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Abstract: We examine the well known fuzzy least squares linear regression method. We discuss the constrained and
unconstrained solutions. Based on the concept of fuzzy orthogonality, we propose the fuzzy orthogonal least
squares method to solve fuzzy linear regression problems. We show that, in case of (fuzzy) orthogonal re-
gressors, an important property of the least squares method remains valid. We obtain the same estimates of
the parameters of the model if we regress on all regressors, or on each regressor considered separately. An
empirical application illustrates our methods.

1 INTRODUCTION

Fuzzy regression is no longer a new topic in fuzzy
analysis. Indeed, for decades, all kinds of propo-
sitions have been made to perform fuzzy regression
analyses. Focus has been put particularly on solving
least squares problems or least absolute deviations.
We intend to review some results and complete them
with the so-called orthogonal least squares method.
We especially investigate the fuzzy least squares li-
near regression and the orthogonal fuzzy least squares
linear regression. We provide essentially some strate-
gies to deal with fuzzy data in a regression context.
We proposed constrained and unconstrained solutions
and discussed them.

In some situations, the analyst could profit from
the orthogonality property of the independent vari-
ables. Indeed, by using a proper definition of fuzzy
orthogonal variables, we show an important feature
of the fuzzy orthogonal least squares method to solve
a linear regression problem. As in the classical case,
with crisp data, in a situation of orthogonal regressors,
the estimates of the model parameters are the same if
the estimation is done with all regressors of the model,
or if we regress the dependent variable on each re-
gressor alone. We verify empirically that, with our
fuzzy orthogonal least squares regression, this prop-
erty holds in a fuzzy context.
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The main contribution of this paper is the proposi-
tion of a fuzzy orthogonal linear least squares regres-
sion method preserving the crisp orthogonal linear
least squares property in a fully fuzzy environment.
A nice feature of the method is to respect the fuzzy
arithmetic. Our work is organized as follow. We be-
gin our study with a small literature review in section
2. Notation is fixed in the next section, 3. Section 4 is
devoted to the problem of the fuzzy least squares re-
gression, proposing two methods to deal with crisp or
fuzzy input and fuzzy output. A discussion of the con-
strained and unconstrained solutions of the two meth-
ods is given in section 5. After briefly defining fuzzy
orthogonality, we present the method of the fuzzy or-
thogonal least squares dealing with crisp and fuzzy
input and fuzzy output in section 6. Section 7 gives us
the possibility to illustrate our methods by empirical
applications. Finally, section 8 concludes our study.

2 LITERATURE REVIEW

In 1982, Tanaka introduced a possibilistic approach
to fuzzy regression analysis. The method consists in
using possibilistic restrictions to minimize the fuzzi-
ness of the model’s fuzzy parameters. In this work,
the quadratic programming approach, which allows
both the minimisation of the estimated deviations of
the central tendency and the minimisation of the es-
timated deviations in the spreads of fuzzy observa-
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tions, will be of concern. (Tanaka and Lee, 1997)
studied the fuzzy linear regression model by means of
quadratic programming to minimise the distances be-
tween the estimated output centres and the observed
outputs while minimising the spreads of the estimated
outputs. (Tanaka and Lee, 1998) proposed an inter-
val regression analysis based on a quadratic program-
ming approach to deal with the problem of fuzzy co-
efficients becoming crisp when using linear program-
ming in possibilistic regression analysis. (Lee and
Tanaka, 1998) proposed a fuzzy regression analysis
based on a quadratic programming approach to again
integrate the central tendency of least squares and the
possibilistic properties of fuzzy regression. (Lee and
Tanaka, 1999) also explored a fuzzy linear regression
model with non-symmetric fuzzy coefficients using
quadratic programming and created a lower and up-
per approximation model. (Donoso et al., 2006) pro-
posed two new fuzzy regression models, the quadratic
possibilistic model and the quadratic non-possibilistic
model, which do not focus on the minimisation of the
uncertainty of the estimated results but on the min-
imisation of the quadratic deviations between the ob-
servations and estimated outputs. However, (Donoso
et al., 2006)’s regression models were only dealing
with fuzzy regressors.

To palliate this, (D’Urso and Massari, 2013) pro-
posed a general linear regression model for studying
the dependence of fuzzy response variable, on a set of
crisp or fuzzy explanatory variables. They also sug-
gested a robust fuzzy regression method, based on the
Least Median Squares estimation approach in an at-
tempt of neutralising the effects of crisp and fuzzy
outliers. In this direction, (Kashani et al., 2021) pro-
posed a penalized estimation method to estimate the
coefficients of a linear regression model with a fuzzy
response variable and crisp explanatory variables. (Li
et al., 2023) constructed a fuzzy multiple linear least
squares regression model based on two distance mea-
sures between LR-type fuzzy numbers. (Stanojevi
and Stanojevi, 2022) described a fuzzy quadratic least
squares regression for a fuzzy response variable and a
single crisp explanatory variable which gives regres-
sion coefficients with positive spreads.

Fuzzy inner product spaces and fuzzy orthog-
onality have been discussed by (Ithoh, 2017) and
(Mostofian et al., 2017). They proposed new defini-
tions of a fuzzy inner product space. They also de-
fined a suitable notion of fuzzy orthogonality in the
fuzzy world and investigated some properties. (Gior-
dani and Kiers, 2004) proposed two extensions of the
classical principal component analysis dealing with
fuzzy symmetric numbers. However, The lack of a
properly defined fuzzy orthogonality made the de-

rived results losing in significance. (Yabuuch and
Watada, 2017) performed a principal component anal-
ysis over crisp data belonging to fuzzy groups. In
their work (Yabuuch and Watada, 2017) introduced
new definitions of expectation, variance and covari-
ance to work with the concept of fuzzy groups. How-
ever, their results are limited to crisp input data.

We wanted to investigate more thoroughly the
fuzzy linear least square regression methods involving
both fuzzy response and explanatory variables since
these have not received much attention except from
(D’Urso and Massari, 2013). However, due to the
complexity of their recursive approach, constructing a
fuzzy orthogonal linear least squares method inspired
from it seemed to be a difficult task. Because we
wanted to preserve certain properties, our approach
was to build a fuzzy linear least squares regression
method that could be, in accordance with the concept
of fuzzy orthogonality, extended to a fuzzy orthogo-
nal linear least squares method allowing the indivi-
dual computation of the estimates.

3 NOTATION

Let us define by x̃ a fuzzy number. We write by
µx̃(·), the membership function. We consider also
the α-cuts of x̃ denoted by x̃α or by its equivalent
in interval form by [xL,α,xR,α]. In practice, triangu-
lar fuzzy numbers are often used. We denote them
by a triplet x̃ = (xL,x,xR) with xL ≤ x ≤ xR ∈ R. In-
dexed fuzzy triangular number will be denoted by
x̃k = (xL

k ,xk,xR
k ). If not specified otherwise, lower-

case bold letters with no index will be used for n-
components column vectors of fuzzy numbers, e.g.
ỹ = (ỹ1, . . . , ỹn)

′. A (n×m)-matrix is noted in capital
bold letters, e.g. X̃ , with the i-th line and j-th column
given respectively by x̃i = (x̃i1, . . . , x̃im)

′, i = 1, . . . ,n,
and x̃ j = (x̃1 j, . . . , x̃n j)

′, j = 1, . . . ,m.
The fuzzy multiplication operator between two

fuzzy numbers is denoted by ⊗̃. The fuzzy multipli-
cation between two fuzzy triangular numbers ã and b̃
is defined as

ã⊗̃ b̃ =(min(aLbL,aLbR,bRaL,aRbR),

ab,max(aLbL,aLbR,bRaL,aRbR)). (1)
See (Viertl, 2018) for more details.

4 FUZZY LEAST SQUARES
REGRESSION

In the following, several types of fuzzy regression
models will be presented. We decided to estimate the
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parameters of the models by the least squares tech-
nique. We will first deal with two different cases.
In the first one, we will analyse a regression model
with crisp independent variables and a fuzzy depen-
dent variable. The second case will involve both fuzzy
independent and dependent variables. Then we will
discuss their constrained and unconstrained solutions.
As we are only interested in the estimation of the pa-
rameters and not to build a statistical model, we won’t
incorporate random error terms in the specification of
the model. The fuzziness of the variables will be mod-
elled by triangular fuzzy numbers, and the estimated
parameters too.

4.1 Case 1: Fuzzy Dependent Variable
and Crisp Independent Variables

This case is solved with (Donoso et al., 2006, p.1305-
1306) approach. Let us consider the following regres-
sion model:̃

ỹi =
m

∑
j=1

β̃ jxi j, i = 1, . . . ,n, (2)

where β̃ j is the j-th parameter of the model. Note that
β̃ j is assumed to be fuzzy. Our aim is to find fuzzy

triangular estimators ˆ̃
β j that fit (2) best by minimising

the following weighted sum of squares J given in (3):

J =
n

∑
i=1

(
k1(yi −

m

∑
j=1

β jxi j)
2 + k2(yL

i −
m

∑
j=1

β
L
j xi j)

2

+ k3(yR
i −

m

∑
j=1

β
R
j xi j)

2

)

= k1

n

∑
i=1

(yi −x′
iβ)

2 + k2

n

∑
i=1

(yL
i −x′

iβ
L)2

+ k3

n

∑
i=1

(yR
i −xiβ

R)2, (3)

under the constraints

(β j −β
L
j ), (β

R
j −β j) ≥ 0 for j = 1, . . . ,m. (4)

The quantities k1, k2 and k3 are tuning weights associ-
ated with the three sums of squares corresponding to
the central, left and right values of the fuzzy numbers.
The constraints given in (4) make sure the estimators
ˆ̃
β j are fuzzy triangular numbers, i.e. ˆ̃

β j = (β̂L
j , β̂, β̂

R
j ).

4.2 Case 2: Fuzzy Dependent Variable
and Fuzzy Independent Variables

Let us suppose now that the independent variables are
also fuzzy, i.e. x̃i j = (xL

i j,xi j,xR
i j), i = 1, . . . ,n, j =

1, . . . ,m. The fuzzy linear regression model becomes:

ỹi =
m

∑
j=1

β̃ j⊗̃x̃i j, i = 1, . . . ,n, (5)

where ⊗̃ denotes the fuzzy multiplication operator.
We find the fuzzy triangular estimators ˆ̃

β by min-

imising the sum of squares ∑
n
i=1

(
ỹi −∑

m
j=1 β̃ j⊗̃x̃i j

)2
.

Rewriting it using the fuzzy multiplication rule yields
the following objective function J given in (6):

J =
n

∑
i=1

(
k1(yi −

m

∑
j=1

β jxi j)
2

+ k2(yL
i −

m

∑
j=1

(min(βL
j x

L
i j,β

R
j xL

i j,β
L
j x

R
i j,β

R
j xR

i j))
2

+ k3(yR
i −

m

∑
j=1

(max(βL
j x

L
i j,β

R
j xL

i j,β
L
j x

R
i j,β

R
j xR

i j))
2

)
.

(6)

Minimising (6) is not so direct, and a proper strat-
egy needs to be developed. If we know the sign
of the independent triangular fuzzy variable x̃i j and
the sign of the unknown fuzzy parameters β̃ j for all
j = 1, ...,m, we can easily know what will be the mini-
mum and maximum values to be calculated in the ob-
jective function (6) and thus solve the regression prob-
lem under the constraints (4). In practice, the sign of
the observations is evidently known, but not the sign
of the parameters. However, on one hand, by using
the crisp value of the fuzzy triangular observations,
i.e. when α = 1, we can perform the classical least
squares to get the estimates β̂ j, j = 1, . . . ,m, and if

they are sufficiently far away from zero, the sign of ˆ̃
β j

will be the one of β̂ j. If, on the other hand, β̂ j is close
to zero, one has to first estimate β̃ j, j = 1, . . . ,m, via

(3). We note this first estimates by ˆ̃
β
(1)
j . We then pick

their signs to fix the ones of the unknown estimators
βL

j and βR
j and use them to solve problem (6).

Suppose we estimated the sign of the un-
known fuzzy parameters as written above and then
chose, according to the signs of the fuzzy ob-
servation x̃i j and β̃ j, i = 1, ...,n, j = 0, ...,m
the corresponding minimum xmin

i j and maximum
xmax

i j that solve min(βL
j x

L
i j,β

R
j xL

i j,β
L
j x

R
i j,β

R
j xR

i j) and

Fuzzy Least Squares and Fuzzy Orthogonal Least Squares Linear Regressions

361



max(βL
j x

L
i j,β

R
j xL

i j,β
L
j x

R
i j,β

R
j xR

i j) respectively. The ob-
jective function (6) can then be rewritten as:

J =
n

∑
i=1

(
k1(yi −

m

∑
j=1

β jxi j)
2 + k2(yL

i −
m

∑
j=1

(βmin
j xmin

i j )2

+k3(yR
i −

m

∑
j=1

(βmax
j xmax

i j )2

)
, (7)

where βmin
j , βmax

j are the coefficients associated to
xmin

i j and xmax
i j respectively. The special case where

xi j > 0, i = 1, . . . ,n, deserves our attention. In this
case, βmin

j and βmax
j are obviously equal to βL

j and βR
j

respectively.
Notice that, in general, when the fuzzy observations
x̃i j are not necessarily all positive, the coefficients
βmin

j or βmax
j may appear simultaneously in both left

and right squared terms in (6). This is due to the fuzzy
arithmetic rule for the product that sometimes yields
βmin

j or βmax
j as the coefficients, which both maximise

and minimise the fuzzy product. This general case is
no longer a simple quadratic problem. This is why
one recommends adding a constant valued vector to
each covariate to ensure their positivity and thus al-
lowing to solve a proprer quadratic problem. Making
so, only the constant of the problem is affected letting
the slopes unchanged.

5 CONSTRAINED AND
UNCONSTRAINED SOLUTIONS

The constraint (4) assures that the solutions are fuzzy
triangular numbers. If we do not impose (4), we end
up with solutions β̃ j which are sometimes of the form
(b,c,a) with b > c > a, a,b,c ∈ R. This clearly goes
against the definition of fuzzy triangular numbers. A
way to bypass this not plausible solution is to consider
the fuzzy parameters as fuzzy intervals.

In order to avoid confusion, it is very important
to make a clear distinction between a vector of fuzzy
numbers and a fuzzy vector. (Viertl, 2018, p.14) de-
fines a fuzzy vector as:

Definition 1 (Fuzzy vector and fuzzy interval).
A k-dimensional fuzzy vector x̃∗ with membership

function µx̃∗ is such that:

1. µx̃∗ : Rk −→ [0,1].
2. The support of µx̃∗ is a bounded set.
3. ∀α ∈ (0,1] the so-called α-cut Cα(x̃∗) := {x ∈

Rk|µx̃∗(x) ≥ α} is non-empty, bounded, and
a finite union of simply connected and closed
bounded sets.

The set of all k-dimensional fuzzy vectors is de-
noted by F (Rk). A k-dimensional fuzzy vector is
called a k-dimensional fuzzy interval if all α-cuts are
connected compact sets.

Applying the concept of fuzzy intervals, we are
able to understand the main difference between the
constrained solution and the unconstrained one. In
the first case, when the constraints (4) are satisfied,
one ends up with a vector of fuzzy parameters β̃ sat-
isfying βL

k ≤ βk ≤ βR
k meaning that, the upper regres-

sion coefficients βR
k must always give a steeper slope

to the regression line, and conversely, βL
k must al-

ways give a lower slope. When the constraints (4)
are dropped, one ends up with a fuzzy interval β̃∗

j ,
j = 1, . . . ,m. In this case, the fitted solution is such
that ˆ̃ylower ≤ ˆ̃yupper

. This allows the slopes to violate
(4) so long the lower regression line is below the up-
per one on the interval formed by the observations X
or X̃ .

As an example, let us consider a regression model
with two crisp independent variables, the first one be-
ing the constant of the model. The unconstrained so-
lution ˆ̃β∗ can be written as:

ˆ̃β∗ =

(
ˆ̃
β∗

0
ˆ̃
β∗

1

)
=

(
β̂
∗,lower
0 , β̂∗

0, β̂
∗,upper
0

β̂
∗,lower
1 , β̂∗

1, β̂
∗,upper
1

)
, (8)

where β̂
∗,lower
0 is the smaller β0 coefficient estimated

and β̂
∗,upper
0 is the greater β0 coefficient estimated.

The coefficients β̂
∗,lower
1 and β̂

∗,upper
1 are defined anal-

ogously. It can be easily shown that the estimated
parameters (8) satisfy the definition of a fuzzy inter-
val. Indeed, let Cα be the rectangle formed by the
vertices (β∗,lower,α

0 ,β∗,lower,α
1 ), (β∗,lower,α

0 ,β
∗,upper,α
1 ),

(β
∗,upper,α
0 ,β∗,lower,α

1 ), (β
∗,upper,α
0 ,β

∗,upper,α
1 ) where α

stands for the α-cut of the fuzzy number. The more
we reduce the fuzziness, that is the closer to 1 α is,
the closer ˆ̃β∗,α will be to the crisp solution given when
α= 1. Thus, Cαi ⊆Cα j for αi ≥α j. Assuming the ex-
istence of a solution, Cα is non-empty, bounded and a
finite union of simply connected and bounded rectan-
gles. Furthermore, The vector-membership function
µ ˆ̃β∗ : R2 −→ [0,1] defined as :

µ ˆ̃β∗ := max{α · ICα
(x) : α ∈ (0,1]}, ∀x ∈ R2,

has its support bounded by the rectangle C0.
By following the same reasoning, one can easily

verify that in the case of m covariates, the solution is
also a fuzzy interval, where Cα is the m-dimensional
rectangle which has the form of a hypercube of 2m

vertices.
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6 FUZZY ORTHOGONAL LEAST
SQUARES

Let us first remind the definition of the fuzzy inner
product and the concept of fuzzy orthogonality, de-
scribed by (Ithoh, 2017, p.13).

Definition 2 (Fuzzy inner product).
Let X be a nonzero vector space over the field R

and X̃ = {xλ|x ∈ X ,λ ∈ (0,1]} be the set of all fuzzy
points in X. A function ⟨·, ·⟩ : X̃ × X̃ →R is said to be
a fuzzy inner product on X̃ if

1. a) ⟨xλ,xµ⟩ ≥ 0; b) ⟨xλ,xµ⟩= 0 if and only if x = 0;
2. ⟨kxλ,yµ⟩= k⟨xλ,yµ⟩;
3. ⟨xλ + yλ,zµ⟩= ⟨xλ,zµ⟩+ ⟨yλ,zµ⟩;
4. ⟨xλ,yµ⟩= ⟨yµ,xλ⟩;
5. ⟨xλ,yµ⟩ ≤ ⟨xλ,yν⟩ if 0 < ν ≤ µ ≤ 1;
6. for every xλ, yµ ∈ X̃ and ε > 0, there exists 0 <

δ < µ such that ⟨xλ,yµ−δ⟩< ⟨xλ,yµ⟩+ ε;
7. for every xλ, yµ ∈ X̃ and ε > 0, there exists 0 <

δ < 1−µ such that ⟨xλ,yµ+δ⟩> ⟨xλ,yµ⟩− ε.

The pair (X ,⟨·, ·⟩) is called a strong fuzzy inner
product space.

Remark 1.

1. Let (X ,⟨·, ·⟩) be a strong fuzzy inner product
space. If

⟨xλ1 ,yµ1⟩= ⟨xλ2 ,yµ2⟩ x,y ∈ X ,

λi,µi ∈ (0,1], i = 1,2,
(9)

then (X ,⟨·, ·⟩) becomes a usual inner product
space;

2. If we use a stronger condition,

⟨xλ + yµ,zν⟩= ⟨xλ,yµ⟩+ ⟨yµ,zν⟩, (10)

then (X ,⟨·, ·⟩) is just a usual inner product space.

The concept of fuzzy orthogonality is defined as:

Definition 3 (Fuzzy orthogonality).
Let x̃ and ỹ be vectors in a fuzzy inner product

space. One says that x̃ is fuzzy orthogonal to ỹ if
⟨xλ,yµ⟩= 0, for some λ,µ ∈ (0,1].

The fuzzy orthogonality between two vectors of a
fuzzy inner product space x̃ and ỹ is denoted by x̃⊥F ỹ.
In case xλ is orthogonal to yµ for these specific values
of λ,µ ∈ (0,1], i.e ⟨xλ,yµ⟩= 0, we note it xλ ⊥ yµ.

We can now introduce the fuzzy orthogonal least
squares estimators of a fuzzy regression model. Our
aim is first to transform the independent variables in

such a way that at the end of the procedure, the trans-
formed variables are mutually (fuzzy) orthogonal. We
then can use these transformed variables as new re-
gressors in the regression equation and estimate the
model as described in section 4. The orthogonalisa-
tion procedure will be discussed for two cases: inde-
pendent crisp or fuzzy variables.

6.1 Case 3: Fuzzy Dependent Variable
and Crisp Independent Variables

We can use a classic orthonormalisation procedure
to project X onto an orthonormal basis. Let x̄ =
(x̄1, ..., x̄m)

′ be the vector of the means associated to
the m independent variables X1, ...,Xm; S the esti-
mated variance-covariance matrix; G the matrix of all
the eigenvectors of S; ιn = (1, . . . ,1)′ a (n× 1) vec-
tor. We project X onto an orthonormal basis using
the transformation

X⊥ = (X− ιnx̄
′)G. (11)

Then we solve (3) with X⊥ instead of X . Due to
the orthogonality of X⊥, the individual coefficients
β̃ j of the regression model can be estimated also by
regressing the dependent variable on the variable X j
only, j = 1, . . . ,m. As a consequence, the orthogonal-
isation of the regressors allows us to find uncorrelated
fuzzy estimators β̃ j.

Note that, sometimes, by convention, −G is used
instead of G in (11). One has to be careful with mul-
tiplying or not by a minus sign the orthogonal projec-
tion (11) since it can greatly affect the fuzzy triangu-
lar estimators β̃ j. This effect will be discussed more
in depth in section 7.3.

6.2 Case 4: Fuzzy Dependent Variable
and Fuzzy Independent Variables

When both the dependent and independent variables
of the regression model are fuzzy, we first need to
solve the min() and max() functions in (6). We per-
form then the orthogonalisation procedure (11) to find
X⊥min, X⊥ and X⊥max from Xmin, X and Xmax.
This allows us to write the objective function (7) with
orthogonal fuzzy data as

J =k1

n

∑
i=1

(yi −
m

∑
j=1

β jx⊥i j)
2 + k2

n

∑
i=1

(yL
i −

m

∑
j=1

β
L
j x

⊥min
i j )2

+ k3

n

∑
i=1

(yR
i −

m

∑
j=1

β
R
j x⊥max

i j )2. (12)

Again, the properties of the orthogonality permit
us to compute the fuzzy least squares individually for
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each covariate X j while giving the same solution as
when computed with all covariates X j at once.

Observe that the restructuring of the initial data
into x̃i j = (xmin

i j ,xi j,xmax
i j ) allowing us to compute the

fuzzy products in (6) is possible if we know the signs
of the fuzzy unknown parameters β̃. This ambiguity
can be solved by adequately permuting the observa-
tions to take into account the fuzzy arithmetic. Af-
ter the orthogonalisation procedure, in case of neg-
ative sign occuring, the signs of the observations
x̃⊥i j = (x⊥min

i j ,x⊥i j ,x
⊥max
i j ) may differ from the signs of

x̃i j = (xmin
i j ,xi j,xmax

i j ).
To correct this and to preserve both the fuzzy

arithmetic and the quadratic nature of the problem,
one should shift x̃ j⊥ , j = 1, . . . ,m, by adding a con-
stant K j = |min(x̃ j⊥)|. This operation ensures that
the signs of the observations x̃ j⊥ are positive. As
we already said, this transformation has the effect
of changing the intercept value however, it does not
change the value of the slope coefficients. In practical
applications, one may use this transformation to en-
sure that the signs of the observations X̃ are positive
as well as ensure that the orthonormalised observa-
tions X̃⊥ are positive too.
Lastly, note that the fuzzy orthogonal covariates x̃ j⊥

meet the definition of fuzzy orthogonality of (Ithoh,
2017). Indeed, by construction their left part, center
and right part are orthogonal at any given α-cut,

⟨x̃ j⊥L, x̃k⊥L⟩= 0,

⟨x j⊥,xk⊥⟩= 0,

⟨x̃ j⊥R, x̃k⊥R⟩= 0, ∀ j,k = 1, . . . ,m, j ̸= k, (13)

x̃ j⊥ satisfying Masuo Itoh’s definition of fuzzy or-
thogonaly.

7 APPLICATION

Let us apply the above fuzzy least squares regression
methods and discuss them. We considered the fuzzy
data set given in Table 1 inspired by (Tanaka and Lee,
1998).

7.1 Fuzzy Dependent Variable and
Crisp Independent Variables

Let us postulate the following fuzzy regression model
(14):

Ỹi = β̃0X0 + β̃1Xi + β̃2X2
i , i = 1, . . . ,22. (14)

Using k1 = k2 = k3 = 1 in (3), we find, following the
methodology described in section 4.1 the fuzzy tri-
angular estimates given in Table 2. In Table 2, The
studied model is displayed in the first column while
the second column features the fuzzy regression coef-
ficients obtained with the use of a given model under
constraints 4. These fuzzy estimates are fuzzy trian-
gular numbers since they are solutions of constrained
models. The third column of Table 2 depicts the fuzzy
estimates given by solving the models in the first col-
umn under no constraint, thus these fuzzy estimates
are of the form of a fuzzy interval, as explained in
definition 1.

Table 3 gives the sum of squared residuals. The
first column tells which model has been used and if
the fuzzy estimates have been obtained under con-
straints or not. Then, the four remaining columns give
the sum of squared residuals with respect to the left,
center and right values and their addition computed
using the objective function of the respective models.

7.2 Fuzzy Dependent Variable and
Fuzzy Independent Variables

We consider again the data in Table 1. We fuzzify
the covariates X and X2 by triangular fuzzy numbers.
Let be X̃ = (XL,X ,XR), X̃2 = X̃⊗̃X̃ = (XL2

,X2,XR2
)

with XL = X −u1, XR = X +u2 where u1 ∼ U(0,0.5)
and u2 ∼ U(0,0.7). Note that X̃2 is easily computed
since the observations are positive. The problem is
now given by the fuzzy regression equation (15):

Ỹi = β̃0X0 + β̃1⊗̃X̃i + β̃2⊗̃X̃2
i i = 1, . . . ,22. (15)

Using the methodology of section 4.2 the constrained
and unconstrained solutions are given in Table 2 and
the sum of squared residuals in Table 3.

7.3 Fuzzy Dependent Variable and
Crisp Orthogonal Independent
Variables

By means of an SVD decomposition and using (11),
we orthonormalise X onto X⊥. The orthonormalised
covariates X⊥

1 and X⊥
2 of X and X2 are given in Table

1. The model is expressed by the regression equation
(16):

Ỹi = β̃0X0,i + β̃1X⊥
1,i + β̃2,iX⊥

2 , i = 1, . . . ,22. (16)

Following the methodology discussed in section 6.1,
the estimated parameters, without and with a multi-
plication of a minus sign, are given in Table 2. Note
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Table 1: Fuzzy Dataset.

Ỹ X0 X X2 X⊥
1 X⊥

2
(15,22.5,30) 1 1 1 -1.93184373 -0.35491140

(20,28.75,37.5) 1 2 4 -1.80915821 -0.25981071
(15,25,35) 1 3 9 -1.67727776 -0.17390496

(25,42.5,60) 1 4 16 -1.53620237 -0.09719415
(25,40,55) 1 5 25 -1.38593203 -0.02967828

(40,52.5,65) 1 6 36 -1.22646676 0.02864264
(55,75,95) 1 7 49 -1.05780654 0.07776863

(70,85,100) 1 8 64 -0.87995139 0.11769968
(80,105,130) 1 9 81 -0.69290129 0.14843578
(90,120,150) 1 10 100 -0.49665625 0.16997695
(115,145,175) 1 11 121 -0.29121627 0.18232317

(140,167.5,195) 1 12 144 -0.07658135 0.18547446
(155,187.5,220) 1 13 169 0.14724851 0.17943080
(175,212.5,250) 1 14 196 0.38027331 0.16419220
(200,240,280) 1 15 225 0.62249305 0.13975866
(240,275,310) 1 16 256 0.87390773 0.10613018
(270,305,340) 1 17 289 1.13451735 0.06330676

(300,342.5,385) 1 18 324 1.40432191 0.01128840
(340,380,420) 1 19 361 1.68332142 -0.04992490
(380,420,460) 1 20 400 1.97151586 -0.12033314
(420,460,500) 1 21 441 2.26890525 -0.19993632

(465,507.5,550) 1 22 484 2.57548957 -0.28873445

that for the unconstrained solution (Fuzzy intervals),
the solutions are the same.

As the regressors of model (16) are mutually or-
thogonal, we can find the estimates of the parameter
β̃1 and β̃2 by estimating successively the models:

Ỹi = β̃0X0,i + β̃1X⊥
1,i, i = 1, . . . ,22, (17)

and

Ỹi = β̃0X0,i + β̃2,iX⊥
2 , i = 1, . . . ,22. (18)

Finally, remark that one can come back to the es-
timates computed with observations X using a linear
transformation. Let G be the matrix of the eigenvec-
tors of the variance-covariance matrix of the regres-
sors,

GβL,⊥ = βL,

Gβ⊥ = β,

GβR,⊥ = βR.

(19)

This transformation only works for the unconstrained
solutions. In the constrained case, this is in general
not true.

At this point, an important observation has to be
made. When using orthogonal observations X⊥ we

find a different fuzziness for the fuzzy estimators ˆ̃
β2

and ˆ̃
β⊥

2 :

ˆ̃
β2 = (1.010993,1.010993,1.010993)

is crisp while

ˆ̃
β
⊥
2 = (−130.0262,−111.6804,−93.33466)

is fuzzy. This phenomenon is due to the constraints
(4). They force the fuzzy ”slope” represented by β̃2
to be steeper for the upper βR

2 and lower for βL
2 . De-

pending on the reference frame used, this constrains
more or less the solutions. Because of this, one has to
be careful with the convention of multiplying or not
a minus sign after having projected the observations
onto an orthonormal basis. The solution ˆ̃

β⊥ of model
(16) would have become

ˆ̃
β
⊥ =

 (165.2273,192.6705,220.11364)
(−108.2216,−108.2216,−108.2216)

(111.6804,111.6804,111.6804)

 ,
(20)

if we choose to multiply by a minus sign, and thus ˆ̃
β⊥

2
would also be crisp. Notice, on the other hand, that
the unconstrained solution is unaffected by the choice
of sign.
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7.4 Fuzzy Dependent Variable and
Fuzzy Orthogonal Independent
Variables

The model considered is given by the regression equa-
tion (21):

Ỹi = β̃0X0,i + β̃1X̃⊥
1,i + β̃2,iX̃⊥

2,i, i = 1, . . . ,22. (21)

The orthogonal covariates X⊥
1 and X⊥

2 are obtained by
orthogonalisation of X̃1 and X̃2 as explained in section
6.2. Then, by application of the method discussed
in section 6.2 the resulting estimated parameters are
given in Table 2 and the associated sum of squared
residuals in Table 3. Note that the estimated parame-
ters can be computed individually for each covariate
X̃ j and yielding the same results. Moreover, using the
transformation (19) with Xmin and Xmax instead of
X for the left, respectively right fuzzy estimates βL,⊥,
βR,⊥ will return the original estimates computed with
Xmin, X and Xmax.

7.5 General Discussion

Notice that, in table 2, in case 1, 2 and 3 (with mi-
nus sign), the fuzzy interval estimates seem to bet-
ter preserve the fuzziness than the fuzzy triangular
ones. This show that, empirically constrained mod-
els tend to have crispier estimates than unconstrained
ones. Moreover, as depicted in case 3, we can see how
the freedom of multiplying or not by a minus sign the
orthogonal projection (11) affects the fuzziness of the
estimates.

7.6 Sums of Squared Residuals

Lastly, in Table 3, notice that models (14) and its
orthonormalised version (16) share the same sum of
squared residuals. Moroever, this is also true for mod-
els 15 and 21. This could in fact be resulting from the
transformation 19 which allows one to retrieve the es-
timates found with non orthogonal regressors with the
orthonormalised ones.

8 CONCLUSION

We reexamine the fuzzy least squares method to solve
the so-called fuzzy linear regression problems. We
deal with two cases in particular. First, we consid-
ered that the independent variables are crisp, and sec-
ond, we treat the case of fuzzy independent variables.
In both situation, the dependent variable is fuzzy.

We develop a proper strategy to efficiently deal with
the fuzziness appearing in the observations. More-
over, we present and discuss two different types of
solutions arising from constrained and unconstrained
fuzzy least squares regression problems which are re-
spectively fuzzy triangular valued and fuzzy interval
valued.

Then, the extension of the method to orthogonal
fuzzy least squares regression methods has been in-
vestigated. In case of (fuzzy) orthogonal indepen-
dent variables, an important property of the classical
least squares method has been preserved. Due to the
orthogonality of the regressors, the individual coef-
ficients β̃ j of the regression model can be estimated
also by regressing the dependent variable on the j−th
covariate only. As a consequence, the orthogonalisa-
tion of the regressors allows us to find uncorrelated
fuzzy estimators β̃ j. Moreover, in the unconstrained
case, we showed that there exist a linear transforma-
tion to find the coefficients associated to the original
regression model, i.e. the model before the orthogo-
nalisation of the regressors. We also highlighted that
the resulting sum of squares residuals of a model and
its orthonormal counterpart are the same. These dis-
coveries seem to be very promising to make progress
in statistical inference with fuzzy data, in particular in
the study of the fuzzy distributions of the estimates.
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APPENDIX

Table 2: Models estimations1.

Models Fuzzy triangular estimates 2 Fuzzy intervals 3

Case 1 (14)
(15.673,22.605,29.537)

(−2.1602,−0.3766,1.4069)
(1.0109,1.0109,1.0109)

(20.032,22.605,25.178)
(−3.2499,−0.3766,2.4966)
(1.0583,1.0109,0.9636)

Case 2 (15)
(14.473,21.298,30.283)

(−1.3693,−0.0499,0.7347)
(0.9967,0.9967,0.9967)

(21.861,22.605,23.275)
(−3.4034,−0.3766,2.4123)
(1.0849,1.0109,0.9259)

Case 3 (16) (without (-) 4)
(165.22,192.67,220.11)
(100.18,108.22,116.26)

(−130.02,−111.68,−93.334)

(165.22,192.67,220.11)
(100.18,108.22,116.26)

(−130.02,−111.68,−93.334)

Case 3 (16) (with (-) 5)
(165.22,192.67,220.11)

(−108.22,−108.22,−108.22)
(111.68,111.68,111.68)

(165.22,192.67,220.11)
(100.18,108.22,116.26)

(−130.02,−111.68,−93.334)

Case 4 (21) (without (-))
(165.28,192.67,220.11)
(100.24,108.22,116.26)

(−124.05,−111.68,−91.63)

(165.28,192.67,220.11)
(100.24,108.22,116.26)

(−124.05,−111.68,−91.62)

1Table displaying the fuzzy regression coefficients obtained via a given fuzzy regression model shown in the first column.
2Solutions of a given constrained fuzzy least squares regression model.
3Solutions of a given unconstrained fuzzy least squares regression model.
4The orthogonal projection has not been multiplied by a minus sign.
5The orthogonal projection has been multiplied by a minus sign.

Table 3: Sum of squared residuals1.

Models Constraints Left value 2 Center value3 Right value 4 Total value5

(14) constrained 489.8294 256.9274 555.5718 1302.329
(14) unconstrained 426.2246 256.9274 491.9669 1175.119
(15) constrained 555.5714 303.3096 1189.367 2048.248
(15) unconstrained 599.9359 256.9274 630.1572 1487.021

(16) (with (-) 6) constrained 489.8294 256.9274 555.5718 1302.329
(16)(w/o (-) 7) constrained 3306.798 256.9274 3372.54 6936.265

(16) unconstrained 426.2246 256.9274 491.9669 1175.119
(21) (w/o (-)) constrained &

unconstrained
599.9359 256.9274 630.1572 1487.021

1Table displaying the squared residuals of the different models studied throughout this work.
2Squared residuals of the left fuzzy parts.
3Squared residuals of the central fuzzy parts.
4Squared residuals of the right fuzzy parts.
5Sum of the left, center and right squared residuals.
6The orthogonal projection has been multiplied by a minus sign.
7The orthogonal projection has not been multiplied by a minus sign.
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