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Abstract: AeSeH is one of the evolutionary algorithms used for many-olyeabptimization. It uses-dominance during
survival selection to sample from a large set of non-doneiiablutions to reduce it to the required population
size. The sampling mechanism works to suggest a subset bflislbuted solutions, which boost the per-
formance of the algorithm in many-objective problems coragdo Pareto dominance based multi-objective
algorithms. However, the sampling mechanism does nottsekactly the target number of individuals given
by the population size and includes a random selection coemgavhen the size of the sample needs to be ad-
justed. In this work, we propose a more elaborated methadka@sed org-dominance to reduce randomness
and obtain a better distributed sample in objective-spaéerther improve the performance of the algorithm.
We use binary MNK-landscapes to study the proposed methddshow that it significantly increases the
performance of the algorithm on non-linear problems as weease the dimensionality of the objective space
and decision space.

1 INTRODUCTION creases (von Liicken et al., 2019). Several research
efforts based on different approaches aim to improve

Many real-world problems require that multiple ob- evolutionary algorithms for many-objective optimiza-
jective functions be optimized simultaneously. Multi- tion. These include decomposition into several single
objective evolutionary algorithms (Deb, 2001; Coello objective problems, extensions of Pareto dominance,
et al., 2002) (MOEASs) are a class of algorithms and incorporation of performance indicators. It's also
to solve these problems. MOEASs’ initial suc- known that MOEAS’ performance drops when vari-
cess brought new challenges as their use becameable interactions increase.
widespread in numerous application domains. In this work, we focus on an algorithm based on

There are several important areas of ongoing re- an extension of Pareto dominancesS8H (Aguirre
search. Among them, the design of MOEASs to search et al., 2013; Aguirre et al., 2014), and investigate
effectively and efficiently on problems with larger deeply its survival selection mechanism aiming to im-
search spaces, many objective functions, and robust-prove its performance on many-objective problems
ness to distinct shapes of the Pareto front and distinctwith varying degrees of variable interactions.
geometries of the Pareto set. Performance scalability =~ AeSeH includes e-dominance(Laumanns et al.,
of the algorithm when facing increased complexity of 2002) for survival selection and parent selection. Dur-
the search space, defined in terms of interacting vari- ing survival selection, the algorithm samples from a
ables, is also a challenge to state-of-art MOEAs and large set of non-dominated solutions to reduce it to the
an active research area. required population size. The sampling mechanism

This work deals mainly with many objective prob- works to suggest a subset of solutions spaced accord-
lems and increased complexity due to variable inter- ing to thee parameter oE-dominance, which boost
actions. It's known that the performance of MOEAs the performance of the algorithm in many-objective
decreases as the objective space dimensionality in-problems compared to Pareto dominance based multi-
objective algorithms.

However, the sampling mechanism does not select
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Enhancing e-Sampling in

population size. In most cases there will be a sur-
plus or shortage of non-dominated individuals and an
adjustment to either cut-off or add non-dominated in-
dividuals is requiered. This adjustment process after
sampling is done by random selection in the conven-
tional algorithm. In this work, we improve the ad-
justment process by adding another step basegt on
dominance to reduce randomness and obtain a bette
distributed sample in objective-space to further im-
prove the performance of the algorithm.

We use MNK-landscapes (Aguirre and Tanaka,
2007) as benchmark problems. MNK-landscapes
are binary multi-objective maximization problems,
which can be randomly generated by arbitrarily set-
ting the number of objectivell, the number of de-
sign variabledN, and the number of interacting vari-
ablesK for each of the variables of the problem.
We conduct experiments on landscapes wih=
{4,5,6,7} objectives,N = {100 300,500} bits and
K = {5,6,10,15,20} epistatic bits. We use vari-
ous metrics to evaluate the non-dominated solutions
found and show that the proposed method signifi-
cantly increases the performance of theS&H al-
gorithm on non-linear problems with increased di-
mensionality of the objective space and decision
space. Furthermore, an experimental comparison
with MOEA/D (Zhang and Li, 2007), a well known
MOEA, is included for reference.

2 ADAPTIVE e-SAMPLING AND
e-HOOD (AeSeH)

AeSeH is a multi- and many-objective evolution-
ary algorithm that includes mechanisms based-on
dominance for survival selection and parent selection.
For survival selection, it uses adaptis«Sampling to
expand the dominance region and sample the non-
dominated solution set, which becomes larger as the
number of objectives increases. On the other hand,
Adaptivee-Hood is used to create neighborhoods in
objective space. When generating offspring, the par-
ents are selected from the same neighborhood.

2.1 g-Dominance

In AeSeH, thee-transformation function is applied to
the vector of evaluated valudgx) of a solutionx to

transform it intof’(x). Considering a maximization
problem, we sax e-dominatey when the vectors of

transformed valuesﬁ'(x) and evaluated valuef(y)

the AeSeH Evolutionary Multi-Objective Optimization Algorithm

of another solutioty satisfy the following conditions.
f(x) —¢ f(x)
Vie L M} f (%)= fi(y)
Jie{1,---,M} f(x)>fi(y),

A 1)

where f(x) —*f f’(x) is a transformation function
gontrolled by the parameter

2.2 &-Sampling

In elitist multi-objective evolutionary algorithms sur-
vival selection is typically performed after joining
the parent and offspring populations. The number of
non-dominated solution; | in this joined population
rapidly surpasses the population sj@& particularly
when the number of objectives is larger than 3. When
this occurs, the surviving population is a subset of the
non-dominated set of solutiorg. &-Sampling is a
method designed to obtain a well distributed sample
of non-dominated solutions froff for the next gen-
eration. In the following we explain the process with
more detail.

1. The individuals inF; with the largest and small-
est evaluation values in each objective are selected
for survival, added to the-sampled fronff and
deleted fromf.

. One individualx is randomly selected frorf,
and f(x) is transformed tof/(x) by the -
transformation function using the paramesggr
We eliminate fromF; the solutions that are-
dominated by and add them to a subpopulation
of discarded solution®. Move x to the firste-
front F.

3. Step 2 is repeated unkj is exhausted.

4. If |[F§| is less than the population sizB| then
|P| — |[F§| individuals are randomly selected from
the subpopulation of discarded solutiobsand
added toF{. On the other hand, ifF§| is larger
than|P| then|F§| — |P| individuals are randomly
removed fronF§.

The above operations are used to select parent indi-
viduals well distributed in objective space.

2.3 e-Hood

In AeSeH, e-Hood is used to divide the parent pop-
ulation P in neighborhoods in the objective space,
and mating partners for recombination are deter-
mined within the neighborhoods (Aguirre et al., 2013;
Aguirre et al., 2014)e-Hood uses a different parame-
tergn thane-Sampling to generate neighborhood pop-
ulations based oge-dominance.
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2.4 e-Transformation Function

In this paper, MaxMedian is used as the
transformation for each objective function as shown
below.

ff (%)

fi(X) + (€ x (max {fi(X) : x € P}
— median { f;(x) : x € P}))

Here, thes-dominant region is determined by adding
to the fitness value multiplied by the difference be-
tween the maximum and median values of tké
function.

()

2.5 Adaptive Changesin ¢

The parameterss of e-Sampling is changed adap-
tively at each generation depending on the size of the
set of non-dominated solution sampledsb8ampling
NS (before the adjustment) and the population size
IPl.
if NS> |P|
A +— min(A x 2,Amax)
€5 &+ A
if NS<|P|
A+ max(A x 0.5,Amin)
€s < max(es—A,0.0)

©)

In this paper, the initial values &fs and A are set
to € = 0.0, Ag = 0.005, A t0 Apex = 0.1, Amin =
0.0000001.

To adaptey, for e-Hood we follow a similar pro-
cedure, comparing the created number of neighbor-
hoods with a desired number specified by the user
(Aguirre et al., 2013).

3 AeSeH SHORTCOMING

e-Sampling does not select exactly the target number
of individuals from the set of non-dominated solu-
tions. In most cases there will be a surplus or shortage
of individuals and an adjustment to either cut-off or
add individuals will be done by random selection to
achieve the target number of individuals (section 2.2,
Step 4). To illustrate this, aftee-Sampling is per-
formed, the degree of random selection is checked by
actually solving MNK-landscapes test problem. The
parameters given to the MNK-landscapes and evolu-
tionary algorithm are shown in Table 1 and Table 2.
For each value oM, the same MNK-landscape is
solved 30 times from different random initial popu-
lations. Two-point crossover and bit-flip mutation are
used as operators.
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Table 1: Parameters of MNK-landscapes.

Parameters Value
Number of ObjectiveM | 4,5, 6,7
Number of Variable®N 100
Number of Interacting Variablds 5
Variables Interaction Random

Table 2: Parameters of EA.

Parameters Value
Generation$& | 10,000
Population Siz¢P| 200
Mutation RatioPy, | 1/N

Figure 1 shows the number of non-dominated in-
dividuals before and afte-Sampling, averaged over
30 trials for each generation. As expected, note that
the number of pre-sampled non-dominated solutions
increased with the dimensionality of the objective
space. Looking at the difference between popula-
tion size and the number of solutions after sampling,
note that the application @Sampling resulted in the
random selection of less than 25 individuals for four
objectives and approximately 50 individuals for five
and more objectives. From the above, it can be seen
that there is always a random part in the selection of
surviving individuals bye-Sampling, which increases
with the number of objectives. In the problem set up
for this experiment, this increase in random selection
is particularly noticeable when the number of objec-
tives increased from four to five.
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It is likely that the individuals randomly selected 5. If |S| > Nsandk < T then resample frorf; that
may disrupt the adequately spaced populations ob- s, increase the iteration counter— k+ 1, set the
tained bye-Sampling. In the next section, we propose new current sampling populatid < S 1. Up-
a method that aims to enhanc&ampling by select- date the expansion ratg < gc_1 x A and repeat
ing all individuals appropriately spaced. from Step 2. Otherwise, continue to Step 6.

. Ifthe sample size is not exactly equal to the num-
ber required then adjust the sample size randomly.
That is, if|S| > Ns eliminate randomlyS| — Ns
solutions fromS,. Otherwise, if|S| < Ns, select
randomlyNs — |S| solutions from the current set
of discarded solution®y and add them t&.

7. ReturnS,

As a method to reduce the random selectiorein  The base expansion valug at thek-th iteration of
Sampling, we consider applyirgdominance again the procedure for thieth fitness function is computed
aftere-Sampling to a reference subpopulation of non- as shown in (4) below.
dominated solutions (explained with detail in section ]
4.2). In this case, a differesttransformation func- U =(max {fi(x) : X € Re} o

— median {f;(x) 1 x € Rk})/(Ek +1)

4 PROPOSED METHOD

4.1 Reducing Randomnessin Survival
Selection

(4)

tion is used with a newg, in addition to the expan-
sion ratiogs adapted throughout all the generations in
e-Sampling. The neve is computed by estimating whereny is the number of individuals in the sampling
the mean distance in objective space of the top-rating populationRy, maxy and mediang are the maximum
individuals. Several iterations of sampling over in- and median values in theth objective function com-
creasingly smaller reference subpopulations, resettingputed fromRy. Thee-transformation function at the
€ appropriately, are repeated until the target number k-th iteration to expand theth fitness value of the

of individuals is reached. This method is expected to
achieve better uniformity in the selected sample than
the conventional method.

In the following we deatil the main steps of the

solution is as shown in (5) below.
f{ () = fi(X) -+ U x &,

©)

whereuy; is the base expansion value agdis the

proposed method. The procedure receives a referencexpansion rate.

set of solution®R from which a target numbéds must
be sampled, i.e|R| — Ns solutions must be deleted
fromR. It returns a sampl8< R of size|S§ = Ns.

1. Set the iteration count&r~— 1 and the maximum
number of iterationg . Also, set the initial sam-
pling populationR¢ + Rand save its size for ref-
erenceNr < |R|.

. Set a base expansion valug; for each
one of the M objective functions, ux <+
(Uk1, -, Uk, ,Uqv) according to the distribu-
tion of R¢. Set the sample to empt§, + @. Set
the set of discarded solutions to emidy, « <.

. Select one solutionx randomly from R¢ and
transform its vector of fitness valué$x) to f’(x)
usingug andeg. Use thef'(x) vector to compute
e-dominance betweexiand the other solutions in
R¢. Remove solutions iR that ares-dominated
by x and add them to the sB¥ of discarded solu-
tions. Removex from R and add it to the se¥
of sampled solutions.

. Repeat Step 3 R« # @ (not empty). Otherwise,
continue with Step 5.

As mentioned above, the expansion rgtes up-
dated at each iteratidnof the procedure as shown in
(6) below.

€ = &1 XA
=1 (6)
A =1.05,

where the constat > 0 works to increasey at each
iteration to prevent the number of iterations from be-
coming too large.

Note that for the base expansioR in (4) we
use a value slightly smaller than the average dis-
tance between the top-rating individuals in tith
objective. This means that the individuals eliminated
by e-dominance wheigy = 1 are those whose inter-
individual distance in objective space is closer than
the mean of the top-rating individuals.

In this paper, experiments are conducted with the
maximum number of iteration§ = 100. Regard-
ing the time complexity of the proposed method, the
lower bound is 0 (when the sample size given by
e-Sampling equals the population size) and the up-
per bound is given byR2 x T. Box plots of the
actual number of iterationk < T required by the

89



ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

100 o o o o
° o
80 8
E 8
E g b
3 %1 £
=
2
5 404
. [—
2
5 ol =4
N 1L ]

5 6 7

The Number of Objectives M
Figure 2: The iteration countdérfor each objectives.

A e-Sampling
)
Offspring --

(a) Surplus of individuals bg-Sampling.

A e-Sampling
N =)
Offspring - - = -Population Size

4

- - -Population Size

Parent + Offspring

(c) Application to lower front.
Figure 3: Cases where the proposed method will be used.

proposed method are shown in Figure 2 fdr=
{4,5,6,7},N =100 anK =5 computed over 10,000
generations and 30 runs of the algorithm. Note that
the mediark falls between 20 and 30 iterations.

4.2 Casesin Which the Proposed
Method Will be Used

Depending on the number of individuals after
Sampling is performed, the proposed method can be
applied to the three different cases illustrated in Fig-
ure 3 and listed below.
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4.2.1 Selection in Case of Surplus

If the number of individuals sampled EySampling
exceeds the target population size, the proposed
method is performed on the sample providedsby
Sampling as shown in Figure 3a. Then, the sample
returned by the proposed method becomes the popu-
lation for the next generation.

4.2.2 Selection in Case of Shortage

If the number of individuals sampled kySampling

is less than the target number, the proposed method
is performed on the sub-population of non-dominated
individuals initially discarded bye-Sampling as
shown in Figure 3b. Then the sample provided by
e-Sampling and the one returned by the proposed
method are joined to form the population for the next
generation.

4.2.3 Selection in Lower Front

If the number of individuals in the top front is less
than the target numbeg;Sampling is not performed.

In this case, the top fronts are allowed to survive, and
the proposed method is performed on the last front
that overflowed the size of the surviving population
as shown in Figure 3c. The sample returned by the
proposed method is joined to the top fronts to form
the population for the next generation.

5 EXPERIMENTAL METHOD
AND EVALUATION
INDICATORS

51 Experimental Method

To examine in detail the effects on solution search by
the proposed method, we first solve MNK-landscapes
(Aguirre and Tanaka, 2007) varying from 4 to 7
fixing N = 100 andK = 5 and starting from 30 ini-
tial populations generated with different seeds. The
parameters and other conditions used in the experi-
ments are the same as those used in Table 1 and Ta-
ble 2. Next, we perform experiments varyihg=
{100,300,500} andK = {5,6,10,15,20}.

In order to objectively evaluate the proposed
method, we also compare the results with those ob-
tained by MOEA/D (Zhang and Li, 2007), a represen-
tative decomposition based multi-objective evolution-
ary algorithm often applied for many-objective opti-
mization. In this experiment, the scalarization func-
tion of MOEA/D is Tchebycheff, which is suitable for
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In this study, to evaluate the Pareto optimal solutions s,
set (POS) obtained by the optimization algorithm, we i | | |
use the HypervolumeHV) (Zitzler, 1999; Fonseca 0 2000 4000 6000 8000 10000

et al., 2006). To validate the features of the obtained _ _ PO .
POS, we also use the Coverage-metric (C-metric), Fi9ure 5: Population averages before and aftSampling
Overall Pareto Sprea®g), Spacing &P), and Distri- and after applying the proposed methdd= 100K = 5,

- . top 4 objectives, bottom 5 objectives.
bution Metric ODM) (Audet et al., 2021; Zheng et al., a : S J
2017). lect most of the individuals that were randomly se-

lected by the conventional method i.e. pink line is
similar to the population size shown in green. Com-
paring the number of individuals after sampling with
that of the conventional method shown in Figure 1, it
can be seen that when the proposed method isaised
Sampling selects samples which size are closer to the
target number for all numbers of objectives (orange
line). In other wordsg-dominance performed after
Sampling, in addition to reducing randomness, helps
improvee-Sampling itself.

Note that the distribution of solutions may cause
problems in the calculation o8P. Consider two
populations that satisfgd;', d5, d4) = (d2,d8,df) as
shown in Figure 4. Note that these two populations
clearly have different homogeneity, but when looking
at the distance; to the nearest solution used to calcu-
late SP, they have exactly the same value. Thati3,
calculated from these values will be exactly the same.
Thus, large distances between multiple neighborhood
groups, such as in Figure 4a, cannot affect the value
of SP and therefore it becomes an unreliable metric in .
these situationdDM is an indicator to measure diver- 6.2 POSEvaluation

sity that does not suffer the problem observed®ih ) o ]
calculation. Next, we evaluate the POS using the indicators listed

above and compare results by the conventional and

proposed method every 1,000 generations using box-

and-whisker diagrams. Welch's t-test is performed for
6 RESULTSAND DISCUSSION the evaluation values of the last generation to deter-

mine if there is a significant difference between the re-
6.1 Changesinthe Actual Number of sults of the conventional and proposed methods based

Salected | ndividuals on the obtainegb-values included in Table 3.
Figure 6 shows thélV over the generations by

First, we verify the number of individuals before sam- A€SeH and its improved version with the proposed
pling, after selection bg-Sampling, and after apply- Method. These plots and tipevalues of theHV row
ing the proposed method, averaged over 30 trials for in Table 3 show that in terms dfV there is a sig-
each generation. Results are shown in Figure 5. It hificant difference in performance by both algorithms
can be seen that the proposed method is able to sefor five or more objectives, and that performance im-
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Table 3: p-value in the last generation.

Ind Number of Objective$/

' 4 5 6
HV | 8.62e-01 2.18e-04 141e11 1.8le14
C | 6.80e-03 4.53e-07 1.05e-06 4.07e-11
OS | 6.53e-01 6.44e-01 4.40e-01 1.94e-01
SP | 1.56e-04 2.64e-06 2.94e-06 9.91e-02
DM | 3.85e-01 1.19e-02 2.42e-01 2.25e-01
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proves as the number of objectives increases.

Figure 7 shows results by the C-metric.
C(AeSeH, Improved)  represents the  proportion
of the POS found by the proposed method that is
dominated by the POS found by the conventional
method, andC(Improved, AcSeH) represents the
opposite. The results show that convergence im-
proved for all objectives tested, and this difference
becomes more significant as the number of objectives
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increases. Th@-values for the C-metric in Table 3 number of objectives increases. Next, in terms of di-
support this. versity, there was no difference in spredf], and
The p-values for theDSin Table 3 show thatthere  while there was an improvement and stabilization in
is no statistical difference on spread by both methods. terms of uniformity 8P), there was no improvement
This is because the solutions with maximum and min- in overall diversity DM). This may be due to the
imum evaluation values for each objective are kept, aforementioned shortcomings 8P. While SP can
which is performed before applyirgSampling. only evaluate local uniformityDM evaluates the di-
Figure 8 shows results on spacing compuisiy versity of the entire distribution of solutions. This in-
From Table 3, we can see that there is a significant dicates that the diversity has notimproved when look-
difference inSP except for 7 objectives. In addition, ing at the set of non-dominated solution as a whole,
the mean and variance are considerably smaller by thebut it has improved locally. In other words, although
proposed method for all numbers of objectives as can uniformity is improved within groups of neighbor so-
be observed in Figure 8, which indicates that the uni- lutions, there is distance between the groups, and the
formity is better in the proposed method. distribution cannot be said to be uniform when viewed
The p-values for theDM in Table 3 show that no  across the entire objective space.
clear statistical differences between the two methods  From the above, it can be inferred that the solution

for DM. search performance for each neighborhood improves
as a result of better local uniformity, which improves

6.3 Discussion the convergence of the solution group as a whole.
Given that there is a correlation between the increase

There is a statistically significant improvementiv in the number of objectives and the improvement in

by the proposed method for many objective problems. convergence, uniform solution search becomes more
To have a better understanding on the effects of theimportant as the dimension of the objective space ex-
proposed method and determine whether the improve-Pands.

ment is due to convergence or diversity we looked to  The fact that the proposed method also improves
other metrics. the accuracy ot-Sampling as a side effect was re-

First, C-metric shows that the convergence of vealed from the visualization of the actual selection

POS improves regardless of the number of objectives. Of the proposed method. This is due to the improved
Also, the convergence difference between the conven-uniformity of the solution distribution, which allows
tional and proposed methods becomes larger as thed more precise estimation ef between generations.
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Table 4:p-value in the last generation for eakh

M
N 4 5 6 7
100 | 8.62e-01 2.18e-04 1.4le-11 1.8lel4
300 | 6.10e-06 8.16e-09 8.70e-12 9.63e-15
500 | 1.34e-06 7.67e-08 8.71e-12 1.88e-13
01z B AcSeH

B Improved Az SeH

s

0.0 $

HY

0.08

300
Mumber of Variables N
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Figure 9:HV obtained at the last generation in 30 runs vary-
ing the number of variabled. M = 6,N = {100,300 500}
andK =5.

6.4 Comparison Varying N and K

In this section we verify the performance of the pro-

posed method increasing the complexity of the prob-

lem and the dimension of the search space.
Figure 9 shows results favl = 6 objectives and
K =5 bits, N from 100 to 500. Note that the pro-

posed method performs significantly better than the

conventional approach when we increase the size of
the search space. In addition, note that the variance is
smaller by the proposed method. This is corroborated
by thep-values in Table 4, which also includes results
for other values oM.

Table 5: p-value in the last generation for eakkh

N
K Z 5 6 7
5 [ 8.626-01 218604 1dleil 18ieid
6 [9.776-01 135605 456614 858616
10 | 1.576-01 6.78603 155610 1.28614
15 [ 357601 341602 160605 A4.05610
20| 4.236-01 1.806-01 4.086.03 3.836.04

Figure 10 shows results féd = 6 objectives and
N = 100 bits, varyingK from 6 to 20. Note that
the proposed method performs significantly better in
a broad range oK and that the advantage gradually
decreases & increases. The reason why the perfor-
mance folK = 20 by both methods become similar is
that the number of sampled solutions &gampling

I A:SeH
I Improved AeSeH
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0.100
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é L] 1‘5 ZID
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Figure 10: HV obtained at the last generation in 30 runs
varying the number of interacting variablés M = 6,N =

100 anK = {5,6, 10, 20}.
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Figure 11: Average number of individuals before and after
e-Sampling.M = 6,N = 100, topK = 10, bottomK = 20.

to improve the sample. Similar results in favor of the
proposed method are observed with other valuég of
when we varyK, as corroborated by thp-values in
Table 5.

6.5 Comparisson with Other MOEA

Decomposition based algorithms are being broadly
used for many-objective optimization. To illustrate
the relative performance of the improved2H with
respect to these kind of algorithms, we also conduct
experiments with MOEA/D, a well known decompo-
sition based algorithm. Figure 12 shows the transi-
tion of theHV over the generations by the improved
AeSeH and MOEA/D onM = 5,6 objectives,N =

approaches the desired population size, as shown in100 bits andK = 5 epistatic interactions. From the

Figure 11, leaving little room for the proposed method
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figure we can see that the improved3H achieves
a significantly betteHV than MOEA/D. Note that
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also reduce the number of calculations.
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