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Abstract: In this paper, we explore how artificial agents (AAs) can understand and reason about so called ”action pat-
terns” within real-world settings. Essentially, we want AAs to determine which tools fit specific actions, and
which actions can be executed with certain tools, objects or agents, based on real-world situations. To achieve
this, we utilize a comprehensive Knowledge Graph, called ”Memory Net” filled with interconnected everyday
concepts, common actions, and environmental data. Our approach involves an inference technique that har-
nesses semantic proximity through subgraph matching. Comparing our approach against human responses and
a state-of-the-art natural language model based machine learning approach in a home scenario, our Knowledge
Graph method demonstrated strong generalization capabilities, suggesting its promise in dynamic, incremental
and interactive real world settings.

1 INTRODUCTION

Our work aims to enable artificial agents (AA) to
use practical, everyday common-sense knowledge in
physical environments. The AA should evaluate ac-
tions, tools, objects, locations, and collaboration part-
ners within a specific context. We use a simulated
home environment paired with a Knowledge Graph,
known as Memory Net (MemNet). A natural lan-
guage interface aids in aligning text input with Mem-
Net concepts. This concept aligns with Embodied
Question Answering (EQA), (Das et al., 2017), but
emphasizes situational context, hence termed Situa-
tional Question Answering (SQA), (Deigmöller et al.,
2022).

We contend that SQA is important for effective
human-machine cooperation, rooted in mutual situa-
tional understanding. This shared comprehension lets
agents predict or strategize, advancing towards Co-
operative Intelligence (Sendhoff and Wersing, 2020),
which promotes harmonious human-machine task
collaboration.

In this study, we gauge mutual understanding
through a question-answering task. The AA, using
MemNet, suggests solutions, ranking them from most
to least suitable. In a tool identification task, the AA
compares human-selected tools to those from Mem-

Net for questions like ”What can I use to store a
book?”. The choices are limited to 69 tools within
the simulated environment.

All common-sense and instance data exist in a
single graph, ensuring streamlined reasoning. We’ve
equipped MemNet with an inference system utilizing
semantic proximity via approximate subgraph match-
ing over action patterns.

The paper will first investigate related works, fol-
lowed by explaining the principles of MemNet, and
finally compare our system’s performance against hu-
man annotated data as well as a neural language
model in the tool identification task.

1.1 Related Work

Artificial agents (AA) rely heavily on the quality
of their knowledge sources for question-answering
performance. Knowledge-graphs like WikiData and
DBPedia predominantly offer factoid, encyclope-
dic knowledge about various topics (Antoniou and
Bassiliades, 2022). Systems built on such data of-
ten pair natural language understanding with SparQL
query generation (Zafar et al., 2018; Diefenbach et al.,
2018; Diefenbach et al., 2020), with benchmarks cen-
tered around instance-related questions (Dubey et al.,
2019). While these systems show progress, relying
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solely on encyclopedic knowledge isn’t sufficient for
embodied agents to interact in a physical environ-
ment.

Common-sense knowledge graphs, unlike ency-
clopedic ones, focus on general world knowledge.
These are sourced from plain texts, search-engine
logs, language models, or human curations such as
WebChild (Tandon et al., 2017), Atomic (Sap et al.,
2019), and Wordnet (Miller, 1998). Systems based
on this knowledge usually employ neural networks
or language models for question-answering (Storks
et al., 2019).

Embodied Question Answering (EQA) handles
questions about physical entities, necessitating both
natural language understanding and robot localization
and navigation. However, benchmarks like (Shrid-
har et al., 2020; Srivastava et al., 2022) mainly as-
sess sequences of expert-driven actions rather than
the robot’s common-sense capabilities. (Vassiliades
et al., 2021) explored richer semantic understand-
ing of scene objects and implemented a knowledge
retrieval system for cognitive robots. Knowledge
representations in robotics, like (Paulius and Sun,
2018) and (Thosar et al., 2018), detail actions for
task executions but often overlook language inter-
actions, especially in resolving ambiguities. While
some robotics applications include language under-
standing, they typically lack the extensive knowledge
needed to execute complex tasks or comprehend their
context (Fischer et al., 2018; Venkatesh et al., 2021;
Lynch and Sermanet, 2021; Mühlig et al., 2020).

A promising development is found in (Ahn et al.,
2022), which employs a large language model for
common-sense reasoning. They introduced an af-
fordance function to anchor the language model in
the physical world. However, we advocate for struc-
tured knowledge representation for transparency in
decision-making and real-time knowledge incorpora-
tion, especially if robot behaviors or knowledge need
refining through interactions.

2 MEMORY NET KNOWLEDGE
GRAPH

We utilize a unique knowledge graph structure for
common-sense reasoning, as presented in (Eggert
et al., 2020) and (Eggert et al., 2019). This graph
describes heavily interlinked entities, with nodes rep-
resenting concepts and instances, and links denoting
relationships between them.

Our knowledge graph acts as the sole storage for
varied data: from abstract concepts to real-world enti-
ties, objects, tools, actions, states, and even temporal

observations. Unlike the semantic web (Berners-Lee
et al., 2001) and many property graphs (Angles, 2018)
that rely on node and link category naming to carry se-
mantics requiring human interpretation, our MemNet
assumes no implicit semantics. This ensures entirely
machine-driven operations and allows the AA to ex-
pand its knowledge during operations.

Concept semantics emerge from the graph’s struc-
ture and a minimal set of link types, enabling oper-
ations like property reasoning (”hasProp”), composi-
tionality (”hasPart”), and transformations (”transTo”).
In MemNet, a ”property pattern” represents each con-
cept, linking a central node (the main concept) to
child nodes that signify subconcepts and properties.
These properties ideally correlate to external ”mea-
surements”, such as linguistic utterances or visual
recognition.

Except for certain root nodes, all concept nodes
are automatically linked to others via specialization
or inheritance links. A concept specializes from an-
other if it maintains its parent’s traits but has addi-
tional unique properties and relationships. This spe-
cialization is explicitly denoted in the graph, helping
to maintain a concise representation and minimize re-
dundancies. The concept’s meaning arises both from
its property pattern and its links to other concepts.

One central concept of an AA that operates in real-
world is that of an action, since it links multiple dif-
ferent types of concepts, such as involved objects and
tools, a predicted result or a participating actor. This
is closely tied to verb semantics as highlighted in lin-
guistics (Baker et al., 1998).

Within our knowledge graph, an ”action pattern”
defines the components of an action. These are spe-
cialized versions of original concepts, given their spe-
cific roles in the action. Hierarchical taxonomies help
detail agents, transformations, and objects, which
then take on specific roles in an action. For instance,
a knife becomes a tool in the context of the ”cut” ac-
tion, while an agent might be an actor or recipient in
a ”bring” action, depending on its context.

A key benefit of MemNet’s specialization schema
is its seamless representation of both abstract con-
cepts and real-world entities.

3 EVERYDAY COMMON-SENSE
KNOWLEDGE

To infuse our MemNet with general-knowledge con-
cepts and links, we utilized multiple taxonomies from
public datasets. Primarily, we turned to WordNet
(Miller, 1998) to extract hub nodes for specialization
taxonomies. These nodes, organized as ”synsets”,
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connect synonyms with shared meanings, serving
as our MemNet’s foundational structure. However,
WordNet lacks details on action patterns.

To fill this gap, we leveraged ConceptNet (Speer
et al., 2017). Its natural language triplets, such as
”[a net]-[used for]-[catching fish]”, were connected
to MemNet concepts through spaCy1(Honnibal and
Montani, 2017). For accurate connections, action and
object lemmas from phrases were extracted (Losing
et al., 2021), and Word Sense Disambiguation fa-
cilitated the mapping between WordNet synsets and
MemNet concepts.

Although ConceptNet was useful, its domain cov-
erage was inconsistent. From it, we retrieved 271
statements, primarily of the ”used for” relation that
were relevant for our scenario. To broaden our cover-
age, we introduced 70 high-level action patterns, ex-
amples include:

• make.v.03, food.n.01, cooking utensil.n.01

• make.v.03, food.n.01, kitchen appliance.n.01

• drink.v.01, beverage.n.01, drinking vessel.n.01

• ...

For practical testing, we employed VirtualHome
(Puig et al., 2018), simulating an agent’s real-world
interactions. We incorporated 69 stateful objects from
VirtualHome into our graph.

In summary, three sources: WordNet for base cat-
egorizations, ConceptNet for action patterns, and Vir-
tualHome for tangible household items, enriched our
MemNet. On top, a language interface was integrated,
utilizing syntactic parsing via spaCy, allowing us to
transform user queries into MemNet queries. For
more information, refer to (Deigmöller et al., 2022).

4 REASONING AND
GENERALIZATION

The MemNet database now integrates information
on both abstract and everyday concepts, objects, in-
stances, and the pivotal action patterns linking them.
Importantly, every concept, object, and action pattern
has an associated natural language expression (”lem-
mas”).

Envision this typical reasoning process: A user
poses a query with an incomplete action pattern. Per-
haps they’re asking about the object being acted upon,
a related tool, its common location, or the acting
agent. A hint typically suggests the missing piece,
which might be an agent, object, or tool. Questions

1https://spacy.io/

could be phrased as, ”Which tool can I use to cut
onions?” (here, the missing element is a tool) or ”Who
can take that?” (where an agent is the missing link).

Addressing communication uncertainties, ambi-
guities, or general underspecifications is crucial. Our
method utilizes the graph structure, transforming
the challenge of pinpointing compatible action pat-
terns into an approximate subgraph matching prob-
lem—governed by semantic distance. This distance
is gauged by the connectivity of the knowledge en-
gine. We’re primarily searching for closely connected
action patterns, enabling the system to generalize and
tap into the depth of the MemNet graph.

The reasoning process is tri-phasic: associa-
tion, generalization, and filtering. In the association
phase, lemmas guide towards related concepts in our
database. In generalization, a broad spectrum of se-
mantically linked action patterns is explored. Finally,
these patterns are verified based on a) the semantic
distance between their concepts and the initial hints,
and b) their appropriateness in the given context, like
item availability or achieving a goal state. Prioritiz-
ing by semantic distance refines the focus on the most
relevant options.

4.1 Action Pattern Inference

In a query such as ”What can I use to cut onions?”,
our language understanding identifies ”cut” as the ac-
tion’s lemma and ”onions” as the object’s lemma.
Given the question structure, we infer that a tool is
being sought, initializing the tool’s lemma as ”any-
thing”. Since lemmas are tied to concepts, the ini-
tial step is identifying all concepts linked with ”cut”,
”onions”, and ”anything”. This identifies our seed
concepts for actions, objects, and tools (lines 1-3 in
Listing 1). Owing to language’s inherent ambigu-
ity, there might be multiple seed concepts for each
lemma.

Next, these seed concepts link to more specific
subconcepts and broader superconcepts through spe-
cialization links. For instance, ”cutting” can be gen-
eralized as ”separating” or ”dividing” and specialized
as ”slicing” or ”cubing”. A similar procedure applies
to ”onions”. This step enlarges our pool of concept
candidates (lines 4-6).

We then identify matching action patterns by en-
suring they integrate an action, object, and tool con-
cept, each stemming from the respective set of con-
cept candidates or their specialized versions in the ac-
tion pattern (line 7).

Finally, line 8 directs us to the action patterns’
originating action, object, and tool concepts from the
candidate concept sets. These foundational concepts
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guide us in identifying real-world instances fit for the
action patterns. For example, in the question ”What
can I use to cut onions?”, while a real-world object
like a ”knife” is a viable candidate, it isn’t involved in
any specified action yet.

Listing 1: Starting from lemmas for action pattern elements
like action, object and tool, search the knowledge graph for
semantically related action patterns.
1 action_seed = Get concept with lemma

action_lemma
2 object_seed = Get concept with lemma

object_lemma
3 tool_seed = Get concept with lemma tool_lemma
4 action_concept_candidate = Get sub+superconcepts

of action_seed
5 object_concept_candidate = Get sub+superconcepts

of object_seed
6 tool_concept_candidate = Get sub+superconcepts

of tool_seed
7 (action, object, tool, ...) = Get all AP’s where

action is subconcept from any of
action_concept_candidate AND object is
subconcept from any of
object_concept_candidate AND tool is
subconcept from any of
tool_concept_candidate

8 (action_concept, object_concept, tool_concept,
...) = Get corresponding superconcepts
closest to action, object, tool, ...) from
the concept candidate pools

4.2 Generalization and Ranking

Action patterns, retrieved as per listing 1, match the
initial lemmas. Moreover, by associating these with
more abstract or specialized concepts, the system can
retrieve a broader range of action patterns semanti-
cally linked to the user’s query. For instance, ask-
ing ”What can I use to cut onions?” might yield re-
sults not only specific to ”cutting onions with a knife”
but also more generalized or specialized patterns like
”separating vegetables with a cutting utensil” or ”cub-
ing vegetables with a paring knife”, provided they ex-
ist in the knowledge base.

Once these patterns are retrieved, their semantic
proximity is evaluated. To achieve this, the shortest
abstraction or specialization paths between the seed
concepts and the concepts currently populating the
AP candidates are identified (lines 1-3 in listing 2).
These paths then inform the computation of element-
wise abstraction or specialization distances (lines 4-
9).

For every action pattern, the total semantic dis-
tance is computed by summing up their individual
element-wise distances (lines 10-11). These distances
guide the ranking of the action patterns. Special-
ization is straightforward since a specialized AP is
wholly compatible with a broader one. In contrast,
abstracting creates broader APs, which can be less ac-
curate in specific contexts.

The resultant ranking arranges the responses, fo-
cusing on the most pertinent ones, typically those
closest to the initial query. While highly abstract
APs like ”manipulate solid food with a tool” might
be valid, they may not be relevant. On the other hand,
extremely specialized APs, like ”slicing those shal-
lots with a particular slicer only Tom owns,” might
not resonate with the broader context.

Listing 2: Ranking of action patterns by semantic similarity.
1 action_path = Get shortest sub+superconcept path

between action_seed and action_concept
2 object_path = Get shortest sub+superconcept path

between object_seed and object_concept
3 tool_path = Get shortest sub+superconcept path

between tool_seed and tool_concept
4 action_abstraction_distance = length(action_path

) if action_concept is more abstract then
action_seed, 0 otherwise

5 object_abstraction_distance = length(object_path
) if object_concept is more abstract then
object_seed, 0 otherwise

6 tool_abstraction_distance = 0 or length(
tool_path) if tool_concept is more abstract
then tool_seed, 0 otherwise

7 action_specialization_distance = length(
action_path) if action_concept specialized
from (action_seed), 0 otherwise

8 object_specialization_distance = length(
object_path) if object_concept specialized
from object_seed, 0 otherwise

9 tool_specialization_distance = length(tool_path)
if tool_concept is specialized from
tool_seed, 0 otherwise

10 ap_abstraction_distance = weighted sum of (
action_abstraction_distance,
object_abstraction_distance,
tool_abstraction_distance, ...)

11 ap_specialization_distance = weighted sum of (
action_specialization_distance,
object_specialization_distance,
tool_specialization_distance, ...)

4.3 Retrieval of Instance Candidates

Once we have a ranked set of compatible action pat-
terns, we can proceed to check if there are some con-
crete items in the environments that might be compat-
ible with those actions. For this purpose, we search
for concepts that are specializations of the action, ob-
ject, tool, ... concepts of the AP’s and which fulfill
certain additional criteria.

Since one constraining criterion is given by the
seed information itself (e.g. if the user asks ”What
knife can I use to cut onions?”, the category ”knife” of
the tool is already given as a seed), we determine the
pairwise lowest (in terms of specialization distance)
between the seed concepts and the concepts of the AP
elements, see lines 1-3 of listing 3. From that start-
ing point, in lines 4-6 we proceed to find specialized
versions of those concepts.

Let us concentrate on the case of a requested tool
in ”What can I use to cut onions?”. From the request,
there is no further constraint on the tool, so the tool
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seed can be anything that is usable as a tool. One
might consider e.g. ”knife”, ”cutting tool”, ”kitchen
knife” and ”swiss army knife” as tool concepts being
part of corresponding AP’s. Searching for instances
of these concepts in a real scene might reveal that
there is no ”swiss army knife”, but several instances
of kitchen knives and other cutting tools. The seman-
tic distance evaluation finally reveals that a kitchen
knife might be the best candidate for using as a tool.

Listing 3: Retrieval of suitable candidates for action pattern
elements.
1 action_instance_seed = Get pairwise lowest

concept between action_seed and
action_concept

2 object_instance_seed = Get pairwise lowest
concept between object_seed and
object_concept

3 tool_instance_seed = Get pairwise lower concept
between tool_seed and tool_concept

4 action_instance_candidate = Get subconcepts from
action_instance_seed

5 object_instance_candidate = Get subconcepts from
object_instance_seed

6 tool_instance_candidate = Get subconcepts from
tool_instance_seed

5 EXPERIMENTAL RESULTS

To evaluate the reasoning and generalization perfor-
mance of the knowledge engine, we compiled a set
of 109 questions related to our virtual home environ-
ment and asked 20 subjects to answer them. More
specifically, we asked questions about which object/-
tool that is present in the environment, might be use-
ful to execute a certain action on another specific ob-
ject, e.g. ”What can I use to drink juice?”. The sub-
jects could pick any candidate from the list of 47 ob-
ject/tool types (indicated in Fig. 1), and order them
from most to least applicable. The constraint was to
provide at least 3 candidates for each question. For
the benchmark, we collected the votes for each can-
didate, finally resulting in an ordered answer set for
each question ranked from high to low number of
votes. For the benchmark, answers with less than 3
votes have been excluded. The goal of the evaluation
is to find out: (1) if the algorithm correctly identifies,
i.e. disambiguates the right action-object-tool context
from lemmas; (2) how well the results match with the
expectations of the human subjects. We could also
phrase this as identifying the shared context under-
standing between human and machine, as stated in the
section 1.

To judge the knowledge engine performance, we
compared two more approaches with the user an-
swers. One is based on a fine-tuned neural language
model and the other provides an as simple as possible

Figure 1: Excerpt of the tool icons (top) and an excerpt of
the questionnaire (bottom). The questions refer to tools
available as tool icons that could be applied for a given
question stating an action and object, like ”What can I use
to drink coffee?”. The subjects had to select at least three
possible answer candidates from the tool icons, which cor-
respond to the objects available in our simulator scene. The
candidates had to be assigned to one of the categories from
preferred (green) to least applicable (red).

baseline. Both are explained below in further detail.

5.1 Baseline

To generate a baseline answer set, we used the distri-
bution of the human answers. Based on the histogram
over all answers for all questions, we sorted the tool
candidates by the number of votes. This ranked order
is used as standard answer set to every question. That
means, we always give the same answer, independent
of the question, based on the frequency of the can-
didates in the overall user answers. Even if this ap-
proach is simple, it is a quite reasonable strategy in
terms of choosing a correct answer if the system is
agnostic of the question, because our set of answer
candidates, i.e. instances, is limited.

5.2 Neural Language Model

The Neural Language Model (NLM) we incorporated
is rooted in deep learning. We trained and tested the
NLM as a binary classification problem so that the
NLM could deal with a small amount of training data.

The dataset employed to train the NLM was
sourced from the same set of information archived in
MemNet, detailed in Section 3. Leveraging triples
from ConceptNet such as [bookshelf]-[used for]-
[storing books] or their equivalent representations in
MemNet’s action pattern, we autonomously spawned
a question-response duo: ”What can I use to store a
book?” paired with the answer ”bookshelf”. Conse-
quently, this provided us with one labeled instance for
supervised training, tagged with the output ”1”. Simi-
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Figure 2: Match score (top) and F1 score (bottom) for in-
creasing number of answers, comparing three approaches,
the knowledge engine (MemNet), the language model and
the baseline.

larly, negative samples for this question statement are
generated by randomly selecting from other tool can-
didates, like e.g. ”glass” is chosen, which then gets an
output value of 0.

The model was constructed by fine-tuning with
the above training data using BERT (Devlin et al.,
2018). For each positive sample, ∼20 negative ex-
amples were generated, with a total number of 6030
negative examples.

Upon completion of the training phase, the refined
neural model produced a value within the range [0,1]
for every question-tool combination. This value was
interpreted as the likelihood of the statement being
accurate. For every query posed, we then arranged
all plausible tool responses based on this computed
likelihood. This provided a hierarchical list of poten-
tial responses, facilitating a side-by-side comparison
with the datasets generated by human participants and
the MemNet.

5.3 Evaluation Measures

For our evaluation, we have chosen two measures:
the standard F1 score and a match score explained
in more details below. We introduced a match score
measure because of two reasons. First, we cannot
map standard question answering measures, where
the most obvious is the mean reciprocal rank (MRR,
(Möller et al., 2022)) to our problem setting. This is
because we have a set of reference answers and a set
of system answers, instead of only a single reference
answer as it is used for the MRR. Second, we think
that the match score reflects well the message of our
investigation, which is how does the tool candidates a
human has in mind for a given question overlap with
the set of system responses.

The match score is motivated by set theory and is
based on the intersection R∩S between the reference
answer set R and the system answer set S. Further, we
count a positive match if there is any intersection be-
tween the two sets by |R∩S|> 0, otherwise we count
it as a no match by:

M =

{
1 if |R∩S|> 0
0 otherwise

To analyze the ranking of answers, we compute M
for an increasing set size of R and S between 1 and 10
(cf. Fig. 2).

Similar to the match score, we can use the sets
for calculating the F1 score, where precision = |R∩
S|/|S| and recall = |R∩ S|/|R|. Again, we compute
the F1 score for increasing set sizes, which gives us
the performance curve (cf. Fig. 2 bottom).

5.4 Comparison of Results

We compared three approaches against our reference
answers from the subjects. The match score at Fig. 2
(top) shows that the baseline method performs worst,
far below the language model and the knowledge en-
gine. Nevertheless, the answers provide already a
quite good guess, even if it is not related to the in-
dividual question.

The language model and the knowledge engine
perform comparably well considering the first 2 an-
swers only. If we increase our set of answers to 3 and
higher, we can see that the knowledge engine outper-
forms the language model, with a maximum differ-
ence of around 10%. With increasing set sizes, all ap-
proaches converge for the match score, which means
that the set size is large enough to cover at least one
correct answer in the reference data.

The plots in Fig. 3 show how many candidates
contribute to a positive match for the knowledge en-
gine (top) and the language model (bottom). The dis-
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Figure 3: Number of correct answers for knowledge engine
(top) and language model (bottom). It shows the number
of correct candidates for increasing number of included an-
swers, as in Fig. 2. The envelope matches with the Match
Score from Fig. 2.

tribution indicates that the knowledge engine provides
significantly more correct answers in the earlier ranks
than the language model. This is especially the case
for matches including 4 (red) and 5 (purple) correct
candidates.

Looking at the F1 score in Fig. 2 (bottom), we
can observe a similar tendency as for the match score
(top). The difference between knowledge engine and
language model gets even more prominent. Probably,
this is due to the difference in the number of correct
candidates per set, which we already observed in Fig.
3.

6 CONCLUSION

In this paper, we introduced a generalizable infer-
ence method for Memory Nets — a type of knowl-
edge graph — that reasons about actions using action
patterns. These patterns, derived from common-sense
facts and sources like ConceptNet to connect objects,
tools, agents, or locations in an action context.

We assessed this method by comparing user and
system responses to scenario-based tool-related ques-
tions. Alongside, a language model trained on the
same common-sense facts was used for benchmark-
ing. Our findings from section 5.4 highlight that our

approach offers similar or better inference than the
language model. Notably, our method provides more
rational answers by working at a conceptual level,
while the language model hinges on word patterns. A
significant advantage of our system is its transparent
reasoning through the knowledge graph.

However, we aim beyond just comparison. Con-
ventional machine learning models, like BERT, de-
mand retraining for each unique task or situation.
While the underlying BERT language model might
contain latent representations about objects, tools and
actions from language correlation statistics, the em-
bedding of the system into a specific situational con-
text occurs by the training data, meaning that the sys-
tem has to be retrained for every task and every situ-
ation. In contrast, Memory Nets assimilate changing
situations or new action patterns without retraining,
thanks to their graph-based inference mechanism.

As a conclusion, we believe that a system which
operates in dynamically changing situations and
which deals with an incrementally growing knowl-
edge base will not be possible with standard batch-
learning based models but will require more flexible
reasoning mechanisms like proposed in this paper.
Anyhow, targeting for a hybrid solution, combining
advantages of both approaches, is a promising direc-
tion.
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Deigmöller, J., Smirnov, P., Wang, C., Takeuchi, J., and
Eggert, J. (2022). Situational question answering us-
ing memory nets. In 14th International Conference
on Knowledge Engineering and Ontology Develop-
ment(KEOD).

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-

KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development

188



formers for language understanding. arXiv preprint
arXiv:1810.04805.

Diefenbach, D., Both, A., Singh, K., and Maret, P. (2018).
Towards a question answering system over the seman-
tic web (2018). arXiv preprint arXiv:1803.00832.
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