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Abstract: The performance of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is significantly affected
by the selection of the specific CMA-ES variant and the parameter values used. Furthermore, optimal CMA-
ES parameter configurations vary across different problem landscapes, making the task of tuning CMA-ES to
a specific optimization problem a challenging mixed-integer optimization problem. In recent years, several
advanced algorithms have been developed to address this problem, including the Sequential Model-based Al-
gorithm Configuration (SMAC) and the Tree-structured Parzen Estimator (TPE).
In this study, we propose a novel approach for tuning CMA-ES by leveraging CMA-ES itself. Therefore, we
combine the modular CMA-ES implementation with the margin extension to handle mixed-integer optimiza-
tion problems. We show that CMA-ES can not only compete with SMAC and TPE but also outperform them
in terms of wall clock time.

1 INTRODUCTION

The Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) (Hansen and Ostermeier, 1996) is a
popular algorithm used for solving complex black-
box optimization problems. It has gained significant
attention due to its ability to handle nonlinear and
multimodal optimization problems. Over the years
several different variants have been developed, each
offering unique advantages (Bäck et al., 2013).

To achieve optimal performance with CMA-ES, it
is crucial to tune the parameters of CMA-ES and to
explore different CMA-ES variants (van Rijn et al.,
2016). However, manual parameter tuning can be la-
borious and time-consuming. As an alternative ap-
proach, automatic parameter tuning has been pro-
posed (Bäck, 1994; Grefenstette, 1986). This ap-
proach treats parameter tuning as an additional op-
timization problem besides the primary objective of
solving the original problem.

Therefore, tuning CMA-ES parameters involves
optimizing an optimization algorithm itself. The ob-
jective of such meta-optimization is to select the most
suitable set of parameter values to enhance the per-
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Figure 1: Solving an optimization problem with CMA-ES
and parameter tuning with a meta-algorithm as two different
optimization problems (Eiben and Smit, 2011).

formance of the optimizer on the original optimiza-
tion problem. Figure 1 illustrates the relationship and
distinction between solving the original optimization
problem and tuning the parameters. While CMA-ES
optimizes the quality of solutions found (goodness
of solutions is referred to as fitness) for the original
problem, a meta-algorithm is employed to optimize
the quality of the CMA-ES parameters (goodness of
performance is referred to as utility) (Eiben and Smit,
2011).

CMA-ES parameter tuning can be formulated as
a mixed-integer optimization problem where, in ad-
dition to continuous CMA-ES parameters, different
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combinations of discrete parameter values and CMA-
ES variants can be selected to find the optimal con-
figuration. Several meta-algorithms have been devel-
oped to address such a challenge.

A popular algorithm for parameter tuning is
the Sequential Model-based Algorithm Configuration
(SMAC) (Hutter et al., 2011). SMAC is a sequen-
tial model-based optimization (SMBO) approach that
combines Bayesian optimization with random for-
est regression models (Breiman, 2001). SMAC has
been successfully applied to various machine learn-
ing tasks, including algorithm configuration, feature
selection, and deep neural architecture search (Feurer
et al., 2015; Lindauer et al., 2022).

Another SMBO algorithm is the Tree-structured
Parzen Estimator (TPE) (Bergstra et al., 2011). TPE
utilizes a distinct approach based on tree-structured
density estimation to efficiently search for optimal pa-
rameter settings. Tuning the parameters of CMA-ES
with TPE has been shown to improve the performance
of CMA-ES on a number of benchmark optimization
problems (Zhao and Li, 2018).

Recently, an extension of CMA-ES called CMA-
ES with margin (Hamano et al., 2022) has been in-
troduced. This extension enhances the capabilities of
CMA-ES to effectively handle discrete and mixed-
integer optimization problems. As a result, CMA-
ES with the margin extension can be used as a meta-
algorithm for solving the mixed-integer optimization
problem of tuning CMA-ES for specific optimization
problems.

The goal of this study is to explore the poten-
tial of CMA-ES with margin as a meta-algorithm for
tuning the parameters of CMA-ES. We conduct ex-
periments on several benchmark optimization prob-
lems and compare the performance of CMA-ES with
margin to that of SMAC, TPE, and random search.
First, we provide an overview of CMA-ES, its param-
eters, and its variants (Section 2.1). In addition, we
briefly describe the margin extension, which specifi-
cally addresses mixed-integer optimization problems
(Section 2.2). We then describe the experimental
setup and the software implementation employed in
our study (Section 3). Finally, we present the results
obtained from our experiments and engage in a com-
prehensive discussion of these results (Section 4).

2 CMA-ES

2.1 Parameters and Variants

The Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) (Hansen, 2016; Hansen and Oster-

meier, 1996) is a group of iterative heuristic al-
gorithms designed to solve continuous optimization
problems with a single objective. In each genera-
tion g, a population denoted as x is generated, con-
sisting of λ offspring. These offspring are sampled
from a multivariate normal distribution characterized
by a mean value m(g) ∈Rn, a covariance matrix C(g) ∈
Rn×n, and a standard deviation σ(g) ∈ R>0:

x(g+1)
k ∼ m(g)+σ

(g)N (0,C(g)) ∀ k = 1, ...,λ. (1)

Then, the best µ individuals are selected from the pop-
ulation to compute the new mean value m(g+1) with
the given weights wi:

m(g+1) =
µ

∑
i=1

wi x(g+1)
i:λ , (2)

∑wi = 1, w1 ≥ w2 ≥ ...≥ wµ. (3)

The covariance matrix C(g) is updated with the evolu-
tion path p(g)c ∈ Rn:

C(g+1) = (1− c1 − cµ

λ

∑
i=1

wi)C(g)

+ c1 p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one update

+cµ

λ

∑
i=1

wi y(g+1)
i:λ (y(g+1)

i:λ )T

︸ ︷︷ ︸
rank-µ update

, (4)

p(g+1)
c = (1− cc)p(g)c

+
√

cc(2− cc)µe f f
m(g+1)−m(g)

σ(g)
, (5)

µe f f = (
µ

∑
i=1

w2
i )

−1, y(g+1)
i:λ =

x(g+1)
i:λ −m(g)

σ(g)
, (6)

and the standard deviation σ(g) is updated with the
conjugate evolution path p(g)σ ∈Rn and a damping pa-
rameter dσ:

σ
(g+1) = σ

(g) exp

 cσ

dσ


∥∥∥p(g+1)

σ

∥∥∥
E
∥∥N (0, I)

∥∥ −1

 , (7)

p(g+1)
σ = (1− cσ)p(g)σ

+
√

cσ(2− cσ)µe f fC(g)−
1
2 m(g+1)−m(g)

σ(g)
. (8)

The optimization behavior of CMA-ES is determined
by the parameters λ, µ, c1, cc, cµ, and cσ, which can be
tuned for specific functions or sets of functions (An-
dersson et al., 2015; Zhao and Li, 2018). More-
over, several variations of the CMA-ES were devel-
oped (Bäck et al., 2013). In this study, we examine the
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following variants within modular CMA-ES (de No-
bel et al., 2021; van Rijn et al., 2016): Active
Update (Jastrebski and Arnold, 2006), Elitism (van
Rijn et al., 2016), Mirrored Sampling (Brockhoff
et al., 2010), Orthogonal Sampling (Wang et al.,
2014), Threshold Convergence (Piad-Morffis et al.,
2015), Weighted Recombination (Hansen and Os-
termeier, 2001), Restart with increasing population
(IPOP) (Auger and Hansen, 2005) or bi-population
(BIPOP) (Hansen, 2009), Bound Correction (Caraf-
fini et al., 2019).

2.2 CMA-ES with Margin

The canonical CMA-ES is designed for continuous
problems. CMA-ES can be applied to discrete prob-
lems by rounding the continuous values from CMA-
ES to the allowed discrete values, resulting in plateaus
between the rounded values of size ρ (Hansen, 2011;
Thomaser et al., 2023a). However, its effective-
ness decreases. This limitation arises from the self-
adaption mechanism of the CMA-ES, which can
cause the variance of the mutation distribution to be-
come smaller than the granularity of the discretiza-
tion. In other words, when the mutation step is
smaller than the plateau size ρ, the optimization tends
to remain on the plateau.

To address this issue, Hamano et al. (Hamano
et al., 2022) introduced a modification to CMA-
ES known as CMA-ES with margin (CMA-ESwM).
This approach involves incorporating a diagonal ma-
trix, denoted as A, into the mutation distribution
N (m,σ2ACAT ). The purpose of this modification is
to ensure that the marginal probabilities of the mu-
tation distribution are lower bounded, guaranteeing
a minimum probability α that the mutation steps are
larger than the plateau size ρ. The adaption of A and
m is performed in each generation.

In the proposed CMA-ES with margin, Hamano
et al. suggest using α = 1

λ n as the default mar-
gin value. Experimental results on the bbob-mixint
testbed (Tušar et al., 2019) demonstrate that CMA-
ESwM outperforms several other methods, especially
in higher-dimensional scenarios.

3 EXPERIMENTAL SETUP

3.1 CMA-ES Performance Assessment

To optimize the performance of CMA-ES in solving
the original problem, a performance metric is needed.
Tuning the parameters of an optimization algorithm
with a fixed budget will yield optimal parameters

only for that specific budget (Thomaser et al., 2023c).
Hence, to assess the effectiveness of an optimization
algorithm in terms of anytime performance, we utilize
the area under the curve (AUC) of its empirical cu-
mulative distribution function (ECDF) as a measure,
as suggested by Ye et al. (Ye et al., 2022). To com-
pute the ECDF curves, we consider 81 target values
logarithmically distributed from 108 to 10−8. The ob-
jective is to maximize the AUC value.

As the original optimization problems, we uti-
lize four from the black-box optimization benchmark
suite (BBOB) (Hansen et al., 2009). These functions,
namely F1,F4,F20, and F21, serve as benchmarks
for evaluating the effectiveness of CMA-ES. While
F1 and F4 have a global structure and are separa-
ble, F20 and F21 have no global structure and are
not separable. F1 is unimodal and F4,F20,F21 are
multimodal. To reduce the computational effort, we
consider the functions in two dimensions only.

In each run of the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), we allocate a maxi-
mum evaluation budget of 400 for the BBOB function
F1, and 2000 for the BBOB functions F4,F20,F21.
The reason for the smaller budget in the case of F1 is
that, unlike the other three functions, F1 is unimodal.
An optimization problem involves four instances of
the same BBOB function. We evaluate the first four
instances of each BBOB function by performing 25
runs per instance, for a total of 100 CMA-ES runs.
This procedure is used to evaluate the effectiveness of
a CMA-ES configuration by calculating the AUC.

3.2 Parameters and Meta-Algorithms

Table 1 presents an overview of the parameters and
variants of CMA-ES considered for tuning in this
study. The learning rates c1, cc, cµ, and cσ are con-
tinuous, while the population size λ is an integer, and
the remaining variables are categorical. The values
considered represent a realistic problem faced by a
user who wants to find a well performing configura-
tion of CMA-ES. Tuning these CMA-ES parameters
is a mixed-integer optimization problem.

To solve the mixed-integer parameter tuning op-
timization problem with CMA-ES itself, we use the
margin extension from (Hamano and Saito, 2022).
Furthermore, we combine the margin extension with
the modular CMA-ES (de Nobel et al., 2021; van Rijn
et al., 2016). This allows us to leverage variants such
as mirrored sampling within CMA-ESwM as a meta-
algorithm. Previous studies (Thomaser et al., 2023c;
Wang et al., 2014; Wang et al., 2019) have shown
that mirrored and orthogonal sampling generally im-
prove the exploration of CMA-ES. Increasing the ini-
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Table 1: Parameter space for tuning CMA-ES.

Parameter Description Variants and Parameters
c1 Learning rate rank-one update ]0, 1]
cc Learning rate covariance matrix adaption ]0, 1]
cµ Learning rate rank-µ update ]0, 1]
cσ Learning rate step size control ]0, 1[
λ Number of children derived from parents {4,6,..,20}
µr Ratio of parents selected from population {0.3, 0.5, 0.7}
σ0 Initial standard deviation {0.2, 0.4, 0.6, 0.8}
Bound correction Correction if individual out of bounds {saturate, unif, COTN, toroidal, mirror}
Active update Covariance matrix update variation {on, off}
Elitism Strategy of the evolutionary algorithm {(µ,λ),(µ+λ)}
Mirrored sampling Mutations are the mirror image of another {on, off}
Orthogonal Orthogonal sampling {on, off}
Threshold Length threshold for mutation vectors {on, off}
Weights Weights for recombination {default, equal, 1

2
λ}

Restart Local restart of CMA-ES {IPOP, BIPOP}

tial standard deviation σ0 and the population size λ

can also lead to better global performance. Therefore,
we increase the population size from 12 to 18 and the
initial standard deviation from 0.2 to 0.6 compared to
the default parameter values of modular CMA-ES.

We compare two versions of the CMA-ESwM as
meta-algorithm: one using the default values from
the modular CMA-ES, and another using a modified
CMA-ESwM with adjusted parameter values, as de-
scribed above. Both versions use saturation as the
bound correction method.

To handle categorical and integer values, a trans-
formation is required when using CMA-ESwM. To
accomplish this, we use the ordinal encoder and min-
max scaler provided by scikit-learn (Pedregosa et al.,
2011). First, integer and categorical values are ordi-
nal encoded, followed by scaling to the range [−5,5],
which are the default values for the lower and upper
bounds within modular CMA-ES. Continuous param-
eters are only scaled to the same range of [−5,5]. To
illustrate, the three considered values {0.3,0.5,0.7}
for the selection ratio µr are first ordinal encoded to
{0,1,2} and then scaled to {−5,0,5}.

For the purpose of comparison with the modular
CMA-ESwM, we used several other meta-algorithms,
namely SMAC3 (version 2.0.0) (Lindauer et al.,
2022), Optuna’s TPE sampler and Random sampler
(version 3.2.0) (Akiba et al., 2019), each using their
default configurations. Our evaluation budget for the
meta-algorithm was set at 3000, and we performed
50 full parameter tuning runs on each BBOB function
for each meta-algorithm.

4 RESULTS

Figure 2 illustrates the average performance of CMA-
ES across 50 parameter tuning runs for each meta-
algorithm considered, on the four BBOB functions
F1,F4,F20,F21, which serve as the original opti-
mization problems. The objective is to maximize the
AUC. Each evaluation of a CMA-ES configuration in-
volves 100 optimization runs on the original problem.

The results show that the majority of perfor-
mance improvements in CMA-ES parameters can be
achieved within the first 1000 evaluations for all four
BBOB functions. Subsequent improvements are rel-
atively small. Both the modified CMA-ESwM and
the TPE exhibit similar progressions over the eval-
uations, with TPE performing slightly better in the
early stages (up to 500 evaluations), and CMA-ESwM
mostly outperforming TPE thereafter. Around 500
evaluations, SMAC may initially appear slower in dis-
covering good solutions compared to the other algo-
rithms. However, its performance steadily improves
over time, reaching a similar performance compared
to the other meta-algorithms mentioned above. In
contrast, the random search stagnates and its progress
decreases significantly after 500 evaluations. CMA-
ESwM with default parameters shows a worse perfor-
mance compared to the modified CMA-ESwM. This
emphasizes parameter tuning of CMA-ES, not only
for optimizing the original optimization problem but
also as a meta-algorithm for tuning itself.

To ensure a more accurate assessment of the best
configuration found by a meta-algorithm, we rerun
the same configurations again 50 times for validation
and calculate the median. Figure 3 shows these vali-
dated AUC values.
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Figure 3: Boxplot of the validated AUC values of the best CMA-ES configurations found by the different meta-algorithms on
each of the four BBOB functions considered. For each meta-algorithm and BBOB function, 50 parameter tuning runs were
performed. Each of the configurations found in this process is in turn validated by 50 validation runs.
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While CMA-ESwM with default parameters can
find comparably good configurations, many are worse
than the solutions found by random search, especially
in the case of the two functions F1 and F4. In the me-
dian, the modified CMA-ESwM finds the best config-
uration for F1, F4, and F20. For F21 SMAC finds
the best configuration, followed by TPE and the mod-
ified CMA-ESwM. In summary, the modified CMA-
ESwM performs best in three out of four cases.

To further investigate whether the differences
in performance between the meta-algorithms are
statistically significant, we employ the Mann-
Whitney U test (Mann and Whitney, 1947) within
SciPy (Virtanen et al., 2020) with the alternative hy-
pothesis greater. We compare the considered meta-
algorithms pairwise and for each considered function
(Figure 4). If the p-value is below 0.05, we reject
the null hypothesis in favor of the alternative hypoth-
esis, thus the performance of the algorithm (y-axis) is
greater than that of the other algorithm (x-axis).

The p-value of the modified CMA-ESwM,
SMAC, and TPE when compared with random search
is far below 0.05 for each function considered (last
column in Figure 4). Thus, based on the Mann-
Whiteney U test, our results show that the modified

CMA-ESwM, SMAC, and TPE outperform random
search as a meta-algorithm.

Moreover, regarding the Mann-Whitney U test,
the modified CMA-ESwM performs significantly bet-
ter than TPE on F1, F4, F20, and SMAC on F4. Only
on F21 SMAC performs significantly better than the
modified CMA-ESwM.

However, the modified CMA-ESwM, SMAC, and
TPE show similar performance but differ in their wall
clock times. On average, CMA-ESwM is the fastest
of the three. This advantage is due to its ability to
parallelize the population within a single generation,
while the others evaluate configurations sequentially.
This leads to the result that although the computa-
tional cost of evaluating a new configuration within
random search is negligible, random search takes
about 50 % more time than CMA-ESwM to complete
a parameter tuning run. In contrast, both the SMAC
and TPE algorithms require about two to three times
more time than CMA-ESwM. This increased time is
due not only to their sequential evaluation procedures
but also to the additional internal computations and
model training involved in these methods, which will
not be lowered even if SMAC and TPE are imple-
mented with more parallelization.
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Figure 4: P-values from the Mann-Whitney U test (Mann and Whitney, 1947) with the alternative hypothesis greater when
comparing the performance of the five meta-algorithms considered pairwise with each other. The meta-algorithm on the
y-axis is compared to the meta-algorithm on the x-axis. If the p-value is below 0.05, the null hypothesis can be rejected in
favor of the alternative, thus the performance of the meta-algorithm on the y-axis is greater than the performance of the other
algorithm on the x-axis. To assess the performance of a meta-algorithm, 50 parameter tuning runs were performed.
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5 CONCLUSION

We have demonstrated significant improvements in
the efficiency and effectiveness of CMA-ES by tun-
ing its parameters. To handle the mixed-integer meta-
optimization problem of parameter tuning, we used
CMA-ES with margin, which effectively handles the
discrete parameters. In addition, we combined the
margin extension with modular CMA-ES with or-
thogonal mirrored sampling activated and with in-
creased default population size and initial standard
deviation to improve global exploration. As a re-
sult, our CMA-ES configuration for parameter tun-
ing competes with state-of-the-art algorithms such as
SMAC and TPE.

In terms of wall clock time, CMA-ES outperforms
SMAC and TPE due to its parallelization capability
and internal efficiency. This advantage further high-
lights the potential of CMA-ES in various domains.

It is worth noting that even with a simple random
search, we can find a very good configuration. Ran-
dom search is particularly advantageous in situations
where fully parallel execution is feasible.

Future research can focus on expanding the range
of original optimization problems considered and ex-
tending the study to other BBOB functions or bench-
mark sets. In addition, exploring the possibility of
tuning CMA-ES as a meta-algorithm with a third opti-
mization algorithm holds the potential for further per-
formance improvement.

The Python code to reproduce the described re-
sults has been made available on our Zenodo repos-
itory (Thomaser et al., 2023b). This repository also
contains the data of the results and additional code to
re-create the presented figures.
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