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Abstract: This paper focuses on the comparison of the state-of-the-art algorithms and the influence of a stopping condi-
tion, the maximum number of function evaluations, on the optimization process. The main aim is to compare
the chosen state-of-the-art algorithms with different predetermined stopping conditions and observe if they are
comparable in reaching a certain quality of solution on a given set of benchmark functions. For this analysis,
the four most recent state-of-the-art evolutionary algorithms were chosen for comparison on the latest set of
benchmark functions. We utilized a fixed-budget approach with different values of stopping conditions. Small
differences in the algorithms’ performances are observed and the obtained results are also statistically ana-
lyzed. Different values of the stopping conditions show different rankings of evolutionary algorithms without
the significant difference. The possible reason for this is that their performances are very close.

1 INTRODUCTION

It is extremely demanding to improve an evolu-
tionary algorithm’s performance for a specific set
of benchmark functions. Various mechanisms can
be helpful in such tasks, for example mechanisms
such as population size reduction (Tanabe and Fuku-
naga, 2014), (Piotrowski et al., 2020), perturbation
techniques (Van Cuong et al., 2022), using multi-
ple mutation strategies (Zhu et al., 2023), multiple
crossover techniques (Bujok and Kolenovsky, 2022),
self-adaptive parameters (Brest et al., 2014) and re-
initialization mechanism (Meng et al., 2021). The
aim of these mechanisms is the same; to enhance and
refine the algorithm’s performance to reach a better
quality of solutions, to increase the speed of con-
vergence, or to lower the runtime while considering
a fixed-budget (Jansen, 2020) or a fixed-target ap-
proach (Hansen et al., 2021).

With the fixed target approach, we set a specific
value as a target value (quality of solution) and ob-
serve if it will be reached by a given algorithm. Here
we also observe the number of function evaluations or
runtime spent to reach the optimal or suboptimal tar-
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get value. While, with the fixed-budget approach, we
set a specific budget (number of function evaluations
or runtime) and observe the quality of the solution that
will be reached.

However, both approaches have some shortcom-
ings, for example with the fixed-budget approach, the
algorithm is restricted to a certain number of func-
tion evaluations. This can hinder the algorithm’s abil-
ity to explore the search space fully and it can result
in solutions of suboptimal quality. Whereas for the
fixed-target approach, a choice of targets may present
a challenge, since not every solver is able to reach the
wanted quality of solutions.

The main intention of every experiment is to reach
the optimal solution with the smallest possible num-
ber of function evaluations as possible, while also
observing the best quality of solutions. The maxi-
mum number of function evaluations or the budget
(in the fixed-budget approach) is a common stop-
ping condition used in competitions, such as IEEE
Congress on Evolutionary Computation (CEC) Spe-
cial Sessions and Competitions on Real-Parameter
Single-Objective Optimization (A. W. Mohamed, A.
A. Hadi, A. K. Mohamed, P. Agrawal, A. Kumar,
P. N. Suganthan, 2020), (A. W. Mohamed, A. A.
Hadi, A. K. Mohamed, P. Agrawal, A. Kumar, P.
N. Suganthan, 2021). In the CEC competition, al-
most every year, a new set of benchmark functions
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is utilized to compare the newest proposed state-of-
the-art evolutionary algorithms under the same set
of conditions (A. W. Mohamed, A. A. Hadi, A. K.
Mohamed, P. Agrawal, A. Kumar, P. N. Suganthan,
2021). The problem occurs when some algorithms
are budget dependent (Tušar et al., 2017), mean-
ing that some of their parameters are set based on
the stopping condition maxFEs (maximum number of
function evaluations). Some of the evolutionary al-
gorithms use maxFEs as a control parameter in the
mechanism of the population size reduction. There,
it affects the population size and consequently influ-
ences the optimization process. Examples of such
state-of-the-art algorithms are L-SHADE (Tanabe and
Fukunaga, 2014), iL-SHADE (Brest et al., 2016) and
MadDE (Biswas et al., 2021).

It is even more difficult to predict algorithm’s per-
formance while using a different budget from the one
being used in the experiment of the given/cited pa-
per or competition (Hansen et al., 2021). Furthermore,
a programming language can play a significant role
in determining the prevailing algorithm on a given
benchmark. This holds true in cases, when the ob-
served variable is runtime or speed (Herzog et al.,
2022), (Ravber et al., 2022).

The question which arises is following: how com-
parable are the state-of-the-art algorithms based on
different predetermined stopping conditions? Are
some of the state-of-the-art evolutionary algorithms
adapted for a certain stopping condition?

In this paper, it is shown how different predeter-
mined stopping conditions affect the chosen evolu-
tionary algorithms in reaching a certain quality of so-
lutions. For the purpose of this analysis, four state-
of-the-art algorithms were chosen: EA4eig (Bujok
and Kolenovsky, 2022), NL-SHADE-RSP (Biedrzy-
cki et al., 2022), NL-SHADE-LBC (Stanovov et al.,
2022), and S-LSHADE-DP (Van Cuong et al., 2022).
All four evolutionary algorithms were compared on
the CEC 2022 Benchmark functions. We present the
statistical analysis and describe how the ranking of
the chosen algorithms changes when a different maxi-
mum number of function evaluations is being applied.
We ran the algorithms with the original settings from
the competition (A. W. Mohamed, A. A. Hadi, A. K.
Mohamed, P. Agrawal, A. Kumar, P. N. Suganthan,
2021) and then we modified the maximum number of
function evaluations to see whether there are any dif-
ferences between the algorithms’ ranks or their per-
formances.

The paper is organized as follows. In Section 2,
the related work is described. In Section 3, the ex-
periment and analysis are provided. Section 4 finally
concludes our paper.

2 RELATED WORK

It is extremely difficult to deduce, which algorithm
is the best for a chosen optimization problem. In this
section, we will present a few of the newer approaches
which tackle the stochastic algorithm’s analysis and
we will emphasize what they focus on.

The questions which occur in terms of the perfor-
mance analysis are for example the following, how
fast can an algorithm reach a wanted solution qual-
ity and with what budget this can be achieved (Bartz-
Beielstein et al., 2020). The answers are provided by
the fixed-target or fixed-budget approaches. One of
the most common measurements of evaluating an al-
gorithm is the number of function evaluations (NFEs).
For example, the aim of some methods is to achieve
the smallest number of function evaluations in reach-
ing the optimal solution. However, some of the anal-
yses focus more on the speed or runtime of the algo-
rithm (Herzog et al., 2022). The measurement of time
can be sensitive to some factors, such as the program-
ming language, hardware, or even of the workload of
the CPUs. This aspect makes algorithms more diffi-
cult to compare (Bartz-Beielstein et al., 2020).

However, all research is aimed towards establish-
ing a fair comparison of evolutionary algorithms and
choosing the best one for a given optimization prob-
lem. Furthermore, the analyses should be also aimed
towards choosing the best algorithm for real-world
problems (Bartz-Beielstein et al., 2020).

The anytime approach (Hansen, Nikolaus and
Auger, Anne and Brockhoff, Dimo and Tušar, Tea,
2022), argues that the appropriate measurement to
provide a quantitative and meaningful performance
assessment is the number of blackbox evaluations to
reach a predefined target value. They call this mea-
sure the runtime of the algorithm. It is also budget-
free since the authors support the claim that bench-
marking for a single budget seems inefficient. Fur-
thermore, it does not provide enough information
about the solver or the optimization problem. The
approach is able to assess the performance anytime.
The main focus is on using quantitative performance
measures on a ratio scale and runtime measurements.

It is no longer enough to choose only one algo-
rithm for a given set of benchmark functions (Wolpert
and Macready, 1997), but to choose the best algo-
rithm for each problem instance. This problem can
be mitigated by using the automated algorithm selec-
tion (Cenikj et al., 2022). This approach emphasizes
that different instances are best solved when different
algorithms are being used (Kerschke et al., 2019). Re-
searchers have been focusing mostly on the character-
istics of an algorithm, however the focus should also
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be on the characteristics of an optimization problem.
In (Herzog et al., 2023), it is shown how to predict
a stopping condition for a specific optimization prob-
lem and stochastic solver with a certain probability.
The prediction model is based on the statistical distri-
bution of two variables (runtime and number of func-
tion evaluations). Based on the smaller dimensions
of an optimization problem and a chosen stochastic
solver, one is able to predict in what runtime or num-
ber of function evaluations a solution of wanted qual-
ity will be reached with any probability for larger di-
mensions.

An interest has been taken recently in exploratory
landscape analysis, which characterizes optimization
problem instances with numerical features, which de-
scribe different sides of the problem instances (Niko-
likj et al., 2022). The approaches changed also in
terms of not only choosing an algorithm suitable for a
benchmark but vice-versa. The SELECTOR (Cenikj
et al., 2022) approach focuses on selecting a represen-
tative set of benchmark functions to provide a repro-
ducible and replicable statistical comparison.

No matter which method is used, a solid statisti-
cal analysis should be its basis (Birattari and Dorigo,
2007). The most common approach to determine
whether there is a statistical significance between two
solvers is using parametric or non-parametric statisti-
cal tests. However, for the parametric tests some as-
sumptions should be checked before applying them
to the data. These assumptions are: normality of the
data, homogeneity of variances and independence of
the observations (Carrasco et al., 2020). Violations
of these assumptions may lead to an incorrect conclu-
sion, which can result in misinterpretation due to the
lack of statistical knowledge.

Due to several pitfalls and mishaps, which can
occur with the incorrect use of the statistical tests,
the researchers have gained interest in Bayesian tech-
niques (Benavoli et al., 2017). Bayesian methods pro-
vide interpretable information based on the underly-
ing performance distribution (Calvo et al., 2019).

Researchers use established and novel methods
with the intention of determining which algorithm
prevails on a given set of benchmark functions. By
comparing different approaches using the benchmark
functions, researchers aim to identify the strengths
and weaknesses of each algorithm and gain compre-
hensive insights into their performances.

3 EXPERIMENT

In this section, we provide the experimental part of
this paper. The main aim of this section is to present

how modifying the stopping condition, the maxi-
mum number of function evaluations affects the al-
gorithms’ performance. The intention is also to deter-
mine through a statistical analysis whether the rank-
ing of the algorithms changes.

For this analysis, the four most recent state-of-
the-art algorithms were chosen. The chosen state-
of-the-art algorithms are the following: the win-
ner of the CEC 2022 Competition EA4eig (Bujok
and Kolenovsky, 2022) with Eigen crossover, NL-
SHADE-RSP (Biedrzycki et al., 2022), which uses
a midpoint of a population to estimate the opti-
mum, NL-SHADE-LBC (Stanovov et al., 2022) with
linear parameter adaptation bias and S-LSHADE-
DP (Van Cuong et al., 2022) with dynamic perturba-
tion for population diversity. The three solvers NL-
SHADE-RSP, NL-SHADE-LBC, and S-LSHADE-
DP were implemented in C++ programming lan-
guage, and only EA4eig was implemented in Mat-
lab 2021b. The experiment was carried out on a
personal computer with GNU C++ compiler version
9.3.0, Intel(R) Core(TM) i5-9400 with 3.2 GHz CPU
and 6 cores under Linux Ubuntu 20.04 for solvers NL-
SHADE-RSP, NL-SHADE-LBC and S-LSHADE-DP
and on a personal computer with Windows 11 in Mat-
lab 2021b for the solver EA4eig.

To compare these algorithms, we chose the CEC
2022 single-objective benchmark functions. All four
algorithms were used in the competition in 2022 and
ranked as the first four. The benchmark consists of
12 functions: Shifted and fully Rotated Zakharov
Function, Shifted and fully Rotated Rosenbrock’s
Function, Shifted and fully Rotated Expanded Schaf-
fer’s f6 Function, Shifted and fully Rotated Non-
Continuous Rastrigin’s Function, Shifted and fully
Rotated Levy Function, Hybrid Function 1 (it con-
tains N = 3 functions), Hybrid Function 2 (N = 6),
Hybrid Function 3 (N = 5), Composition Function 1
(N = 5), Composition Function 2 (N = 4), Composi-
tion Function 3 (N = 5) and Composition Function 4
(N = 6). We made 30 independent runs for each algo-
rithm and for two dimensions D = 10 and D = 20.
We realize that the dimensions appear to be rela-
tively low, however these are the settings provided by
the competition’s technical report (A. W. Mohamed,
A. A. Hadi, A. K. Mohamed, P. Agrawal, A. Ku-
mar, P. N. Suganthan, 2021). We used different stop-
ping conditions for D = 10 and selected the follow-
ing values of maxFEs = 100,000; 200,000; 400,000
and 800,000 and for D = 20, we set the maxFEs =
500,000; 1,000,000; 2,000,000 and 4,000,000.

The algorithms were observed based on how the
average error of all 30 runs changes when the stopping
condition maxFEs is modified. For each run, we are
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Table 1: Rankings of the solvers according to Fried-
man’s test and mean values for dimensions D = 10 with
maxFEs= 200,000, and D = 20 with maxFEs = 1,000,000
for the CEC 2022 benchmark functions.

Solver Quality of Solutions
D = 10 D = 20

EA4eig 2.50 2.42
NL-SHADE-LBC 2.58 2.13
NL-SHADE-RSP 2.25 2.46
S-LSHADE-DP 2.67 3.00

recording the function error value after a certain num-
ber of function evaluations. Then we calculate the
average value of the errors of all runs. The statistical
analysis was done by using the non-parametric statis-
tical tests: Friedman’s test for ranking and Wilcoxon
signed-rank test for a pairwise analysis to determine
whether there is a significant difference between the
mean values of the chosen evolutionary algorithms
when using different stopping conditions.

In hindsight, we were mainly interested whether
modifying the stopping criteria affects the ranking
of the algorithms. For this purpose, we applied
the Friedman’s test. This is a non-parametric test,
which can detect the statistical significance among
all solvers. The Friedman’s test ranks the algorithms
from best to worst; the best-performing algorithm or
the algorithm with the lowest mean value (quality of
solution) should have the lowest rank and the largest
mean value should have the highest rank.

Firstly we initially executed the algorithms using
their original settings, which means the maxFEs for
D = 10 was set as the 200,000 and for the D = 20 the
maxFEs was set as 1,000,000. We ranked the solvers
separately based on the dimension with Friedman’s
test. In Table 1, Friedman’s test detects that there
are no significant differences between the solvers’ re-
sults, which means that their performances are com-
parable. The lowest rank is obtained by NL-SHADE-
RSP for D = 10 and NL-SHADE-LBC for D = 20.
The highest rank is obtained by S-LSHADE-DP for
both dimensions. Since there is no statistical signifi-
cance between the solvers, the post-hoc procedure is
not needed.

To investigate the effect of decreasing the stopping
condition on the algorithms’ performance and rank-
ings, we did the following. We set the maxFEs to
a 100,000 for D = 10 and 500,000 for D = 20. As
shown in Table 2, the order of ranks changes. The
lowest rank is obtained by EA4eig for both dimen-
sions. The highest rank is obtained by S-LSHADE-
DP for D = 10 and by NL-SHADE-RSP for D = 20.
It was determined that there is no significant differ-
ence between the solvers.

In Table 3, we show the ranking of the solvers for

Table 2: Rankings of the solvers according to Fried-
man’s test and mean values for dimensions D = 10 with
maxFEs = 100,000, and D = 20 with maxFEs = 500,000
for the CEC 2022 benchmark functions.

Solver Quality of Solutions
D = 10 D = 20

EA4eig 2.08 2.00
NL-SHADE-LBC 2.21 2.21
NL-SHADE-RSP 2.79 3.21
S-LSHADE-DP 2.92 2.58

the increase of the stopping condition to maxFEs =
400,000 for D= 10 and maxFEs= 2,000,000 for D=
20. We notice that the lowest rank is obtained by NL-
SHADE-LBC for both dimensions. The highest rank
is obtained by S-LSHADE-DP for D= 10 and by NL-
SHADE-RSP for D = 20.

In Table 4, the ranking of the algorithms is shown
when maxFEs is increased to maxFEs = 800,000 for
D = 10 and maxFEs = 4,000,000 for D = 20. The
lowest rank is obtained by S-LSHADE-DP for D= 10
and by EA4eig for the D= 20. No matter the stopping
condition, there is no significant difference between
the solvers. It can be observed that by increasing the
stopping condition, the differences between the ranks
of the algorithms get closer.

Additionally, we show the convergence graphs of
all four solvers for D = 20. We observed the aver-
age error and how it changes for a specific maximum
number of function evaluations. For the values on the
x-axis, we calculated them based on the rules from
CEC competition (A. W. Mohamed, A. A. Hadi, A.
K. Mohamed, P. Agrawal, A. Kumar, P. N. Suganthan,
2021). The convergence graphs are shown in Figs. 2
to 4. As it is shown in Figs. 2 to 4, the EAeig has a
good convergence rate at the beginning and reaches a
good solution, however, it slows down and is unable
to find the optimal solution. The convergence graphs
are a good indicator of the influence of the stopping
condition on the algorithm, for example in Fig. 3, it
is clear that NL-SHADE-LBC reaches a better solu-
tion with a larger number of function evaluations than
other algorithms.

In Tables 5 to 9, we show each separate solver and
the quality of the solutions it has reached on a cer-
tain benchmark function for different stopping con-
ditions. It is evident that even with a high number
of function evaluations maximum number of function
evaluations, stochastic solvers do not converge to the
optimum for each benchmark function. Still, we sug-
gest using a bigger value as a maxFEs, since this will
enable the stochastic solvers to reach a better quality
of solutions.
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Table 3: Rankings of the solvers according to the Fried-
man’s test and mean values for dimensions D = 10 with
maxFEs= 400,000, and D = 20 with maxFEs = 2,000,000
for the CEC 2022 benchmark functions.

Solver Quality of Solutions
D = 10 D = 20

EA4eig 2.33 2.33
NL-SHADE-LBC 2.00 1.96
NL-SHADE-RSP 2.75 3.04
S-LSHADE-DP 2.92 2.67

Table 4: Rankings of the solvers according to the Fried-
man’s test and mean values for dimensions D = 10 with
maxFEs= 800,000, and D = 20 with maxFEs = 4,000,000
for the CEC 2022 benchmark functions.

Solver Quality of Solutions
D = 10 D = 20

EA4eig 2.58 1.96
NL-SHADE-LBC 2.58 2.28
NL-SHADE-RSP 2.58 3.17
S-LSHADE-DP 2.25 2.89

Table 5: Average errors obtained on the 12 benchmark func-
tions for the D = 10 for different stopping conditions for
EA4eig.

F EA4eig
1E +05 2E +05 4E +05 8E +05

f1 0 0 7.97E-03 0
f2 6.64E-01 1.46 1.33E+00 1.20E+00
f3 0 0 0 0
f4 9.29E-01 1.26028 4.64E-01 3.98E-01
f5 0 0 0
f6 5.99E-02 0.0174 3.64E-03 1.57E-03
f7 0 0 8.01E-03 0
f8 3.75E-01 7.09E-02 7.19E-02 2.51E-02
f9 1.86E+02 1.86E+02 1.86E+02 1.86E+02
f10 1.00E+02 1.00E+02 1.00E+02 1.00E+02
f11 9.25E-09 0 0 0
f12 1.47E+02 1.47E+02 1.47E+02 1.47E+02

4 CONCLUSION

In this paper, we focused on comparison of the state-
off-the-art algorithms by utilizing the fixed-budget
approach. The approach is usually used when com-
paring the evolutionary algorithms and their perfor-
mances. An algorithm needs to reach a wanted solu-
tion in the given budget (number of function evalua-
tions). This number is predetermined. Since state-of-
the-art algorithms use maxFEs as an additional pa-
rameter, which influences the optimization process,
for example in the mechanism such as, the popula-
tion linear size reduction, it is also important how
we set it. We followed the CEC 2022 competition

Table 6: Average errors obtained on the 12 benchmark func-
tions for the D = 10 for different stopping conditions for
NL-SHADE-LBC.

F NL-SHADE-LBC
1E +05 2E +05 4E +05 8E +05

f1 0 0 0 0
f2 0.133 0.133 0.133 0.133
f3 0 0 0 0
f4 4.2 1.79 1.3 0.829
f5 0 0 0 0
f6 0.19 0.012 0.02 0.156
f7 0.02 0 0 0
f8 0.28 0.046 0.0176 2.74E-02
f9 2.29E+02 2.29E+02 2.29E+02 1.86E+02
f10 1.03E+02 100 100.12 100.113
f11 0 0 0 0
f12 164.9241 165 164.925 164.85

Table 7: Average errors obtained on the 12 benchmark func-
tions for the D = 10 for different stopping conditions for
NL-SHADE-RSP.

F NL-SHADE-RSP
1E +05 2E +05 4E +05 8E +05

f1 0 0 0 0
f2 0 0 0 0
f3 0 0 0 0
f4 12.62 9.27 6.53 5.59
f5 0 8.48 3.76E-01 0.0817
f6 0.31 1.80E-01 0.06 0.046
f7 0 3.70E-06 0 0
f8 0.64 2.20E-01 0.11 0.06
f9 2.29E+02 2.29E+02 2.28E+02 2.29E+02
f10 1.42E+00 1.30E-01 4.11E-01 4.40
f11 0 0 3.29E-07 0
f12 164.95 1.60E+02 164.34 163.60

with the four state-of-the-art evolutionary algorithms
EA4eig, NL-SHADE-LBC, NL-SHADE-RSP, and S-
LSHADE-DP. Through our experiment, we estab-
lished that the ranks of the algorithms change with in-
creasing and/or decreasing the maxFEs. However, we
show that there is no statistical significance between
them. This indicates that the solvers are comparable
and close in their performances. Therefore, it is dif-
ficult to choose the best performing algorithm for the
selected benchmark. In future work, our focus will
be on comparing the stochastic solvers, whose perfor-
mances are very close.

Table 8: Rankings of the solvers according to the Fried-
man’s test and mean values for dimensions D = 10 and the
maxFEs = 800,000, and D = 20 maxFEs = 4,000,000 for
the CEC 2022 benchmark functions.

Solver Quality of Solutions
D = 10 D = 20

EA4eig 2.58 1.96
NL-SHADE-LBC 2.58 2.28
NL-SHADE-RSP 2.58 3.17
S-LSHADE-DP 2.25 2.89
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Table 9: Average errors obtained on the 12 benchmark func-
tions for the D = 10 for different stopping conditions for
S-LSHADE-DP.

F S-LSHADE-DP
1E +05 2E +05 4E +05 8E +05

f1 0 0 0 0
f2 0 0 0 0
f3 0 0 0 0
f4 6.28 4.72 3.54 3.00
f5 0 0 0 0
f6 2.66E-01 2.60E-01 2.43E-01 2.28E-01
f7 0 0 0 0
f8 1.49E+00 1.89E-01 1.20E01 0.02E-01
f9 2.29E+02 2.27E+02 2.22E+02 2.06E+02
f10 1.37E+00 1.25E-02 0 0
f11 0 0 0 0
f12 1.62E+02 1.62E+02 1.61E+02 1.61E+02

Figure 1: The convergence graph of all four chosen solvers
on CEC 2022 Benchmark function f2 for the D = 20.

Figure 2: The convergence graph of all four chosen solvers
on CEC 2022 Benchmark function f4 for D = 20.

Figure 3: The convergence graph of all four chosen solvers
on CEC 2022 Benchmark function f7 for D = 20.

Figure 4: The convergence graph of all four chosen solvers
on CEC 2022 Benchmark function f11 for D = 20.
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Korošec, P., and Eftimov, T. (2022). Selector: se-
lecting a representative benchmark suite for repro-
ducible statistical comparison. In Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 620–629.

Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T.,
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