020) in the case of
a furniture company with a relatively stable demand
for real-time forecasting of time series data. Another
advantage of LSTM models is that they effectively
solve errors due to missing data and explore gradi-
ents using the built-in gates architecture that controls
the flow of information among the cells (Cansu et al.,
2023). Often, the design of the LSTM network and
tuning of the hyperparameters is an intimidating task.
Thus, (Johnson, 2017) suggested the implementation
of hybrid approaches such as BO, evolutionary al-
gorithms, swarm-based intelligence techniques, and
others. Especially, evolutionary approaches have in-
herent qualities of not falling into the local optimal-
ity with gradient-free optimization features (Beheshti
and Shamsuddin, 2013).

Few studies mention the use of meta-heuristic
tools to create neural network infrastructure or speed
up the architecture’s performance by selecting opti-
mal tuning parameters. (Kumar et al., 2021) trained a
deep neural network model on stock market data us-
ing a genetic algorithm (GA) approach to find the op-
timal set of network hyperparameters and data subset
selection. The main advantages of employing meta-
heuristic approaches are tuning multiple hyperparam-
eters and simultaneously providing near-optimal pre-
diction performance. Specific to demand forecasting
for retail goods, (Abbasimehr et al., 2020) designed
an LSTM network model as a forecaster and com-
pared the results with ARIMA and RNN approaches.
The authors did not use any evolutionary approaches.
Therefore, it will be interesting to study the design de-
cisions that affect the performance of the LSTM net-
work - more specifically, finding the architecture pa-
rameters of the LSTM network, identifying the hyper-
parameter tuning values, or reducing the dimension-
ality in the feature representation level of the LSTM
network.
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3 METHODOLOGY

3.1 Fundamentals of an LSTM Network

Lately, an LSTM model as a subset of RNN has been
adopted in many studies as a sequence prediction
approach considering their memory advantages and
input-output handling capabilities (Greff et al., 2016).
The advantages are evident with gates for input and
output and cell memory. Typically, an LSTM has an
internal storage system called a memory cell featured
with an internal state, different gates, and a mecha-
nism with which the internal state interacts with the
different gates in place.

Such functions are helpful to create the bounds on
the output variables with set range values generally
between 0 and 1. For every time step of the LSTM
implementation, the forget gate determines whether
to pass the current value of memory or completely
discard it. In contrast, the output gate controls the
influence of the memory cell on the output. An input
node with an activation function is often attached to
the gate. Primarily, the input gate advocates the ad-
dition of the input node’s value in the current state of
the memory cell. In our experimentation, the LSTM
architecture consists of two hidden layers, a tanh ac-
tivation function, and a single dense layer which is
trained using Adam optimizer with mean squared er-
ror as a loss function.

3.2 A Hybrid Solution Strategy

In this section, we propose a learning algorithm that
facilitates the execution of the LSTM model using a
hybrid approach based on BO and GA. Unlike pre-
viously attempted approaches of combined strategies
as in (Martinez-de Pison et al., 2019), the existing ap-
proach does not limit the number of model parameters
to find the best features. Since most meta-heuristic
methods require an initial solution, the output from
the BO approach is fed as an initial solution to the
second stage of hyperparameter optimization. The
second stage uses GA with an initial population as ob-
tained from the BO output. With advanced operators
such as selection, crossover, and mutation, the best in-
dividual of some generations might be dropped during
iterations. To avoid these, an optional elitism strategy
is employed in the many GA-based approaches using
a simple hall-of-fame concept (Wirsansky, 2020). As
many best individuals as set by some constant integer
(i.e., the hall of fame parameter) will always be kept
in the mating pool of a population. We implement the
above concept with motivation and explanation men-
tioned by authors (Fortin et al., 2012) and (Wirsan-

sky, 2020). Such a strategy enhances the GA’s perfor-
mance by avoiding the wastage of time involved in re-
discovering the potential solution. The central idea of
the proposed hybrid strategy is depicted in Figure 1.

A mathematical description of the hyperparame-
ter optimization process is described below, with the
importance of the BO approach. Let F(h) be a given
loss function, i.e., Root Mean Square Error (RMSE).
In our case it is represented by Equation 1 and is sub-
jected to optimize over h1,h2, · · · ,hn hyperparameters
and each of these hyperparameters (hi) have lower and
upper bounds [li,ui] in a configuration or hyperparam-
eter space Ω = [l1,u1]×·· ·× [ln,un].

F(h) =

√
1
n

n

∑
i=1

(xi− x̂i)2 (1)

Where xi and x̂i are the actual and forecast values
of the series in time point i, respectively.

However, computing the true objective function
is an expensive exercise. Thus, a surrogate model is
built with the acquisition function mentioned in Equa-
tion 2, which is relatively cheaper to evaluate.

h∗ = argmin
h∈Ω

f (h|φ1:i−1) (2)

Where y is the true fitness value and φ is a search
space of h and y. With every iteration, more samples
are added to the surrogate model with their respec-
tive acquisition function until a termination criterion
is reached.

The fundamental understanding of every evolu-
tionary algorithm follows the principle of the survival
of the fittest individual in a search pool comprising
feasible and infeasible candidate solutions. To eval-
uate the quality of the solution, a fitness measure in
terms of the objective function is employed. Often,
operators are employed in such meta-heuristics to im-
prove the candidate solution to intensify (exploita-
tion) and diversify (exploration). Some key termi-
nologies in the evolutionary algorithm are elucidated
as follows.

Selection operations are one of the fundamental
tasks in the evolutionary approach. Many parents are
selected depending on their fitness strength from a set
of solution pools at each iteration. Often, this filter-
ing is performed with the help of some set criteria. In
the proposed study, we used tournament selection to
find the best candidates, which will result in the next
generation or be a part of it (Deb and Jain, 2013).
The Crossover operator produces a diversified solu-
tion by searching different regions within the given
solution space. In contrast, the mutation operator
produces a high-quality solution by intensifying the
search within the given region of solution space. We
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Figure 1: Flowchart for the proposed hybrid approach.

implemented a crossover option using simulated bi-
nary crossover and a mutation method based on poly-
nomial mutation as popularly considered in NSGA II
implementation (Deb and Jain, 2013).

4 PROBLEM DESCRIPTION,
EXPERIMENTAL SET-UP AND
RESULTS

Inventory optimization is a critical task across differ-
ent sectors of the business. Especially, fast-moving
goods pose alarming challenges in dealing with de-
mand uncertainty as it involves a huge amount of
monetary investment, time criticalities, and technol-
ogy infrastructure to manage operational challenges
and maintenance scenarios (Fildes et al., 2022). Addi-
tionally, the time series data features make forecasting
efforts more challenging. First, a high-dimensionality
problem is complex due to too many variables and
too little data information. Second, the intermittent
and promotion-driven episodes drive the random de-
mand as completely non-stationary, exhibiting vari-
able trends, i.e., the series’ frequency, mean, and vari-
ance undergo several changes over time. The prod-
uct properties and nature of the business model fur-

ther complicate the problem and may result in non-
linearity and heterogeneity (Lang et al., 2015). Build-
ing a capability of predicting highly fluctuating de-
mand data would be an interesting problem to study.
However, in many situations, the results of such learn-
ing algorithms are governed by a set of hyperparam-
eters. For example, some good examples of such
top-level parameters are the number of hidden layers,
dropout rate, epoch size, batch size, learning rate, etc.
(Reimers and Gurevych, 2017). The optimal selection
of such hyperparameters improves the model’s perfor-
mance. Therefore, choosing the right set of hyperpa-
rameters and their values is a prominent question to
address before implementing the learning model.

The subsequent sections trigger the need to imple-
ment the hybrid approach to identify the optimal sets
of hyperparameters for a better LSTM network pre-
diction. We perform independent simulations for dif-
ferent approaches proposed in subsections to find the
optimal values of the hyperparameters. It is also im-
portant to note that the experiments are performed on
an Apple M1 Pro chip with 16 GB of RAM and a ten-
core CPU. The description is further categorized into
sub-sections to explain preliminary results related to
each approach. The basic information about the non-
linearity and causality in the uni-variate forecasting
random variable is presented in Figure 2. The un-
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derlined time series demand data of retail products
consists of trends, seasonalities, and errors in terms
of residues. For example, an upward trend shows an
increase in demand values. Seasonality explains the
cyclic pattern occurring at regular intervals. In addi-
tion, a residue component is present in the time se-
ries data, which is neither systematic nor predictable
(Parmezan et al., 2019).

Figure 2: Decomposition of time series demand data.

Additional information related to the parameter
setting is as follows. Five major hyperparameters re-
lated to LSTM are considered for our experimenta-
tion. The details of which, as mentioned in the Keras
documentation (Chollet et al., 2015), is as follows:

1. Units of layer: This represents the dimensionality
of the output space and is a positive integer. We
have taken two hidden layers in the LSTM net-
work with units varying from 10 to 25.

2. Dropout: This hyperparameter decides the frac-
tion of the units to drop for the linear transfor-
mation of the inputs and takes a continuous value
between 0 and 1.

3. Batch size: This defines the number of samples
per gradient update. We took a lower and upper
bound for the batch size of 16 and 64, respectively.

4. Epochs: This decides the number of epochs to
train over the LSTM model, which is a positive
integer. Epochs are between 5 and 15 during sim-
ulation.

5. Learning rate: This hyperparameter decides how
fast the LSTM model updates its parameters. This
parameter takes a value between 0 and 1. With a
very high learning rate value, the model may not
converge, and a very low learning rate will slow
down the learning process.

GA requires a few parameters such as population
size, probabilities for crossover and mutation, maxi-
mum number of generations, and population size for
the Hall of Fame. For our experiments, we have fixed

the values of these parameters with well-known stan-
dard values as described by (Fortin et al., 2012). For
example, probabilities of crossover and mutation are
taken as 0.5 each, respectively. Similarly, the crowd-
ing factor for mutation is 15, and the same is 10 for
crossover operations. Additionally, an integer value
of 2 for the Hall of Fame is considered throughout the
simulations.

4.1 BO for LSTM Network
Implementation

BO is used as a hyperparameter optimization tool in
various machine learning models and in well-known
Python libraries for building neural networks. The
methodology section fairly explains the execution of
the BO approach. This section highlights some key
computation implications related to the methodology.
The BO implementation is as per (Balandat et al.,
2019). The recorded objective (RMSE) shows a de-
clining trend with increasing execution time as the
number of iterations is increased (Figure 3).

Figure 3: Iteration vs. Mean RMSE score of BO approach
for one of the simulations.

4.2 GA with Elitism

The implementation is based on the DEAP library by
(Fortin et al., 2012). One of the major decisions on
population size (P1) and number of generations (P2)
is decided by a trial-and-error approach to understand
the implementation of the GA with elitism approach.

Different combinations of P1 and P2 are taken to
identify their best values based on fair number of fit-
ness evaluations (population size multiplied by num-
ber of generations). We elucidate the behavior of the
RMSE score in Figure 4. We observed that a popu-
lation size of 20 and a number of generations of 10
has given better performance compared to other sets
of combinations. Thus, we fix these values through-
out experimentation. Fixing the values of P1 and P2 is
a subjective question and depends on the dataset and
search strategy employed within the optimization al-
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Figure 4: Trial-and-error approach for fixing values of pop-
ulation size (P1) and number of iterations (P2).

gorithm. Therefore, the approach is sensitive toward
the optimal set of both these parameters.

Figure 5: Iteration vs. RMSE score of GA approach for one
of the simulations.

Figure 5 shows three series plots for maximum,
minimum, and averages of RMSE score evaluated for
the population during each iteration of the GA ap-
proach. For example, at every iteration, the algorithm
selects some set of parents out of a population pool of
20. It is observed that over the iterations, the fitness
value shows a declining trend. In the instance above,
the minimum value of RMSE achieved is 46.9765.

4.3 Proposed Hybrid Strategy for
Hyperparameters Tuning

The current section mentions results related to the
combined strategy proposed in the paper. Primar-
ily, we highlight the need and advantages of adopt-
ing such approaches to model LSTM networks sub-
ject to optimal configurations of hyperparameters. It
is important to note that most of the meta-heuristics
are given an initial solution to start with. We utilize
the surrogate output from the BO to warm start the
search space for a hybrid approach. This was primar-
ily implemented with the motivation of early termi-
nation and improving the prediction strategy during
algorithm implementation. In the current simulation

experimentation, we carried out multiple sets of inde-
pendent simulations by fixing the total computation
time assigned to each approach.

Figure 6: Iteration vs. RMSE score of Hybrid approach for
one of the simulations.

The Figure 6 represents one of the simulation
results for which the RMSE score achieved was
31.3041. The number of chromosomes evaluated at
every iteration during the hybrid approach might not
be equal to the number evaluated during the GA ap-
proach. Further, we performed a set of simulations to
understand the performances of each of the proposed
algorithms considering a similar execution time. The
complete simulation experiments are mentioned in
Table 1.

Table 1: Comparison of BO, GA, and hybrid approach
based on an independent set of simulations.

Simulation No. RMSE Score
BO GA Hybrid Approach

Simulation 1 49.29 43.77 30.90
Simulation 2 44.78 43.72 35.70
Simulation 3 49.45 30.04 31.30
Simulation 4 48.26 41.10 35.40
Simulation 5 51.77 54.11 40.84
Simulation 6 47.99 46.98 40.31
Simulation 7 50.50 35.95 35.90
Simulation 8 47.52 41.37 36.05
Simulation 9 45.13 42.25 36.37

Simulation 10 52.84 32.03 35.06

In most of the simulations, the hybrid approach
records a lower RMSE score, which is also high-
lighted in Figure 7. The information about hyperpa-
rameters obtained from three algorithms is mentioned
in Table 2.

Other key findings from our analysis are as fol-
lows:

• We employed GA with elitism approach. Since
meta-heuristics efficiently reach feasible solutions
with faster conversion, we observed an average of
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Figure 7: Boxplot of RMSE scores for BO, GA, and Hybrid approach.

Table 2: Optimal values of hyperparameters for one of the
simulations.

Hyperparameters BO GA Hybrid Approach
layer1 units 23 23 22

layer1 dropout 0.6 0.59 0.33
layer2 units 23 24 16

layer2 dropout 0.6 0.44 0.20
epochs 7 8 10

batch size 16 16 17
learning rate 0.94 0.71 0.76

160 seconds of convergence time to reach the de-
sired RMSE value after a trial-and-error simula-
tion.

• A major observation during experimentation is
that BO’s computational time is relatively higher
compared to the hybrid approach presented in the
paper. The same case is true when compared with
the GA with elitism approach.

• In the hybrid method, when the first stage output
from BO is provided as the initial solution to the
second stage, the mean RMSE is 30.90, while the
BO approach attains a mean RMSE of 49.29 when
run for the same duration (see Table 1).

• Table 1 and Figure 7 represent independent set of
simulations for the three approaches implemented
in the proposed study. The result highlights that
the hybrid approach shows a significant difference
in terms of RMSE score with a relatively smaller
mean and lower variability compared to BO and
GA approaches.

5 CONCLUSIONS

The proposed study configures the hyperparameters
of the LSTM network for demand forecasting of re-
tail products. The methodology can effectively set
up the LSTM network to learn patterns of the time

series data and generate the forecast. To further im-
prove forecasting accuracy and network performance,
we have incorporated a hybrid BO and GA with
elitism for hyperparameter optimization. We com-
bined the learning strengths of two well-known ap-
proaches within the optimization domain. These ob-
servations necessitate the significance of the second
stage in the hybrid approach to configuring the LSTM
network for error minimization objectives. Other
meta-heuristics approaches, such as ant colony op-
timization, particle swarm intelligence, etc., can be
explored. The hybrid strategy can be extended to hy-
perparameter optimization of machine learning objec-
tives other than retail demand forecasting algorithms
and stochastic learning methods. Although the LSTM
network acts as a benchmark model with promising
results, the optimal design of the neural network ar-
chitecture is still an appealing research direction to
explore.
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