
Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators

Paolo Fosci a and Giuseppe Psaila b

University of Bergamo - DIGIP, Viale Marconi 5, 24044 Dalmine (BG), Italy

Keywords: Soft Web Intelligence, User-Defined Fuzzy Aggregators, Novel Constructs in J-CO-QL+, Soft Querying on
JSON Data Sets.

Abstract: In our previous work, we proposed Soft Web Intelligence as the interpretation of the general notion of Web
Intelligence in the current technological panorama, in such a way JSON data sets are acquired from the Inter-
net, stored within JSON document stores and then processed and queried by means of soft computing and soft
querying methods. Specific extensions to the J-CO Framework and to its query language (named J-CO-QL+)
made possible to practically implement the concept.
However, any “data intelligence” activity does not exclude aggregating data, but J-CO-QL+ did not pro-
vide statements for defining “user-defined fuzzy aggregators”. In this paper, we present the novel constructs
introduced into J-CO-QL+ to allow users to define and use their own fuzzy aggregators, so as to evaluate
membership degrees to fuzzy sets moving from array fields within processed JSON documents. This way,
complex soft queries are enabled, so as to enhance Soft Web Intelligence.

1 INTRODUCTION

Two decades ago, Web Intelligence was proposed in
(Yao et al., 2001) as an approach to exploit the large
amount of data and information that is possible to
obtain from the World-Wide Web; the foreseen key
technology was Artificial Intelligence (AI), because
it was recognized that the semi-structured or totally
unstructured form of information that is published on
the Web made classical approaches to Business Intel-
ligence substantially unsuitable.

Two decades later, the format that has become
very popular is JSON (JavaScript Object Notation),
due to its syntactic simplicity and its ease to be pro-
cessed in programming languages. This success has
been accompanied by the advent of JSON document
stores, i.e., DBMSs (Database Management Systems)
that natively store and query JSON data sets. Conse-
quently, data scientists and data engineers very often
deal with Web Intelligence scopes in which they have
to gather, integrate, query and publish JSON data sets.

In (Fosci and Psaila, 2022b), we envisioned the
notion of “Soft Web Intelligence”: soft computing
and soft querying (based on Fuzzy-Set Theory) can
actually provide the tools to perform Web Intelligence
tasks that must process JSON data sets coming from

a https://orcid.org/0000-0001-9050-7873
b https://orcid.org/0000-0002-9228-560X

web sources. Fuzzy-Set Theory and Fuzzy Logic are
indeed tools that belong to the AI world, consequently
we conceived the idea of “Soft Web Intelligence” as a
natural evolution of Web Intelligence.

The J-CO Framework is a pool of software tools
that is under development at the University of Berg-
amo (Italy); its goal is to provide analysts and data
engineers with sophisticated capabilities to gather, in-
tegrate and query JSON data sets; its query language,
named J-CO-QL+, is undergoing a continued evo-
lution with the addition of novel constructs: specif-
ically, we are currently introducing constructs for
further extending its capabilities for performing soft
querying on JSON data sets. In order to achieve a
practical support to our vision, in (Fosci and Psaila,
2022b) we introduced extensions to the J-CO Frame-
work specifically designed to practically realize Soft
Web Intelligence; furthermore, through a practical
case study, we showed that they are effective.

A typical computational activity that is performed
in Business Intelligence is “aggregating measures of
facts”, so as to provide an aggregated view of events
described by the analyzed data. It is reasonable to
guess that aggregating data should be a typical task
to do in Soft Web Intelligence, but in our previous
works on J-CO-QL+ aggregation was not considered,
because times were not mature. Now, it is the time to
introduce aggregators in J-CO-QL+, to further extend

258
Fosci, P. and Psaila, G.
Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators.
DOI: 10.5220/0012179100003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 258-267
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

the support to Soft Web Intelligence; specifically, we
consider “fuzzy aggregators”, which can be used to
rank documents by aggregating either values in array
fields or membership degrees to multiple fuzzy sets.

In this paper, we propose a novel construct, named
CREATE FUZZY AGGREGATOR, that we added to J-CO-
QL+ so as to define “user-defined fuzzy aggregators”;
its clauses drive users through the definition of a fuzzy
aggregator, giving them the intuition of the semantic
model. Through a practical case study, we will show
how to exploit fuzzy aggregators in a scope of Soft
Web Intelligence.

The paper is organized as follows. Section 2
presents the background of our work. Section 3 intro-
duces the vision of Soft Web Intelligence and presents
the main features of the J-CO Framework. Section 4
introduces the novel construct that we added to J-CO-
QL+ to declare user-defined fuzzy aggregators, to-
gether with the semantic model. Section 5 addresses a
practical case study by exploiting user-defined fuzzy
aggregators. Finally, Section 6 draws conclusions and
future work.

2 RELATED WORK

This paper connects two areas that usually are not
considered together, i.e., Web Intelligence and fuzzy
logic. This is not the first attempt we make, but now
we consider fuzzy aggregators (that were not consid-
ered in our previous work (Fosci and Psaila, 2022b)).

Specifically, Web Intelligence was introduced in
(Yao et al., 2001) to obtain useful information from
Web content. The complexity of Web content sug-
gested to rely on Artificial Intelligence (AI) to get rid
of this complexity. But what is AI? Techniques for
“Data Mining” are certainly considered as AI tech-
niques and are exploited in Web Intelligence (Han and
Chang, 2002), as well as neural networks are nowa-
days perceived as “the AI”.

Nonetheless, in the literature, many papers tries
to give a more specific yet wider interpretation of
Web Intelligence, such as “Computational Web In-
telligence” (Zhang and Lin, 2002), i.e., the adoption
of “Computational Intelligence” in Web Intelligence,
as well as “Brain Informatics” (Zhong et al., 2006),
i.e., fostering Web Intelligence through techniques
that come out from the study of the human brain.

Fuzzy Logic and Soft Computing belong to AI
too: indeed, its capability of approximate reasoning
based on “linguistic predicates” provides a significant
contribution towards AI. Consequently, it is straight-
forward that fuzzy logic can be exploited for Web In-
telligence. Zadeh, the creator of Fuzzy-Set Theory

(Zadeh, 1965), had this vision clearly in his mind: in-
deed, in (Zadeh, 2004a; Zadeh, 2004b), he showed
that soft computing could play an important role.
Remember that a Fuzzy Set A in a universe U is a
mapping for each x∈U , A : x→ [0,1], also denoted as
µA : x→ [0,1]. The co-domain is the set of “member-
ship degrees” (or simply “memberships”, for brevity
in the following): each item x belongs to A with a
degree; when the degree is 0 < µA(x) < 1, x belongs
to A only partially; obviously, µA(x) = 1 denotes full
membership of x to A, while µA(x) = 0 means hat x
does not belong at all to A.

However, looking for papers about fuzzy logic and
soft computing in Web Intelligence, very few works
can be found. The paper (Kacprzyk and Zadrożny,
2010) exploits soft computing in a group decision-
making system to express preferences, but Web Intel-
ligence activities were not supported by soft comput-
ing. The paper (Poli, 2015) uses FUZZYALGOL, a fuzzy
procedural programming language (Reddy, 2010), for
soft querying Web sources.

Consequently, this is why in (Fosci and Psaila,
2022b) we proposed the concept of Soft Web Intel-
ligence, trying to give a modern interpretation of the
concept of Web Intelligence on the basis of the current
technological panorama; in Section 3.1, we define the
concept in a precise way.

Nevertheless, Data Intelligence activities (Ala-
hakoon and Yu, 2015) ask for aggregation; conse-
quently, Soft Web Intelligence asks for “fuzzy aggre-
gations” (since it relies on fuzzy sets). A plethora
of proposals for fuzzy aggregators can be found in
the literature. Many of them, such as “t-norm” and
“t-conorm” operators, see (Farahbod and Eftekhari,
2012), consider the aggregation of “pairs of items”,
for example the classical AND and OR operators in the
fuzzy version. In this paper, we are focused on groups
(or categories) G j = {x j,1,x j,2, . . .}) of items x j,i that
belong to the same group G j because they share some
common properties or are samples of the same cat-
egory of items. Each x j,i singularly may belong to
a fuzzy set A, thus it is provided with a membership
µA(x j,i). Consequently, the set A of groups G j can be
seen as a partition of A: with this vision, the member-
ship of a group G j to A should be derived by somehow
aggregating memberships µA(x j,i), group by group.
Alternatively, if x j,i has not a membership, its values
might have to be aggregated to obtain the final mem-
bership of the G j group.
Popular fuzzy aggregators of this type are “Weighted
aggregation” (see (Dombi and Jónás, 2022)) and “Or-
dered Weighted Aggregation” (OWA) (Yager, 1988;
Li and Yen, 1995).

Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators

259

3 SOFT WEB INTELLIGENCE
AND THE J-CO FRAMEWORK

In this section, we introduce our vision about Soft Web
Intelligence, moving from the original paper (Fosci
and Psaila, 2022b). Then, we briefly introduce the J-
CO Framework, which is the technical tool that has
inspired the idea of Soft Web Intelligence.

3.1 Soft Web Intelligence

We conceived the notion of Soft Web Intelligence as
an evolution of the generic idea of Web Intelligence,
on the basis of the current technological panorama.
The following definition provides a synthetic char-
acterization of the concept, that has come out while
working on it after (Fosci and Psaila, 2022b).

Definition 1. “Soft Web Intelligence” is the contin-
ued acquisition, integration and querying of JSON
data sets coming from or representing Web sources,
by exploiting Soft Computing and Soft Querying, so
as to use them for decision making and knowledge
discovery.

In some sense, we could say that Definition 1 in-
stantiates the very generic definition of Web Intelli-
gence provided more than 20 years ago (Yao et al.,
2001). It is the result of the considerations made by
Zadeh in (Zadeh, 2004a; Zadeh, 2004b), concerning
the fact that JSON has imposed, in place of XML, as
the most popular format to represent and share data
over the Internet, as well as it is the result of the avail-
ability of NoSQL DBMSs known as “JSON document
stores”, which natively store JSON data sets.

Through Figure 1, we illustrate how we figure out
Soft Web Intelligence.

• Web Sources. Different kinds of Web sources
can be considered. Users usually think about Web
pages, but many services provide JSON data sets.
For example, Web Services can be contacted to
provide either complete data sets or single pieces
of data; this latter ones could be singularly col-
lected into a global data set; typically, social me-
dia expose Web services that can be exploited to
interact with the system; nowadays, JSON is the
data format on which most of Web services rely.
Open-Data portals are a common channel that is
exploited by Public Administrations to publish
data sets (possibly “Authoritative Data Sets”) con-
cerned with the administered territory or country.
Among all formats, JSON and GeoJSON are be-
coming more and more popular in this context too.
As a final example, the content of Web pages (i.e.,
HTML pages) could provide useful data sets and

Figure 1: Vision of Web Intelligence.

information. In this case, techniques of “Web
Scraping” could be exploited for acquiring the
content of HTML pages and represent their infor-
mation content as JSON data sets.

• JSON Document Stores. A pool of databases
managed by (potentially different) JSON docu-
ment stores is the right solution to store JSON
data sets acquired from Web sources. A very fa-
mous JSON store is MongoDB, but other products
are available (such as CouchDB, chosen as the
DBMS for the HyperLedger Fabric permissioned
BlockChain platform (Bringas et al., 2019)).

• Processing Activities. Processing is the key fac-
tor for the success of Soft Web Intelligence. Cer-
tainly, “Preprocessing” is the first activity to per-
form on data, so as to remove noise and make for-
mats homogeneous. The second activity is “In-
tegration”, i.e., integrating the different data sets
possibly stored in different databases, by uniting
those pieces of information that came from differ-
ent sources. The final activity is “Soft Comput-
ing”, in which techniques based on soft comput-
ing and soft querying are used to extract knowl-
edge from integrated data. Clearly, the more
powerful the support for soft computing and soft
querying, t he greater the possibility to extract
useful data and knowledge from the acquired data
sets.

3.2 The J-CO Framework

The J-CO Framework is a pool of software tools
whose goal is to provide analysts with a powerful sup-
port for gathering, integrating and querying possibly-
large collections of JSON data sets. The core of the
framework is its query language, named J-CO-QL+.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

260

Figure 2: The J-CO Framework.

The current organization of the framework, which
is the result of (Fosci and Psaila, 2022b), is depicted
in Figure 2. We explain it hereafter.

• J-CO-QL+ Engine. This component actually ex-
ecutes J-CO-QL+ scripts (i.e., queries). It is able
to retrieve data from document databases (for ex-
ample, managed by MongoDB) and save results
into them; it also can send HTTP requests to Web
sources to get JSON data sets directly from them.

• J-CO-DS. This component is a simple document
store specifically introduced in (Psaila and Fosci,
2018) to store large or very large single JSON
documents (such as many GeoJSON documents
that cannot be stored within other JSON stores,
such as MongoDB). In (Fosci and Psaila, 2022b),
we extended its data model, in such a way it now
supports three different types of collections:

– Static Collections are the classical collections
that contains JSON documents, similarly to
other JSON stores (the content of a collection
can be updated by the user or by the J-CO-QL+

Engine);
– Dynamic Collections automatically acquire the

content of web sources at scheduled times, so as
to provide images of web sources without need
to access the Internet when they are processed;

– Virtual Collections are associated to Web
sources, but they do not manage any local copy
of them, in that Web sources are accessed when
the virtual collection is accessed by users or
the J-CO-QL+ Engine (thus, virtual collections
provide a database view of Web sources).

• J-CO-BATCH (Introduced in (Fosci and Psaila,
2022b)) is an off-line executor of J-CO-QL+

scripts; in particular, it is possible to schedule the
repeated execution of scripts. Another feature is
the concept of “template”: J-CO-QL+ scripts can
be parameterized, so as to reuse them with differ-
ent settings/configurations.

• J-CO-UI is the user interface, by means of which

1. CREATE FUZZY AGGREGATOR integrateRain
 PARAMETERS rainData TYPE ARRAY

 FOR ALL rd IN rainData

 AGGREGATE rd AS av

 EVALUATE av

POLYLINE [(0, 0.0), (50, 0.0), (100, 0.1),

(200, 0.7), (300, 0.9), (400, 1.0)];

Listing 1: J-CO-QL+: fuzzy aggregator integrateRain.

analysts can write J-CO-QL+ scripts, submit them
to the J-CO-QL+ Engine and inspect results.

Data and Execution Models. For the sake of clar-
ity, we briefly introduce the data and execution mod-
els of J-CO-QL+.

• A JSON document is the basic computational
unit. JSON documents are grouped within “col-
lections”: an instruction takes one or two collec-
tions as input and generates a new collection.

• A query or script in J-CO-QL+ is a sequence of
instructions. They constitute a “piped flow”, in
such a way an instruction receives a “temporary
collection” (generated by the previous instruction)
as input and possibly generates a novel tempo-
rary collection as output. The “temporary” ad-
jective denotes that the collection is not saved
in any database, but is a temporary result of the
process. Instructions can also acquire data either
from JSON databases or from Web sources.

• For each single document, it is possible to in-
dependently evaluate its memberships to many
fuzzy sets. These degrees are represented within
the same document, by adding a special root-level
field named ˜fuzzysets. It is a nested document
that behaves as a key/value map: a field within it
denotes the membership to a fuzzy set, in such a
way the field name is the name of the fuzzy set,
while the value (in the range [0,1]) is the degree.
Specific clauses of J-CO-QL+ instructions evalu-
ate soft conditions, by evaluating memberships.

4 USER-DEFINED FUZZY
AGGREGATORS

User-defined fuzzy aggregators were missing in J-
CO-QL+: indeed, when documents in collections
contain arrays, it is highly probable that their content
should be somehow summarized, so as to determine
the membership to some fuzzy set and contribute to
soft querying. Hereafter, we present the novel state-
ment named CREATE FUZZY AGGREGATOR.

Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators

261

Figure 3: Membership function for the fuzzy aggregator
integrateRain.

4.1 Basic Structure

Listing 1 reports the definition of a very simple fuzzy
aggregator: its goal is to perform a cumulative ag-
gregation (sum) of numerical values within an array.
Hereafter, we explain it in details.

• The fuzzy aggregator is named integrateRain,
as specified after the keywords CREATE FUZZY
AGGREGATOR. The name is motivated by the fact
that the aggregator has to aggregate the amount of
rain (in millimeters).

• The clause PARAMETERS defines the formal pa-
rameters for the aggregator: in this case, only one
parameter, named rainData is specified, which
must be an array. Specifically, the aggregator is
expected to receive the amount of rain, so each
item in the array rainData denotes millimeters
of rain.

• The clause FOR ALL scans all values in an array
parameter, so as to perform aggregations. Specif-
ically, all items rd in the array rainData are ex-
plored.

• The sub-clause AGGREGATE evaluates, for each
item rd in the array rainData, an expression,
whose value is aggregated into the “variable”
specified after the keyword AS.
Specifically, the expression to evaluate refers only
to the item rd; this means that their values are ag-
gregated into the value av.

• The clause EVALUATE is evaluated after the clause
FOR ALL has scanned all items in the array and
generated an aggregated value.
Specifically, it refers to the av aggregated value
only, meaning that the aggregated value is taken
as it is. Clearly, since we aggregated generic nu-
merical values, the result is not in the range [0,1],

2. CREATE FUZZY AGGREGATOR owaRain
 PARAMETERS rainData TYPE ARRAY

 SORT rd IN rainData

BY rd TYPE NUMERIC ASC AS sRainData

 FOR ALL srd IN sRainData

 LOCALLY (POS^2 - (POS-1)^2)

/ (COUNT(sRainData)^2) AS w

 AGGREGATE srd * w AS av

 EVALUATE av

POLYLINE [(0.00, 0.0), (0.10, 0.0), (0.15, 0.7),

 (0.20, 0.8), (0.50, 0.9), (0.80, 1.0)];

Listing 2: J-CO-QL+: fuzzy aggregator owaRain.

so it cannot be considered as a membership. The
next clause converts it into a membership.

• The clause POLYLINE defines a membership func-
tion as a polyline of points: while the x coordinate
can be any real number, the y coordinate must be
necessarily in the range [0,1], because the mem-
bership function converts the value returned by
the clause EVALUATE into a membership value.
The polyline is depicted in Figure 3: notice that
we considered as range of interest from 0 mm to
500 mm of rain (which is really a lot of rain).
With 500 mm, the value 1 for the membership is
reached: greater values of rain still obtain 1 as
membership.

Resuming, the integrateRain fuzzy aggregator
moves from an array of values, aggregates them and
generates a membership to a fuzzy set.

4.2 Adding Local Derived Values

Listing 2 shows a more complex fuzzy aggregator,
named owaRain. It performs the “Ordered Weighted
Aggregation” (OWA, see (Yager, 1988)): a monotone
function is used to determine the weights of each item
in the array to aggregate, in such a way the array is
previously sorted. Hereafter, we explain the aggrega-
tor reported in Listing 2 in details.

• As for the aggregator reported in Listing 1, the
aggregator owaRain receives one single array pa-
rameter, named rainData.

• The clause SORT generates a novel array, named
sRainData, sorting each numeric item rd in the
array rainData in ascending order.

• The clause LOCALLY evaluates, for each item srd
in the array sRainData, a derived value that is
used in the sub-clause AGGREGATE.
Specifically, the f (x) = x2 is used to compute the
weight w of the item srd, whose position in the
array sRainData is denoted by POS (the first item
has POS= 1). Formally, the weight of the i-th item
in sRainData is
w= f (i/|sRainData|)− f ((i−1)/|sRainData|).
Since f is a parable, items with highest position
get the highest weights; furthermore, the array is

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

262

Figure 4: Membership function for the fuzzy aggregator
owaRain.

sorted in ascending order, thus the highest values
get the highest weights.

• The sub-clause AGGREGATE performs the aggrega-
tion, by summing all products of an item srd by
its weight w.
The resulting aggregated value, aliased as av, is
then checked against the membership function de-
fined by the clause POLYLINE, to obtain a mem-
bership. The polyline is depicted in Figure 4. No-
tice the shape, which is aimed at checking peaks
of rain: below 200 mm, the membership is 0; be-
tween 200 and 250 mm, the membership raises
quickly to 0.7, meaning that, after 250 mm, it is
likely a peak; then, the membership progressively
increases, thus denoting hard peaks of rain at 600
mm.

4.3 Multiple Aggregated Values

Listing 3 reports a further complex fuzzy aggregator,
whose name is weightedMemberships. The goal is
to aggregate memberships to fuzzy sets, provided that
an array of weights is given. We now describe it.

• The aggregator receives two parameters:
memberships is the array of memberships
to aggregate; w is the array of weights.

• The size of the two vectors must be the same,
because w contains the weight for each item in
memberships. This constraint is expressed by the
novel clause PRECONDITION: if this clause is not
satisfied, the aggregation is not performed and an
error is raised.

• In the clause FOR ALL, the sub-clause LOCALLY
multiplies the m item by its weight (in the position
POS). This value is aliased as wm.

• Two aggregated values must be computed: the
first one is named am and is obtained by summing

3. CREATE FUZZY AGGREGATOR weightedMemberships
 PARAMETERS

 memberships TYPE ARRAY,

 w TYPE ARRAY

 PRECONDITION COUNT (memberships) = COUNT (w)

 FOR ALL m IN memberships

 LOCALLY m * w[POS] AS wm

 AGGREGATE wm AS am

 AGGREGATE w [POS] AS aw

 EVALUATE am / aw;

Listing 3: J-CO-QL+: fuzzy aggregator
weightedMemberships.

all the values wn computed by the clause LOCALLY;
the second one is named aw and is obtained by
summing all the weights in the array w.

• The clause EVALUATE assembles the two aggre-
gated values, by dividing am by aw.
By construction (the array memberships contains
memberships) the result is in the range [0,1], so it
is already a membership. Since we do not want to
modify it, no polyline is defined.

4.4 Semantic Model

We conclude this section by formalizing the rich se-
mantic model of fuzzy aggregators in J-CO-QL+.

• A fuzzy aggregator is defined by means of a tuple
〈LV,AV,evalExpr,Points,Params,Precond〉

where LV is the (possibly empty) set of “local val-
ues”, AV is the (non empty) set of “aggregated val-
ues”, evalExpr is the expression to evaluate with
aggregated values, Points is the array of points
that constitute the polyline, params is the list of
parameters of the aggregator. Precond is the pre-
condition: if it does not hold on Params, the ag-
gregator is not evaluated.

• Each local value lv j ∈ LV is obtained as
lv j = le j(e,POS,Params)

where le j is the expression used to evaluate the
local value; le j can be seen as a function of an
item e and of its position POS in the array, as well
as of the list of parameters.

• An aggregated value avk ∈ AV is evaluated as
avk = Σe∈V aek(e, pos(e),LV,Params)

where aek is the expression used to evaluate the
local value to aggregate; notice that aek depends
on the item e, its position in the array, the set of
local values and the list of parameters. The sum is
performed for each item e in the V vector, where
V ∈ Params.

• The final membership µ is obtained as
µ = Polyline(Points,evalExpr(AV,Params))

where the expression evalExpr depends on the
set AV of aggregated values and on the list of

Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators

263

Figure 5: Preliminary Web-Intelligence process.

parameters.
The resulting value passes through the
functionPolyline, which receives the list Points
of points specified in the clause POLYLINE (if
missing, we assume that Points = [(0,0),(1,1)]).
The reader can see that, based on this semantic

model, in J-CO-QL+ it is possible to define a broad
range of fuzzy aggregators. As far as we know, this is
a novelty in the panorama of (soft) query languages.

In Section 5, we will show how to exploit fuzzy
aggregators for soft querying data in J-CO-QL+.

5 CASE STUDY AND QUERY

This section shows how to use the previously defined
fuzzy aggregators to actually query a JSON data set.
We introduce the case study (Section 5.1); then, we
present the J-CO-QL+ query in details (Section 5.2).

5.1 Case Study

The case study derives from the one we considered
in (Fosci and Psaila, 2022b). In that work, the case
study had to collect data from meteorological sen-
sors and integrate them with registry data. The raw
data were downloaded on-the-fly from an institutional
Open-Data portal1 and then pre-processed by a ded-
icated J-CO-QL+ script to be integrated with geo-
graphical information.
In this work, we exploit the same Open-Data portal,
but we downloaded and pre-processed rain measure-
ments; in other words, we performed an activity of

1Open-Data portal of Regione Lombardia
https://www.dati.lombardia.it/

Web Intelligence that is depicted in Figure 5, by ex-
ecuting a pool of J-CO-QL+ scripts that generate the
source data set for the remainder of this paper. For the
sake of space and since this pre-processing task is out
of the scope of this paper, we quickly summarize it.

1. A collection of 1261 documents describing mete-
orological sensors is downloaded from the Open-
Data portal2. Each document reports the identi-
fier, the typology of measurement (rain, temper-
ature, and so on), the coordinates and other less
interesting data related to one sensor. The name
of the city where the sensor is located is not re-
ported.

2. Each sensor document is enriched with the city in
which the sensor is located, by calling the online
and freely-accessible GeoName service3.

3. A second collection of 5,179,417 documents is
downloaded from the Open Data portal4, describ-
ing the measurements made by sensors in the
period from 01/05/2023 to 31/05/2023. Each
document reports the identifier of the sensor that
performed the measurement, the pure numerical
value and the timestamp. No field regarding the
typology (rain, temperature, etc) of the measure-
ment is present.

4. Measurements made by the same sensor are
grouped together: a novel collection of documents
is obtained, such that a document corresponds to
a sensor; it contains the sensor identifier and an
array of measurements (made by that sensor) with
their timestamp.

5. Finally, the collection of sensors is joined with the
collection of grouped measurements: basically,
a document fully describes a sensor and reports
the array of measurements; only rain sensors are
selected. A collection of 207 documents is ob-
tained, related to 903,027 measurements, which
constitutes the initial collection for our case-study.
The collection is saved within a JSON store, with
name MeasuredRain.

Figure 6 reports a document in this collection: no-
tice the array field named rainData (highlighted by a
blue box), which contains simple documents describ-
ing measurements of rain (the field value reports mil-
limeters of rain). Clearly, each single sensor is de-
scribed by one single document.

2https://www.dati.lombardia.it/Ambiente/Stazioni-
Meteorologiche/nf78-nj6b

3https://www.geonames.org/export/ws-overview.html
4https://www.dati.lombardia.it/Ambiente/Dati-sensori-

meteo/647i-nhxk

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

264

4. USE DB Webist2023
ON SERVER jcods 'http://127.0.0.1:17017';

5. GET COLLECTION MesauredRain@Webist2023;

6. FILTER
 CASE WHERE WITH .rainData

 GENERATE

 CHECK FOR

 FUZZY SET SignificantRain

USING integrateRain(EXTRACT_ARRAY(

.value FROM ARRAY .raidData)),

FUZZY SET PeaksOfRain

USING owaRain (EXTRACT_ARRAY(

.value FROM ARRAY .raidData)),

 FUZZY SET Wanted

USING weightedMemberships (MEMBERSHIP_ARRAY(

[PeaksOfRain, SignificantRain]), [2, 1])

 ALPHACUT 0.8 ON Wanted

 BUILD {

.city : .city,

.province : .province,

.sensorId : .sensorId,

.dateStart : .dateStart,

.dateEnd : .dateEnd,

.ranking : MEMBERSHIP_TO (Wanted)

}

DEFUZZIFY;

7. SAVE AS PeaksAndLongRain@Webist2023;

Listing 4: J-CO-QL+: retrieval and soft querying.

Once the input collection is ready, the problem to
address in the case study might be the following.

Problem 1. Given the measurements of rain collected
in the MeasuredRain collection, find out those sen-
sors that measured high peaks of rain, possibly with
significant cumulative rain.

Problem 1 can be thought as a soft query.

Query 1. Consider the universe of sensors and two
fuzzy sets in it: the first one is named PeaksOfRain
and denotes those sensors that measured peaks of
rain; the second one is named SignificantRain
and denotes sensors that measured a significant
amount of rain in the monitored period. A third fuzzy
set that is named Wanted denotes those sensors that
are in the fuzzy set PeaksOfRain (with weight 2)
and possibly in the fuzzy set SignificantRain
(with weight 1). Specifically, we are interested in sen-
sors whose membership to the fuzzy set Wanted is no
less than 0.8.

Clearly, in order to evaluate the memberships of
sensors to the desired fuzzy sets, it is necessary to ag-
gregate measurements of rain.

5.2 Query

Listing 4 actually performs Query 1; notice that the
first line number is 4, because the three definitions
of fuzzy aggregators reported in previous listings are
part of the query itself. Hereafter, we present it.

Acquiring Data. Line 4 specifies the database to
connect with. Specifically, notice that the database

{

"city" : "Osio Sopra",

"province" : "BG",

"sensorId" : 5856,

"latitude" : 45.6338645090807,

"longitude" : 9.55608425579086,

"rainData" : [

 {

"date" : "12/05/2023 21:00:00",

"value" : 2.2

},

…,

 {

"date" : "24/05/2023 17:00:00",

"value" : 47.8

}

]

}

Figure 6: Example of document in the starting
MeasuredRain collection.

webist2023 is managed by J-CO-DS, the JSON doc-
ument store provided by the J-CO Framework (see
Section 3).

On Line 5, the instruction GET COLLECTION
actually retrieves he content of the collection
MeasuredRain from the database Webist2023; the
collection becomes the new temporary collection of
the process.

Soft Querying with Fuzzy Aggregators. The in-
struction FILTER on Line 6 of Listing 4 actually per-
forms the soft query. Hereafter, we explain it.

• The clause CASE WHERE selects (in a Boolean
way) those documents that have the field
rainData. The remainder of the instruction will
work on these documents.

• The block GENERATE actually generates the output
documents, by possibly performing several ac-
tions, including evaluating memberships to fuzzy
sets, through the clause CHECK FOR.

• The clause CHECK FOR contains many different
branches FUZZY SET, one for each fuzzy set un-
der consideration. We have three branches FUZZY
SET on line 6.

• The first branch FUZZY SET evaluates the mem-
bership to the fuzzy set SignificantRain. To
do this, the soft condition USING (which actu-
ally provides the membership to the fuzzy set un-
der consideration) exploits the fuzzy aggregator
integrateRain defined in Listing 1.
To call the fuzzy aggregator, an array of num-
bers must be provided as actual parameter: since
the array field rainData contains nested docu-
ments; the special function EXTRACT ARRAY cre-
ates a novel array of numbers by projecting the ar-
ray field rainData on the inner (numerical) field
value.
The membership provided by the fuzzy aggre-
gator integrateRain becomes the membership

Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators

265

{

"city" : "Osio Sopra",

"province" : "BG",

"sensorId" : 5856,

"latitude" : 45.6338645090807,

"longitude" : 9.55608425579086,

"rainData" : [

 {

"date" : "12/05/2023 21:00:00",

"value" : 2.2

},

…,

 {

"date" : "24/05/2023 17:00:00",

"value" : 47.8

}

],

"~fuzzysets" : {

 "PeaksOfRain" : 0.930466311,

 "SignificantRain" : 0.754000000,

 "Wanted" : 0.871644207

}

}

Figure 7: Example of temporary document generated by the
instruction FILTER on Line 6 before the block BUILD.

of the current JSON document to the fuzzy set
SignificantRain.
The field ˜fuzzysets is added to the JSON doc-
ument, so as to report the computed membership.

• The second branch FUZZY SET evaluates the
membership of the current document to the fuzzy
set PeaksOfRain, through the fuzzy aggregator
OwaRain (reported in Listing 2).
Apart from the fact that the aggregator OwaRain
performs an OWA aggregation (instead of a cumu-
lative aggregation) the branch behaves similarly to
the previous one: the aggregator is called by pass-
ing the array of values obtained by projecting the
array rainData on the inner field value by means
of the special function EXTRACT ARRAY; then, the
computed membership becomes the degree to the
fuzzy set PeaksOfRain.
Definitely, the goal of he fuzzy set PeaksOfRain
is to denote (through the membership) those sen-
sors that measured a peak of rain; the OWA ap-
proach allows for doing that, because the items
with the highest values (typically, two or three)
gain the greatest weights; consequently, many
days of rain with few millimeters of rain do not
contribute significantly to the aggregated mem-
bership: in contrast, two days with heavy rain on
a mass of dry days strongly contribute to obtain
high membership.
A second field is added into the field ˜fuzzysets,
denoting the membership to the novel fuzzy set.

• The third branch FUZZY SET evaluates the de-
gree of the current JSON document to the fuzzy
set Wanted. The goal is to combine the mem-
berships to the fuzzy sets PeaksOfRain and
SignificantRain in such a way the former con-
tributes with weight 2, while the latter contributes
with weight 1.

{

"city" : "Osio Sopra",

"province" : "BG",

"sensorId" : 5856,

"latitude" : 45.6338645090807,

"longitude" : 9.55608425579086,

"Wanted" : 0.871644207

}

Figure 8: Example of document saved in the
PeaksAndLongRain collection.

Clearly, the fuzzy aggregator (reported in List-
ing 3) weightedMemberships is exploited, but
this time it is necessary to create an “array of
memberships”: this is done by the special func-
tion MEMBERSHIP ARRAY. Specifically, this func-
tion creates a novel array by taking the previ-
ously calculated memberships to the listed fuzzy
sets (i.e., PeaksOfRain and SignificantRain),
whose values are taken from the special field
˜fuzzysets. The second actual parameter is a
constant array that reports the weights to apply
(i.e., 2 and 1, respectively); this way, requirements
in Query 1 are met.
The resulting membership becomes the member-
ship degree to the fuzzy set Wanted.
The third and final field is added to the field
˜fuzzysets, with the membership to the fuzzy
set Wanted.

• The clause ALPHACUT discards JSON documents
whose membership to the fuzzy set Wanted is less
than 0.8. This way, only documents that describe
sensors that actually measured peaks of rain and
possibly significant rain during the monitored pe-
riod (or very close to this situation) are selected.

• The final block BUILD restructures the output doc-
uments and the option DEFUZZIFY removes the
special filed ˜fuzzysets, so as documents be-
come again classical crisp JSON documents.

Saving the Results. The resulting collection, which
contains documents describing sensors of interest on
the basis of Problem 1, is finally saved by Line 7. The
collection is named PeaksAndLongRain.

6 CONCLUSIONS

In this paper, we enhanced the potential application
of Soft Web Intelligence by introducing the concept of
“user-defined fuzzy aggregator”. The concept allows
users of the J-CO-QL+ language that are involved
in tasks of Soft Web Intelligence (enabled by the J-
CO Framework) to directly perform complex aggre-
gations of array fields in JSON documents, so as to
directly obtain memberships to fuzzy sets by aggre-

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

266

gating raw data; definitely, sophisticated soft queries
are made possible.

The paper resumes the vision of Soft Web Intel-
ligence, then introduces the novel statement CREATE
FUZZY AGGREGATOR, by presenting three different ex-
amples of aggregators, together with its semantic
model. Then, through a case study, a short yet sophis-
ticated query is presented, which exploits all the three
previously defined fuzzy aggregators for performing
a complex soft query on rain data.

As a future work, we will finish to investigate the
definition of user-define fuzzy aggregators, so as to
cope with very complex situations; in this sense, we
also plan to build a library of fuzzy aggregators to
distribute with the J-CO Framework. Furthermore,
we plan to investigate how web scraping tools could
be effectively integrated within Soft Web Intelligence:
indeed, we expect that these tools represent some-
how uncertainty about the data they extract from Web
pages, because this uncertainty could be easily man-
aged with soft computing and soft querying. Defi-
nitely, although we already demonstrated the effec-
tiveness of the J-CO Framework for integrating ge-
ographical data sets (see (Fosci and Psaila, 2022a)),
we want to further push its capabilities towards soft
querying, specifically by allowing users to define their
complex constructs (see (Fosci and Psaila, 2023)).

The framework is available on a Github page5.

REFERENCES

Alahakoon, D. and Yu, X. (2015). Smart electricity me-
ter data intelligence for future energy systems: A sur-
vey. IEEE Transactions on Industrial Informatics,
12(1):425–436.

Bringas, P. G., Pastor, I., and Psaila, G. (2019). Can
blockchain technology provide information systems
with trusted database? the case of hyperledger fabric.
In I. C. on Flexible Query Answering Systems, pages
265–277. Springer, Cham.

Dombi, J. and Jónás, T. (2022). Weighted aggregation sys-
tems and an expectation level-based weighting and
scoring procedure. European Journal of Operational
Research, 299(2):580–588.

Farahbod, F. and Eftekhari, M. (2012). Comparison of
different t-norm operators in classification problems.
arXiv preprint arXiv:1208.1955.

Fosci, P. and Psaila, G. (2022a). Soft integration of geo-
tagged data sets in j-co-ql+. ISPRS International Jour-
nal of Geo-Information, 11(9):484.

Fosci, P. and Psaila, G. (2022b). Towards soft web intelli-
gence by collecting and processing json data sets from

5Github repository of the J-CO Framework:
https://github.com/JcoProjectTeam/JcoProjectPage

web sources. In Proceedings of the 18th I. C. on Web
Inf. Systems and Technologies.

Fosci, P. and Psaila, G. (2023). Soft querying powered by
user-defined functions in j-co-ql+. Neurocomputing,
546:126311.

Han, J. and Chang, K.-C. (2002). Data mining for web in-
telligence. Computer, 35(11):64–70.

Kacprzyk, J. and Zadrożny, S. (2010). Soft computing and
web intelligence for supporting consensus reaching.
Soft Computing, 14(8):833–846.

Li, H. and Yen, V. C. (1995). Fuzzy sets and fuzzy decision-
making. CRC press.

Poli, V. S. R. (2015). Fuzzy data mining and web intelli-
gence. In I. Conf. on Fuzzy Theory and Its Applica-
tions (iFUZZY), pages 74–79. IEEE.

Psaila, G. and Fosci, P. (2018). Toward an anayist-
oriented polystore framework for processing json geo-
data. In Int. Conf. on Applied Computing 2018, Bu-
dapest; Hungary, 21-23 October 2018, pages 213–
222. IADIS.

Reddy, P. V. S. (2010). Fuzzyalgol: Fuzzy algorithmic lan-
guage for designing fuzzy algorithms. J. of Computer
Science and Engineering, 2(2):21–24.

Yager, R. R. (1988). On ordered weighted averaging ag-
gregation operators in multicriteria decisionmaking.
IEEE Transactions on systems, Man, and Cybernet-
ics, 18(1):183–190.

Yao, Y., Zhong, N., Liu, J., and Ohsuga, S. (2001). Web
intelligence (wi) research challenges and trends in the
new information age. In Asia-Pac. C. on Web Intelli-
gence, pages 1–17. Springer.

Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338–353.

Zadeh, L. A. (2004a). A note on web intelligence, world
knowledge and fuzzy logic. Data & Knowledge Engi-
neering, 50(3):291–304.

Zadeh, L. A. (2004b). Web intelligence, world knowledge
and fuzzy logic–the concept of web iq (wiq). In I.
C. on Knowledge-Based and Intelligent Inf. and Eng.
Systems, pages 1–5. Springer.

Zhang, Y.-Q. and Lin, T. Y. (2002). Computational web
intelligence (cwi): synergy of computational int. and
web technology. In W. C. on Comp. Int.., volume 2,
pages 1104–1107. IEEE.

Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Qin, Y., Li, K.,
and Wah, B. (2006). Web intelligence meets brain in-
formatics. In I. Ws. on Web Intelligence Meets Brain
Informatics, pages 1–31. Springer.

Enhancing Soft Web Intelligence with User-Defined Fuzzy Aggregators

267

