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Abstract: Currently, the global energy mix is largely dominated by the use of fossil fuels, with the industrial sector

accounting for a significant portion of this demand. This results in a significant carbon footprint. As such, the

manufacturing industry must become active participants in reducing their impact on the environment through

the realization of sustainable manufacturing practices. This study analyzes the performance of a data-driven

model enhanced with machine learning techniques in order to build a digital twin that can update its parameters

in real-time in response to dynamic changes in the energy consumption of a machining process. This type of

model is suitable for the application of a higher-level controller, such as a model predictive controller to

optimize the efficiency of the process operation. This paper proposes a digital twin modelling approach based

on Gaussian process regression, which updates model parameters with closed-loop data from the process in

real-time to retrain the model (evolving). The updating of the model online enables the model to maintain

accuracy over time despite changes in the system’s dynamics.

1 INTRODUCTION

The industrial sector accounts for more than 40% of

the world’s electricity consumption, and manufactur-

ing firms consume nearly 50% of that energy (IEA,

2020). Energy efficiency plays an important role in

transforming factories to become more sustainable

and more environmentally friendly to address the key

societal challenge of the depletion of energy resources

and the deterioration of the environment. However,

improving the energy efficiency in the manufacturing

process is a non-trivial task. This is due to the com-

plexity of flexible manufacturing systems and their

power consumption dynamics.

The energy consumed by machining equipment in

discrete manufacturing processes has typically been

considered less significant compared to other manu-

facturing processes, e.g. the furnaces of steel indus-

tries, therefore, there is a lack of relevant research

on the energy efficiency and modeling of machining

processes despite the fact the overall impact on in-
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dustrial consumption can be compelling (Gu et al.,

2020). In (Moradnazhad and Unver, 2017), it was

highlighted that improving the energy efficiency of

machine tools can be impactful, and more research is

required to develop methods to improve real-time en-

ergy optimization beyond optimizing time and costs.

In (Huang et al., 2023), an energy-saving control

strategy was developed for multi-sleep states of ma-

chine tools considering component priority. The re-

sults show that the control strategy considering com-

ponent priority (i.e. the order in which the com-

ponents of a machine tool are started up or shut

down) can obtain more stable productivity and a bet-

ter energy-saving effect compared to other control

strategies.

In enhancing the energy efficiency of machine

tools, two approaches are typically employed. Firstly,

developing machine tools that are energy and

material-efficient. Secondly, optimizing the machin-

ing process to conserve energy. The first approach

needs a significant monetary commitment towards

modifying the machine. Whereas, the second ap-

proach entails maximizing the efficiency of machin-

ing operations through scheduling optimization and

management of both primary components and sup-

port units to minimize the usage of redundant en-
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ergy (Yi et al., 2020; Bermeo and Ocampo-Martinez,

2019; Quinn et al., 2022). The latter can be carried

out by applying control strategies, e.g. Model predic-

tive control (MPC), which has been extensively uti-

lized for industrial process optimization, resulting in

highly favourable outcomes (e.g., manufacturing sys-

tems (Lanzetti et al., 2019; Huang et al., 2023), chem-

ical industry (Shin et al., 2020; Wu et al., 2019b),

and pharmaceutical industry (Wong et al., 2018)).

Moreover, it has been more broadly implemented for

managing energy efficiency (Bermeo and Ocampo-

Martinez, 2019). As a model-based control method,

MPC requires an accurate model of the controlled

system to enhance its performance. When it comes to

performance, MPC can outperform other control tech-

niques since predictions of the process permit control

actions to be calculated based on future evolutions,

and it allows for preview information about references

and disturbances to be considered. Consequently, the

prediction model is a critical component of MPC (Ca-

macho, 2013).

Given the importance of an accurate model for

the performance of MPCs, most of the research in

learning-based MPC is focusing on improving the

model quality (Hewing et al., 2020; Narciso and Mar-

tins, 2020). However the computation load required

to equate the prediction model can make the applica-

tion of the MPC in real time infeasible, e.g. compu-

tation fluid dynamics (CFD) is a powerful modelling

tool, but its computation cost is large, making it pro-

hibitive for a real-time optimisation application (Jeon

et al., 2019). Therefore, recent research has been fo-

cused on developing accurate data-driven models suit-

able to be applied in real-time by an MPC. These

methods include modeling the system’s dynamics

with machining learning (ML) techniques such as ge-

netic algorithms (GA) (e.g. (Huang et al., 2023)),

Gaussian process regression (GPR) (e.g. (Park et al.,

2015; Maiworm et al., 2021)), decision trees, deci-

sion forests, logistic regression, support vector ma-

chine (SVM), neural network (NN) (e.g. (Shin et al.,

2020; Lanzetti et al., 2019; Wu et al., 2019a)), and

Bayesian classifiers (Jordan and Mitchell, 2015).

In (Shin et al., 2020), an MPC framework using a

NN to model the system’s dynamics was developed.

The aim was to increase the speed of optimization

and accuracy of the model. The adoption of the NN

model instead of using the existing linearized model

enhances the operational efficiency of the process in-

dustry. In (Wu et al., 2019a), a machine learning-

based predictive control system was developed for

nonlinear processes using an ensemble of recurrent

neural network (RNN) models. Their Lyapunov-MPC

formulation employs machine learning ensemble re-

gression modelling tools to improve the prediction ac-

curacy of RNN models and overall closed-loop per-

formance while parallel computing is utilized to re-

duce computation time. In (Lanzetti et al., 2019), a

tailored RNN model for system identification is pre-

sented. It is scalable and flexible for handling com-

plex systems encountered in industrial applications.

The proposed framework is applied in an industrial

simulation case study, showing good performance in

dealing with challenging practical conditions such as

multiple-input multiple-output (MIMO) control, non-

linearities, noise, and time delays. Which makes this

method scalable to machining processes.

Degradation of machines and dynamic production

environments can result in variations of energy con-

sumption. In these uncertain situations, it is proposed

that optimizing the machining process using real-time

data is the most appropriate method. To achieve on-

line optimization, it is necessary to have an accurate

energy model that can cope with uncertainty related to

changes in machine components and production pro-

cesses. Developing a new real-time predictive model

or digital twin using ML techniques can address this

challenge since it has the potential to capture inher-

ent dynamics and update parameters continually dur-

ing operation. Unlike traditional system identification

methods, most of which are suitable for offline pro-

cesses, this technology allows for real-time operation.

In (Hewing et al., 2020), the advantages of learning-

based MPC were explored, e.g. including the ability

to exploit the abundance of data in a reliable man-

ner, particularly while taking safety constraints into

account. The proposed method addressed the auto-

mated and data-driven generation or adaptation of el-

ements of the MPC formulation such that the control

performance with respect to the desired closed-loop

system behavior is improved. The setup in which

this learning takes place can be diverse. For instance,

offline learning considers the adaptation of the con-

troller between different trials or episodes of a control

task, during which data are collected. In methods that

learn online, the controller is adjusted during closed-

loop operation or using the data collected during one

task execution.

In (Park et al., 2015), energy prediction models

are developed for different subprocesses of a CNC

milling machine using a GPR model. The study in-

vestigates the effects of machining parameters on en-

ergy consumption and identifies the optimum input

features for the model of each different subprocess.

An uncertainty analysis is also presented to develop

confidence bounds for the prediction model. In ad-

dition, GPR can refine the model online during op-

eration. GPR models are capable of efficient on-
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line learning and can reduce the computation load

by limiting the number of training data points while

maintaining good performance. Gaussian processes

are also flexible and can handle non-linear and non-

Gaussian systems (Maiworm et al., 2021).

Given the lack of research on the energy efficiency

of machining processes and the requirement of MPC

to have a sufficiently accurate model that enables real-

time operation, this work proposes a modeling frame-

work based on GPR to capture the energy consump-

tion dynamics of machining processes. In addition,

the proposed method is capable of online retraining

of the model (evolving), hence the accuracy of the

model is maintained even when the system’s dynam-

ics vary. Most of the studies in this field employ mod-

elling techniques such as GPR to model the system,

however, these models are built for prediction pur-

poses and are not applied in MPC applications. In

this work, a framework is provided for the develop-

ment of a GPR model that can be applied in MPC

applications for optimizing the energy efficiency of

machining processes.

2 MODELING AND EVOLVING

GAUSSIAN PROCESS

REGRESSION MODEL

In this work, a model using GPR to capture the sys-

tem’s energy consumption dynamics of a machining

process is built. The model is updated with new data

when changes in the physical properties of the process

are detected. This enables for the capture of the un-

certainties and any variation of the system’s dynam-

ics due to aging or any environmental change that af-

fects the system’s dynamics. This allows the model

to improve and maintain accuracy over time. The on-

line training will be performed using new measure-

ments obtained in closed-loop operation. With this,

the model can be used as a control model for MPC

in order to optimize the energy consumption and the

control performance can be improved over time by

utilizing the measured data. In what follows, the fun-

damentals of GPR are introduced. Then the evolving

GPR concept is described that will be applied to iter-

atively update the energy consumption model.

2.1 Gaussian Process Regression

A Gaussian process regression is a non-

parametric model with uncertainty predic-

tions (Särkkä, 2019). The GP prior distribution

GP f (u) ∼ GP(m(u),k(u,u
′
)) is defined by the

mean function m(u) = E[ f (u)] and the covariance

or kernel function k(u,z
′
) = cov[ f (u), f (u

′
)] =

E[( f (u)− m(u))( f (u
′
)− m(u′)))]. Where u is the

input called regressor and E is the expected value.

The mean and the covariance functions along with

their hyperparameters θ define the GP. The GP is

then trained with a set of n measured input u and

output z data points defined as the training dataset

D = {u,z} that will be used to infer the posterior

Gaussian distribution (Jeon et al., 2019),

f (u|D)∼ GP(m(u|D),σ2(u|D)). (1)

The mean function mostly used is a constant zero

prior mean m(u|θ) = 0. The covariance function

defines the smoothness property of the functions,

which is usually selected to be the squared expo-

nential covariance function (Särkkä, 2019). Then,

the hyper-parameters θ are determined maximizing

the log marginal likelihood for the training data set

D = {u,z},

log(p(z|ω,θ)) =−
1

2
zT k−1z−

1

2
log|K|−

1

2
log(2π). (2)

One advantage of this modeling technique is that

it gives a regression mean of the prediction along with

upper and lower error bars for the predicted values, as

shown in Figure 1, which can be used as an estimate

of prediction uncertainty (Särkkä, 2019).
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Figure 1: Ilustration of a GPR prediction.

2.2 Evolving Gaussian Process

Regression

Any change in the environment of the system, such as

humidity, temperature, noise, or aging may vary the

system’s dynamic and if the model is not updated to

capture those changes in the dynamics the accuracy

of the predictions will be affected. For that reason,

the training dataset D = {u,z} needs to be updated so

the GP evolves with the real system (Maiworm et al.,

2021).

There are different criteria to decide if a new data

point needs to be included in D = {u,z}. In (Mai-

worm et al., 2021), it is determined if a new data point
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is included if the prediction error ep and the variance

σ
2 are higher than the determined thresholds ē and σ̄2

respectively, i.e.

ep
> ē (3)

σ
2
> σ̄2. (4)

Increasing the number of data points will increase

the computation time for the prediction, which could,

at some point, make the model unfeasible for a real-

time optimization application such as MPC. There-

fore, there is a need to maintain the number of data

points n when evolving the GPR. Different methods

can be used to determine which data point should be

replaced with a new one, e.g.

• Erasing the oldest data point.

• Erasing the data point that provides less informa-

tion to the model (i.e. the one with the highest

value of accuracy when used for prediction).

The first method has less computational cost,

while the second method would need to predict the

accuracy of the training dataset at every time k the

model is updated (Maiworm et al., 2021). In some

cases, the second method could be applied without

affecting the real-time performance of the model, e.g.

when the model is updated offline or if the compu-

tation time is less than the required prediction time-

step. In Section 5, the accuracy and computation time

of both methods is evaluated.

3 DATA ACQUISITION

This section describes the acquisition of training and

validation data. More details can be found in (Bhinge

et al., 2014). The data was used in (Park et al., 2015;

Bhinge et al., 2014; Ferguson and Park, a)1.

3.1 Training Data

The experiments were run using a Mori Seiki NVD

1500 – Micro NC Milling machine with a 9.525 mm

diameter solid carbide tool to machine a 63.5 mm x

63.5 mm x 56 mm cold finish mild steel 1018 ma-

terial. It includes six basic cutting subprocesses: face

milling, countering, pocketing, slotting, spiraling, and

drilling, and three non-cutting subprocesses: air-cut

in x and y direction, air-cut in z-direction and rapid

motion (Bhinge et al., 2014).

Eighteen sample parts were machined. The face-

milling operations on the first nine parts were carried

1Database at: http://lma.berkeley.edu/raunak.html

out in the y-direction, while the remaining nine parts

were milled in the x-direction. This ensures a better

prediction performance of the model since the data

covers both axes equally. In each part, the parameters

that affect the energy consumption the most are varied

so that every combination of them is applied for each

sample part. The spindle speed is measured in revolu-

tions per minute (RPM), the values used can be seen

in Table 1. The feed rate measured in millimeters per

minute is then obtained as the product of the spindle

speed in RPM, the chip load measured in millimeters

per tooth, and the number of tool teeth (Bhinge et al.,

2014).

3.2 Validation Data

Three test datasets were generated for validation in-

cluding six basic cutting subprocesses: face milling,

pocketing, and drilling, and three non-cutting sub-

processes: air-cut in x and y direction, air-cut in z-

direction, and rapid motion. In this case, the spindle

speed (RPM) for each test data set were varied as it

can be seen in Table 1 (Bhinge et al., 2014).

Table 1: Parameters of the training and validation data.

Dataset Spindle Speed (RPM)

Training {1500, 3000, 4500}
Test 1 {1500, 3000, 4500}
Test 2 {1700, 2800, 4300}
Test 3 {2125, 2400, 3750}

4 GAUSSIAN PROCESS

REGRESSION BASED ENERGY

CONSUMPTION MODELS

In this section, four different GPR-based energy con-

sumption models for machining processes are pre-

sented. The performances are compared in Section

5:

• Baseline model.

• Reduced training data set.

• Reduced training data set and evolved offline.

• Reduced training data set and evolved online.

The hyperparameters for the evolved models are

fixed with the values obtained with the reduced

model, i.e. only the training dataset D = {u,z} is

modified when retraining. This means that after re-

training the model, there is no need to maximize the

log marginal likelihood again, which saves most of
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the computation load of the retraining process. MAT-

LAB packages: PMML (Ferguson and Park, b) and

GPML (Rasmussen and Nickisch, 2020) were used to

generate, train, optimize, store, and use for prediction.

4.1 Baseline Model

The baseline model corresponds to the model pro-

posed in (Park et al., 2015). Each of the 9 subpro-

cesses has a corresponding GPR model. The input

features or regressors for each GPR model vary, as the

impact of input parameters on the energy consump-

tion dynamics varies depending on the subprocess.

Table 2 shows which inputs were used for each sub-

process’s GPR model listed in order of importance,

i.e.

• Feature 1 is the feed rate (RPM).

• Feature 2 is the spindle speed (mm/min).

• Feature 3 is the depth of cut (mm).

• Feature 4 is the active tool axis ID. It is derived

from the length of the cut in each direction x, y,

and z.

• Feature 5 is the cutting strategy ID. It is the

method for removing material.

Table 2: Input features of the GPR models by subprocess.

Feed Spindle speed (RPM) Input features

Cut

Facemilling {1, 2, 3, 4, 5}
Countouring {4, 1, 3, 2}

Slotting {4, 1, 2, 5}
Pocketing {4, 1, 2}
Spiraling {1, 4, 3}
Driling {1, 2, 4, 3}

No cut

Air cut in x and y {1, 2, 4}
Air cut in z {4, 1, 2}

Rapid motion {2, 4}

4.2 Reduced Training Data Set Model

In this model, the number of data points used in the

baseline model was reduced by erasing data points

from the training dataset D = {u,z}. The erased data

points were less meaningful data points for the model

e.g. the data points that were predicted with the high-

est accuracy. Table 3 shows the difference in the num-

ber of training data points between the baseline and

the reduced models for each subprocess.

4.3 Offline Evolved Model

The reduced model is then evolved offline with data

from one of the validation datasets offline. This

Table 3: Number of training data points of the GPR models
by subprocess.

Subprocess Baseline model Reduced model

1 1466 733

2 425 212

3 134 67

4 168 134

5 16 8

6 18 14

7 122 120

8 140 139

9 24 24

method enables maintaining accuracy with less com-

putation time than the baseline model while it also en-

ables the updating of the model in order to adapt the

model to the changing dynamics of the system. Both

methods were evaluated to decide which data points

should be substituted, i.e.

• Erasing the oldest data point.

• Erasing the data point that provides less informa-

tion to the model.

4.4 Online Evolved Model

Our aim is to create an online learning GPR model

suitable to be applied by an MPC in real-time to op-

timize the operations of a machining process. There-

fore, the threshold for substituting one of the train-

ing data points with a new one is evaluated every time

step. Both methods used for the offline evolved model

to decide which data points are going to be substituted

are also benchmarked for this model.

5 RESULTS

The model has been trained and validated on a lap-

top machine equipped with an Intel Core i7-10610U

1.8GHz and 32GB RAM running MATLAB 2022b

64-bit with the PMML (Ferguson and Park, b) and

GPML (Rasmussen and Nickisch, 2020) packages.

Table 4 shows the accuracy of the baseline and

reduced models. Note that the accuracy of the val-

idation is higher than the accuracy of the training

since the training dataset includes 9 machining sub-

processes, while the validation datasets only include

6 of the 9 subprocesses. It also shows that the ac-

curacy of the baseline model is maintained when the

reduction of data points for training is carried out to

create the reduced model.

Table 5 shows the computation time for training

and the validation (prediction) processes, which are

significantly reduced with the reduced model.
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Table 4: Accuracy of the baseline and reduced models.

Baseline Reduced

Dataset NMRSE(%)

Training 74.0121 72.2632

Test 1 84.4659 83.5576

Test 2 80.4416 79.4065

Test 3 68.4466 68.0077

Table 5: Computation time of the baseline and reduced
models.

Baseline Reduced

Dataset Time (s)

Training 28.27641 0.003509

Test 1 50.34184 22.30064

Test 2 48.66615 21.81061

Test 3 50.06636 22.19655

Tables 6 and 7 show that both evolved methods in

each method a) and b) maintain and even increase the

accuracy of the reduced model when predicting the

validation dataset. The accuracy when predicting the

training dataset is the one fixed in the reduced model.

Table 6: Accuracy of the evolved offline models.

Evolve offline

a) b)

Dataset NMRSE (%)

Training 72.2632 72.2632

Test 1 88.3044 88.1600

Test 2 87.5672 86.8094

Test 3 86.6200 86.8189

Table 7: Accuracy of the evolved online models.

Evolve online

a) b)

Dataset NMRSE (%)

Training 72.2632 72.2632

Test 1 86.1598 84.6490

Test 2 85.4315 81.0116

Test 3 76.3391 72.7208

In Table 8 and 9 it can be observed that the com-

putation time for both evolving methods is similar.

The computational time shown in Table 5 represents

the computational time for predicting the full process,

while the computational time shown in Table 8 and

Table 9 represent the average computational time for

predicting over an NC block.

Figure 2 shows the predictions of the baseline

model for Test 1, while Figures 3 and 4 show the

predictions of the evolved online model b) for Test

1. Figure 4 also shows at which NC block a train-

ing data point is substituted, e. i. when the thresh-

olds described by equations (3) and (4) are crossed.

Table 8: Computation time of the evolved offline models.

Evolve offline

a) b)

Dataset Time (s)

Training 0.0033509 0.003509

Test 1 0.0045 0.0043

Test 2 0.0048 0.0045

Test 3 0.0052 0.0043

Table 9: Computation time of the evolved online models.

Evolve online

a) b)

Dataset Time (s)

Training 0.003509 0.003509

Test 1 0.00469 0.0075

Test 2 0.00486 0.0074

Test 3 0.00596 0.0088

86 88 90 92 94 96
NC block

0

100

200

300

400
Predicted
Measured

Figure 2: Measured values for Test 1 and predicted values
using the baseline model.

86 88 90 92 94 96
NC block

0

100

200

300

400
Predicted
Measured

Figure 3: Measured values for Test 1 and predicted values
using the evolved online model b).

For example, between NC blocks 85-95, the train-

ing data points are substituted in consecutively NC

blocks. Comparing Figures 2 and 3 it can be observed

that the predicted signal is closer to the measured one

when using the evolved online model b). In Figure 4

it can be observed that between NC blocks 85-95 the

retraining of the model is carried out every two NC

blocks.

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

132



0 50 100 150
NC block

0

200

400

600 Predicted
Measured

0 50 100 150
NC block

0

0.5

1 Retraining (1/0)

Figure 4: Measured values for Test 1 and predicted values
using the evolved online model b) and retraining signal.

6 CONCLUSION

The aim of this work is to build a digital twin that uses

a non-parametric regression model, i.e. Gaussian pro-

cess regression, suitable to be updated online allowing

the model to sustain its accuracy over time despite any

alterations that might occur in the system’s dynam-

ics. The performance of four different GPR models

was analysed. The baseline model demonstrates the

Gaussian process regression can be used to model the

energy consumption of a CNC machine. The reduced

model results demonstrate that the computation time

could be reduced when less relevant data points are

erased from the training data set while maintaining

accuracy. The offline evolved model results show the

reduced data points GP model can be retrained with

new data, so the model changes along with the real

system. The online evolved model demonstrates that

the retraining of the model of the energy consumption

of a CNC machine can be done online. Both evolved

models, offline and online, have similar accuracy and

computation time, but the model evolved online will

include real-time changes in the system’s dynamics.

These results determine that online retraining of the

model to capture the changes in the behaviour of the

energy consumption of a machining process in real

time is feasible.

A test bed is being built in order to collect new

data to analyse the performance of the evolved on-

line models. The computation time and accuracy

of the evolved online models meet the character-

istics required to build a DT–MPC framework to

model the energy consumption of machining pro-

cesses enhanced with real-time adaptative learning of

the model and real-time optimization to reduce the en-

ergy consumption of the system. The literature review

on energy efficiency in machining typically employs

alternative techniques for system modelling or GPR,

but does not incorporate MPC for energy efficiency

optimization. Thus, this study’s primary contribu-

tion is the proposed GPR model’s suitability for future

MPC applications in optimizing energy efficiency in

machining processes.
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