
Locally Convex Neural Lyapunov Functions and Region of Attraction
Maximization for Stability of Nonlinear Systems

Lucas Hugo1, Philippe Feyel2 and David Saussié1 a

1Robotics and Autonomous Systems Laboratory, Polytechnique Montréal, Montréal, Québec H3T1J4, Canada
2Safran Electronics & Defense Canada, Montréal, Canada

Keywords: Lyapunov Functions, Stability, Neural Network Optimization, Convexity, Region of Attraction.

Abstract: The Lyapunov principle involves to find a positive Lyapunov function with a local minimum at the equilibrium

point, whose time derivative is negative with a local maximum at that point. As a validation, it is usual to

check the sign of the Hessian eigenvalues which can be complex: it requires to know a formal expression of

the system dynamics, and especially a differentiable one. In order to circumvent this, we propose in this paper

a scheme allowing to validate these functions without computing the Hessian. Two methods are proposed

to force the convexity of the function near the equilibrium; one uses a neural single network to model the

Lyapunov function, the other uses an additional one to approximate its time derivative. The training process

is designed to maximize the region of attraction of the locally convex neural Lyapunov function trained. The

use of examples allows us to validate the efficiency of this approach, by comparing it with the Hessian-based

approach.

1 INTRODUCTION

Lyapunov theory is a commonly used tool in control

theory to analyse stability of dynamical systems. A

Lyapunov function can be used to determine the equi-

librium stability of nonlinear systems, as well as to

estimate the Region of Attraction (RoA) or establish

a stabilizing control (Mawhin, 2005; Khalil, 2001).

This type of potential function keeps track of the en-

ergy dissipated by a system. In addition to modelling

physical energy, a Lyapunov function can also rep-

resent abstract quantities provided it fulfills the fol-

lowing properties: (1) it must be a positive definite

function locally, (2) it must have continuous partial

derivatives, and (3) its time derivative along any state

trajectory must be negative semi-definite.

There are many ways of finding a Lyapunov func-

tion in the literature, each one of them with its draw-

backs and advantages (Giesl and Hafstein, 2015), but

recently optimization methods based on neural net-

works training have increased significantly. Indeed,

the ability of neural networks to represent a func-

tion has been well established since the early 90s

(Cybenko, 1989; Hornik et al., 1989; Hornik, 1991;

Liang and Srikant, 2017). Neural approximations

a https://orcid.org/0000-0002-4228-1109

were first used to determine Lyapunov candidates for

nonlinear autonomous systems in (Prokhorov, 1994)

and various methods have since been proposed to

guide network training.

(Petridis and Petridis, 2006) develop an Hessian-

based approach to ensure a strict validation of

Lyapunov properties near an equilibrium and

(Bocquillon et al., 2022) extend it to prove asymp-

totic, exponential or ISS stability of continuous or

discrete time systems using a genetic algorithm. The

network structure in these works is restricted to a

single hidden layer network, and they require to know

a differentiable expression of the system dynamics.

(Richards et al., 2018) propose a training framework

based on an iterative gradient-descent to estimate the

largest possible RoA for general nonlinear dynamical

systems with structural properties on activation

functions and weighting matrices. To completely

avoid structural limitations on the trained network,

(Chang et al., 2020) repeats multiple gradient-based

optimization problems to identify states that vio-

late Lyapunov conditions and (Gaby et al., 2022)

propose a versatile neural network architecture

called Lyapunov-Net that ensure positive definiteness

of the Lyapunov candidate while simplifying the

optimization problem formulation. Nevertheless a

concession is made in terms of training efficiency

Hugo, L., Feyel, P. and Saussié, D.
Locally Convex Neural Lyapunov Functions and Region of Attraction Maximization for Stability of Nonlinear Systems.
DOI: 10.5220/0012180300003543
In Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2023) - Volume 1, pages 29-36
ISBN: 978-989-758-670-5; ISSN: 2184-2809
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

29

as the cost functions used needs to converge to 0 so

that the Lyapunov candidate obtained strictly validate

Lyapunov properties, especially near the equilibrium.

To circumvent this issue (Chang and Gao, 2021)

introduce the concept of Almost Lyapunov functions,

theoretically relevant but difficult to validate in

practice.

To provide a tool with the same validity guarantee

as the Hessian-based approach, but applicable to gen-

eral non-linear systems that are not necessarily dif-

ferentiable, we propose two methods to train locally

convex neural Lyapunov functions with the flexibil-

ity of an optimization-based approach. The frame-

work is designed so that time derivative function local

concavity is guided by the cost function while local

convexity of the Lyapunov function is structurally en-

forced, allowing a great liberty of network structure,

while maximizing the RoA.

This paper is structured as follows. Preliminaries

related to Lyapunov theory are introduced in section

2. In section 3, we present the two methods to train

locally convex neural Lyapunov function, one uses a

single network to model the Lyapunov function, the

other uses an additional network to approximate its

time derivative. Finally, we illustrate in section 4 the

efficiency of our approaches with examples, by com-

paring it with the Hessian-based approach.

2 PRELIMINARIES

Notations and definitions used in this paper are intro-

duced in this section. Let R denote the set of real

numbers, ||.|| denote the euclidean norm on R
n,

⊔
the

disjoint union between sets, and X ⊂ R
n, a set con-

taining x = 0.

This paper deals with following autonomous sys-

tems:

ẋ = f(x) (1)

where f : X −→ R
n is a locally Lipschitz map with

at least one equilibrium point xe, that is f(xe) = 0.

Throughout this paper, the equilibrium point is com-

monly set at the origin, xe = 0 without loss of gener-

ality.

Theorem 2.1 (Lyapunov Theory). (Khalil, 2001)

Let V :X−→R be a continuously differentiable func-

tion,

V (xe) = 0 and V (x)> 0 in X−{xe} (2)

V̇ (x)≤ 0 in X (3)

then, xe = 0 is stable. Moreover, if

V̇ (x)< 0 in X−{xe} (4)

then, xe = 0 is asymptotically stable.

For some c > 0, the surface V (x) = c is called a

level set of V , and the (possibly conservative) sub-

set Ωc = {x ∈ X|V (x) ≤ c} ⊂ X ⊂ R
n is an estimate

of the Region of Attraction (RoA). The system will

converge to 0 from every initial point x0 belonging to

Ωc.

A neural network Lyapunov function takes any

state vector of the system as an input, and gives a

scalar value at output. In this paper, the parameter

vector for a Lyapunov function candidate is noted as

θθθ, the candidate itself is noted as Vθθθ, and its time

derivative function is noted as V̇θθθ.

3 TRAINING PROCESS

We describe how to train a locally convex neural Lya-

punov function, so that the Lyapunov conditions can

be verified to ensure that the equilibrium point of the

system (1) is locally asymptotically stable.

3.1 Single Network Approach

To define the structure of the function to be trained,

we use the Lyapunov-Net formulation proposed in

(Gaby et al., 2022). The neural network used is noted

φφφθθθ, its output size is m ∈N
∗, and we fix:

Vθθθ(x) = ||φφφθθθ(x)−φφφθθθ(0)||2 +α log(1+ ||x||2) (5)

where the parameter α > 0 can be fixed by the

user. The neural network φφφθθθ can be arbitrarily con-

structed as discussed in (Gaby et al., 2022). Any

other function γ : Rm −→ R
+ can be used to replace

the term ||φφφθθθ(x)− φφφθθθ(0)||2 by γ(φφφθθθ(x)− φφφθθθ(0)), as

long as γ(0) = 0 and γ is locally convex twice differ-

entiable at 0.

Proposition. The function defined in (5) is locally

convex in 0 if network activation functions are twice

differentiable in 0.

Proof. It is sufficient to prove the positivity of the

Hessian at 0. We have:

∇Vθθθ(x) = 2(φφφθθθ(x)−φφφθθθ(0))
⊤ ∇φφφθθθ(x)+

2αx⊤

1+ ||x||2

∇2Vθθθ(x) = 2
(

(∇φφφθθθ(x))
⊤ ∇φφφθθθ(x)

+ (φφφθθθ(x)−φφφθθθ(0))
⊤⊗∇2φφφθθθ(x)

)

+
2αIn

1+ ||x||2 −
4αxx⊤

(1+ ||x||2)2

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

30

with ⊗ a tensor contraction. Assuming x = 0, we

have:

∇2Vθθθ(0) = 2(∇φφφθθθ(0))
⊤ ∇φφφθθθ(0)+ 2αIn ≻ 0

Regardless of the activation functions used and the

network architecture in φφφθθθ, the Hessian of Vθθθ is pos-

itive definite for any α > 0. In other words, Vθθθ is

convex near equilibrium when differentiable activa-

tion functions are used.

This proof can be extended to any γ function in-

troduced previously.

The cost function used for the training contains three

different terms:

Lθθθ = c1L1 + c2L2 + c3L3 (6)

with c1, c2, c3 > 0 user-fixed hyperparameters once

and for all.

The first term L1 is used to force V̇θθθ to be strictly

negative in the largest possible set within the domain

X. It is similar to the formulation commonly proposed

in literature about neural Lyapunov functions:

L1 =
1

N1
∑
i∈X

max(0,V̇θθθ(xi)) (7)

where X = {1 ≤ i ≤ N1,xi ∈ X} is a subset of state

vectors picked in X and N1 = |X |.
This formulation benefits samples with large am-

plitudes rather than those close to the equilibrium.

Since we may not know the true RoA of the system

before training, some of the term V̇θθθ(xi) may prevent

convergence to 0, so the term L1 is not necessarily

sufficient to have a good accuracy of the result near

the equilibrium.

To ensure V̇θθθ to be strictly negative near 0, the term

L2 is introduced. It consists of a Manhattan distance

between V̇θθθ and a negative definite locally concave

function h : Rn −→ R
−:

L2 =
1

N1
∑
i∈X

∣

∣V̇θθθ(xi)− h(xi)
∣

∣ (8)

In this paper, the function h chosen is:

h(x) =−β log(1+ ||x||2) (9)

where the parameter β > 0 can be fixed by the user.

Any other function can be used, as long as it is null at

0, negative definite near 0 and locally concave. How-

ever log(1+ ||x||2)≈ ||x||2 as x −→ 0 and grows very

slowly as ||x|| increases, which makes it really suit-

able for the task.

For a candidate Vθθθ estimated for all xi ∈ X , one

can compute an approximate level set of Vθθθ:

c̃ = min
i∈X

Vθθθ(xi) s.t. V̇θθθ(xi)> 0 (10)

If any of the xi verify the condition on the time deriva-

tive, we take c̃ = ∞.

Finally, in order to find the largest RoA estimate

at the end of the training, we add the term L3 defined

as follow:

L3 = 1− N2

N1
(11)

where N2 = |A | and A = {xi ∈ X , V (xi) < c̃}. (11)

tends towards 0 the more points are included in the

RoA estimate.

The best case is obtained when the system con-

sidered is stable for all x ∈ X, i.e. the cost function

Lθθθ (6) can converge to 0. Generally speaking, we ar-

range the terms of the cost functions using constant

terms c1,c2,c3. As L1 (7) is the only term that de-

pends on the system dynamics through V̇θθθ, while L3

(11) is of interest only if the other two terms impact

the training enough to exploit an estimate of the RoA,

we usually set c1 > c2 > c3 during training. We can

then get rid of c1 as an hyperparameter by fixing it to

1 and then fix c2,c3 such that c3 < c2 < 1.

Any optimization process can be used for training

as long as it can minimize Lθθθ. The pseudocode of an

algorithm iteration is provided in Algorithm 1.

Algorithm 1: Single Network Approach Iteration.

1: Input: network φφφθθθ, dynamical system f , param-

eters α,β, hyperparameters c1,c2,c3, set X ⊂ X

2: Compute candidates Vθθθ(X) and V̇θθθ(X)
3: Compute approximate level set c̃ (10)

4: Compute cost function Lθθθ (6)

5: Update weights of φφφθθθ to minimize Lθθθ

6: Return: Updated network φφφθθθ

In section 4, we describe a gradient descent train-

ing algorithm 3 implemented in Matlab to train the

network, however, other algorithms can be picked to

find the optimal vector of parameters θθθ.

3.2 Two-Network Approach

In order to make the method independent of the

choice of h (9) and thus give ourselves every chance

of maximizing the RoA, we propose to use a sec-

ondary neural network as an optimal function h to ap-

proximate the Lyapunov candidate time derivative.

We write θθθ1 the parameter vector and φφφθθθ1
the neu-

ral network of the Lyapunov candidate Vθθθ1
. The pa-

rameter vector of the second network is noted θθθ2, this

network is then noted φφφθθθ2
, and the time derivative ap-

proximator is noted Hθθθ2
. The structure of this approx-

imator is negative definite by design:

Hθθθ2
(x) =−||φφφθθθ2

(x)−φφφθθθ2
(0)||2 −β log(1+ ||x||2)

(12)

Locally Convex Neural Lyapunov Functions and Region of Attraction Maximization for Stability of Nonlinear Systems

31

where the parameter β > 0 is a once and for all user-

fixed parameter. Hθθθ2
is locally concave near the equi-

librium if the activation functions used for the net-

work φφφθθθ2
are differentiable, as demonstrated in sub-

section 3.1. β is deliberately noted in the same way

as in (9), as we fix a unique value for it in order to

consider Hθθθ2
as an optimal estimator of h.

The cost term L2 (8) is then replaced by L2
′:

L2
′ =

1

N2
∑
i∈X

∣

∣V̇θθθ1
(xi)−Hθθθ2

(xi)
∣

∣ (13)

The cost function used for the training is noted LΘΘΘ

with ΘΘΘ = [θθθ1;θθθ2]. It is equal to:

LΘΘΘ = c1L1 + c2L2
′+ c3L3 (14)

The pseudocode of an algorithm iteration is pro-

vided in Algorithm 2.

Algorithm 2: Two-Network Approach Iteration.

1: Input: networks φφφθθθ1
,φφφθθθ2

, dynamical system f ,

parameters α,β, hyperparameters c1,c2,c3, set

X ⊂ X

2: Compute candidates Vθθθ1
(X), V̇θθθ1

(X) and Hθθθ2
(X)

3: Compute approximate level set c̃ (10)

4: Compute cost function LΘΘΘ (14)

5: Update weights of φφφθθθ1
and φφφθθθ2

to minimize LΘΘΘ

6: Return: Updated networks φφφθθθ1
,φφφθθθ2

Although this formulation has some obvious

shortcomings, including the increase in parameters

involved, and thus a longer computation time, these

parameters are not necessarily prohibitive if a suitable

Lyapunov function is to be found for the system under

consideration.

4 EXAMPLES

In the following section, we demonstrate that the pro-

posed methods are efficient through numerical exper-

iments.

4.1 Training Method

The neural network function is trained using Matlab

Automatic Differentiation and the standard ADAM

network training algorithm (Kingma and Ba, 2017),

from the R2023A Matlab Deep Learning Toolbox.

The documentation for the adamupdate Matlab func-

tion is available at (Matlab, 2019).

In order to compute a gradient that can effec-

tively influence the training direction, an equivalence

of N2 = |A | directly related to θθθ (resp. θθθ1) is used in

(11). It is noted Ñ2 and is equal to:

Ñ2 = ∑
i∈X

max(0,σ(c̃−Vθθθ(xi))) (15)

with σ the sigmoid function.

In general, the number of neurons per layer is de-

termined by the dimension of the system, the num-

ber of hidden layers is first set at 1, then increased if

necessary, and the networks parameters are bounded

between −1 and 1. Lyapunov candidates are judged

according to the size of their largest RoA estimate Ωc

as defined in section 2.

The pseudocode of the algorithm proposed is pro-

vided in Algorithm 3. In order to have sufficient train-

ing data, we use a grid of initial conditions X0 ⊂ X.

For each x0 in X0, the system studied is simulated

with Simulink, and the trajectory is collected into X.

We define nE as the number of epochs and nI as the

number of iterations per epoch. Since there is no

guarantee that the cost function will converge, we fix

the total number of iterations NI = nE × nI . For each

epoch the table X is shuffled and nI is fixed so that:

X :=
nI⊔

j=1

Xb, j (16)

where Xb, j are training data batches of size N1.

At each iteration, update is driven by the cost

function gradient:

• for the single network approach we compute

∇θθθLθθθ to update φφφθθθ ;

• for the two-network approach we compute ∇θθθ1
LΘΘΘ

and ∇θθθ2
LΘΘΘ to update φφφθθθ1

and φφφθθθ2
respectively.

4.2 Parameter Setting

In all the examples, a learning rate of 0.01 is cho-

sen for the training of the network modeling Vθθθ. The

learning rate of the second neural network is fixed to

0.02 when used to match V̇θθθ quickly, especially dur-

ing the first iterations, as empirically observed during

the algorithm implementation.

Each network has the same structure with tanh ac-

tivation functions and a single hidden layer. The hid-

den layer neurons number is fix to 4n and the out-

put dimension is fix to 2n as this allows a suitable

optimization time and sufficiently significant results

for the study of the examples considered. For a two-

dimensional system, i.e. n = 2, we then have a total

of 60 parameters to train by network.

As c1 is commonly fixed to 1, hyperparameters

c2,c3 can be fixed by trial and error and their common

values are c2 = 0.1 and c3 = 0.01. Settings α and β

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

32

Algorithm 3: Network Training Implementation.

1: Input: dynamical system f , parameters α,β, hy-

perparameters c1,c2,c3, initial set X0 of sampled

states in X, number of epochs nE , number of iter-

ations per epoch nI , batch size N1

2: Initialize φφφθθθ (resp. φφφθθθ1
,φφφθθθ2

)

3: for all x0 ∈ X0 do

4: Simulate the trajectory initialized at x0

5: Update data table X with measures x(t)
6: end for

7: for i = 0,1, ...,nE do

8: Shuffle X

9: for j = 0,1, ...,nI do

10: Get a batch Xb, j from X of size N1

11: Compute algorithm 1 or 2 with X = Xb, j

12: end for

13: end for

14: Return: φφφθθθ (resp. φφφθθθ1
,φφφθθθ2

)

are also fixed by trial and error and then kept constant

for each of the systems considered. Table 1 lists the

selected values.

Table 1: (α,β) setting.

Benchmarks Example 1 Example 2

α 0.1 0.1

β 0.1 1

Table 2 includes information about the data set

used for training and the fixed number of iteration.

Table 2: |X0|—|X0|—|X0| is the number of initial condi-
tions considered, |X0|—X—|X0| is the number of training
data obtained with Simulink. |X0|NI—X0| is the number of
training iterations, and |X0|N1—X0| is the batch size fixed
for each of the examples considered.

Benchmarks Example 1 Example 2

|X0| 1681 961

|X| 9.9× 105 4.7× 105

NI 270 270

N1 1× 105 5× 104

4.3 Experiments

The two systems considered aims to illustrate the abil-

ity of our methods to treat general nonlinear systems.

The first example is a differentiable two-

dimensional nonlinear system. We compare

our results with another training method based

on the Hessian-based approach described in

(Bocquillon et al., 2022) and, to properly com-

pare methods, the cost term L3 (11) is added to the

training framework suggested:

Evolution of the Training Process. Let Q and λ
be as defined in (Bocquillon et al., 2022). The cost

function Q is rewritten as follow:

Q = λ+L3 (17)

The best case is obtained when the system considered

is stable for all x ∈ X, i.e. Q < 0 after training. Gen-

erally speaking, the Lyapunov candidate obtained is

valid if λ < 0 at the end of the training.

The second example is a 2d-system defined to demon-

strate briefly the ability of our methods to find a suit-

able Lyapunov function even if the system is not dif-

ferentiable.

Both examples are defined so that a large part of

their domain of definition is unstable. Our goal is to

test the ability of our methods to find a suitable Lya-

punov function even if part of the data considered dur-

ing training are part of unstable trajectories.

Example 1.
{

ẋ1 =−x1 + x2 +
1
2
(ex1 − 1)

ẋ2 =−x1 − x2 + x1x2 + x1 cosx1

(18)

The domain considered is X= [−6;6]2 and 0 is a sta-

ble equilibrium.

In Figure 1, Regions of Attraction (RoA) of

Lyapunov functions obtained by the single network

method and the two-network method, as long as

Hessian-based approach, are compared. The regions

obtained are not included in the display window,

which is limited to the size of X0, as trajectories con-

sidered during training may leave the window before

converging to 0. In view of this result, our training

methods can be considered efficient, since they al-

low us to find Lyapunov functions with regions of at-

traction close to the true region of attraction. As we

have not precisely optimized the parameter settings,

we can hope that with an hyperparameter optimiza-

tion method we can obtain an even more accurate es-

timate of the true RoA.

Lyapunov functions obtained for the single-

network method and the two-network method, and

their time derivative functions, are respectively dis-

played in Figures 2a and 2b. As can be seen, 0 is a

local minimum for Vθθθ, and a local maximum for V̇θθθ,

on the points grid considered for display.

In order to compare single network and two-

network approachs, Figure 3 shows functions h (10)

and Hθθθ2
(12). As described in section 3, the second

is defined by training, whereas the first is not. As we

obtained a similar RoA for the two methods, it is dif-

ficult to conclude here about a possible advantage of

Locally Convex Neural Lyapunov Functions and Region of Attraction Maximization for Stability of Nonlinear Systems

33

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6
Phase plan

True RoA
Hessian
One Network
Two Networks

Figure 1: RoA comparison - Example 1.

using the two-network approach instead of the single

one. However, we can emphasize the supposed ad-

vantage of using it, since Hθθθ2
is visually closer to V̇θθθ1

in Figure 2b than h to V̇θθθ in Figure 2a. Final values of

cost terms L2 (8) and L ′
2 (13), estimated for all x ∈ X,

provide a numerical overview of the difference be-

tween the two approaches. We have L2 = 7.7× 10−4

and L ′
2 = 4.4×10−3, which confirm the visual obser-

vation. The performance measurement study detailed

in section 4.4 would allow us to conclude.

Example 2.






ẋ1 =−
(

x1 −
√

2
2

)
∣

∣

∣
x1 −

√
2

2

∣

∣

∣
+ ex2−

√
2

2 − 1

ẋ2 =−
(

x2 −
√

2
2

)∣

∣

∣
x2 −

√
2

2

∣

∣

∣
+ ex1−

√
2

2 − 1
(19)

The domain considered is X = [−4;4]2 and x0 =
[−7.4.10−3;−7.4.10−3] is a stable equilibrium.

In Figure 4, Regions of Attraction (RoA) of

Lyapunov functions obtained by the single network

method and the two-network method are compared.

The second method seems to be more efficient but we

will see in section 4.4 if it comes from a better random

seed at initialization or a more efficient approach.

Lyapunov functions obtained for the single-

network method and the two-network method, and

their time derivative functions, are respectively dis-

played in Figures 5a and 5b, and the same conclusion

as before can be made about their values at the equi-

librium.

Figure 6 shows functions h (10) and Hθθθ2
(12), and

we apply the same argumentation as for example 1.

Hθθθ2
is visually closer to V̇θθθ1

in Figure 5b than h to V̇θθθ

in Figure 5a. For all x ∈ X, we have L2 = 0.1531 and

L ′
2 = 0.0478, which confirm the visual observation.

We rely on section 4.4 to compare the effectiveness

of the two approaches.

(a) Single Network Approach.

(b) Double Network Approach.

Figure 2: Lyapunov functions comparison - Example 1.

Figure 3: Estimator comparison - Example 1.

4.4 Performance Measurement

Due to the stochastic nature of our methods, we sub-

ject each system to a series of 50 successive runs

using the same training data set and different seeds

in order to test whether their results are parameter-

dependent.

We list the minimum value tmin, the average value

tmean and the standard deviation tstd of the training

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

34

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4
Phase plan

True RoA
One Network
Two Networks

Figure 4: RoA comparison - Example 2.

(a) Single Network Approach.

(b) Double Network Approach.

Figure 5: Lyapunov functions comparison - Example 2.

time obtained, the minimum value Lmin, the average

value Lmean and the standard deviation Lstd of the fi-

nal cost function obtained, as long as the maximum

value Dmax, the average value Dmean and the standard

deviation Dstd of the size of the RoA obtained as a

percentage compared to the size of the initial set X0

in Table 3 for the single network method. The same

results are presented in Table 4 for the two-network

Figure 6: Estimator comparison - Example 2.

Table 3: Single Network Approach Performance Measure-
ment.

Benchmarks Example 1 Example 2

tmin (s) 21.59 9.49

tmean (s) 22.35 10.77

tstd (s) 1.34 2.24

Lmin 6.1× 10−3 2.64× 10−2

Lmean 6.6× 10−3 3.05× 10−2

Lstd 6.8× 10−4 1.9× 10−3

Dmax (%) 82.7 71.6

Dmean (%) 19.2 32.4

Dstd (%) 13.35 21.9

method. The results presented in section 4.3 corre-

spond to the Dmax values.

The difference in execution times between the two

examples can be linked to the number of training data

items considered, as shown in Table 2. As the number

of iterations is equally fixed for each run, it is consis-

tent to obtain low standart deviations for L and t.

The evolution of Dmean between the two ap-

proaches is significant, with an increase of 5.5% for

example 1 and 11.9% for example 2, which tends to

validate the advantages of the two-network approach.

If the differentiability of the system considered is un-

known or uncertain, the second method is therefore

recommended. Since this approach requires twice the

parameters to be trained, the average calculation time

is, as expected, the shortcoming.

5 CONCLUSIONS

In conclusion, this paper addresses the challenge

of validating Lyapunov properties without explicitly

computing the Hessian eigenvalues and proposes two

approaches to so. By applying them to examples,

the paper demonstrates the effectiveness of the pro-

cess in validating the Lyapunov principle. A compar-

Locally Convex Neural Lyapunov Functions and Region of Attraction Maximization for Stability of Nonlinear Systems

35

Table 4: Two-Network Approach Performance Measure-
ment.

Benchmarks Example 1 Example 2

tmin (s) 32.43 16.77

tmean (s) 33.90 18.33

tstd (s) 2.33 1.74

Lmin 5.4× 10−3 2.53× 10−2

Lmean 5.8× 10−3 2.91× 10−2

Lstd 3.6× 10−4 2.1× 10−3

Dmax (%) 77.1 86.2

Dmean (%) 24.7 44.3

Dstd (%) 15.8 24.5

ison with a Hessian-based approach confirms the effi-

ciency of the proposed training scheme. The ability to

validate Lyapunov functions without explicitly com-

puting the Hessian provides a valuable alternative, es-

pecially in cases where a differentiable expression of

the system dynamics is not readily available.

This research opens up possibilities for broader

application of the Lyapunov principle, making it more

accessible and applicable in various domains. Further

investigations can explore the extension of those ap-

proaches to more complex systems and practical sce-

narios, ensuring their robustness and reliability, or can

focus on hyperparameters optimization to increase the

probability to find the largest Region of Attraction for

the system considered.

REFERENCES

Bocquillon, B., Feyel, P., Sandou, G., and Rodriguez-
Ayerbe, P. (2022). A comprehensive framework to
determine lyapunov functions for a set of continuous
time stability problems. In IECON 2022 – 48th An-
nual Conference of the IEEE Industrial Electronics
Society, pages 1–6.

Chang, Y.-C. and Gao, S. (2021). Stabilizing Neural Con-
trol Using Self-Learned Almost Lyapunov Critics. In
2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 1803–1809.

Chang, Y.-C., Roohi, N., and Gao, S. (2020). Neural Lya-
punov Control. arXiv:2005.00611 [cs, eess, stat].

Cybenko, G. (1989). Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4):303–314.

Gaby, N., Zhang, F., and Ye, X. (2022). Lyapunov-net: A
deep neural network architecture for lyapunov func-
tion approximation. In 2022 IEEE 61st Conference
on Decision and Control (CDC), pages 2091–2096.

Giesl, P. and Hafstein, S. (2015). Review on computational
methods for Lyapunov functions. Discrete and Con-
tinuous Dynamical Systems - B, 20(8):2291.

Hornik, K. (1991). Approximation capabilities of mul-

tilayer feedforward networks. Neural Networks,
4(2):251 – 257.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multi-
layer feedforward networks are universal approxima-
tors. Neural Networks, 2(5):359 – 366.

Khalil, H. K. (2001). Nonlinear Systems. Pearson, Upper
Saddle River, NJ, 3 edition.

Kingma, D. P. and Ba, J. (2017). Adam: A Method for
Stochastic Optimization. arXiv:1412.6980 [cs].

Liang, S. and Srikant, R. (2017). Why deep neural net-
works for function approximation? 5th International
Conference on Learning Representations, ICLR 2017
- Conference Track Proceedings.

Matlab (2019). Update parameters using adaptive moment
estimation (Adam) - MATLAB adamupdate.

Mawhin, J. (2005). Alexandr Mikhailovich Liapunov, The
general problem of the stability of motion (1892),
pages 664–676. Elsevier.

Petridis, V. and Petridis, S. (2006). Construction of neu-
ral network based lyapunov functions. IEEE Interna-
tional Conference on Neural Networks - Conference
Proceedings, pages 5059 – 5065.

Prokhorov, D. (1994). A Lyapunov machine for stability
analysis of nonlinear systems. In Proceedings of 1994
IEEE International Conference on Neural Networks
(ICNN’94), volume 2, pages 1028–1031 vol.2.

Richards, S. M., Berkenkamp, F., and Krause, A. (2018).
The Lyapunov Neural Network: Adaptive Stability
Certification for Safe Learning of Dynamical Sys-
tems. arXiv:1808.00924 [cs].

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

36

