
Kinematics Based Joint-Torque Estimation Using Bayesian  
Particle Filters 

Roja Zakeri and Praveen Shankar 
Department of Mechanical & Aerospace Engineering, California State University, Long Beach, Long Beach, U.S.A. 

Keywords: Particle MCMC, Particle Gibbs, Particle MH, SMC, Baxter Manipulator. 

Abstract: The aim of this paper is to estimate unknown torque in a 7-DOF industrial robot using Bayesian approach by 
observing the kinematic quantities. This paper utilizes two PMCMC algorithms (Particle Gibbs and Particle 
MH algorithms) for estimating unknown parameters of Baxter manipulator including joint torques, 
measurement and noise errors. The SMC technique has been used to construct the proposal distribution at 
each time step.  The results indicate that for the Baxter manipulator, both PG and PMH algorithms perform 
well, but PG performs better as the estimated parameters using this technique have less deviation from the 
true parameters value. And this is due to sampling from parameters conditional distributions. 

1 INTRODUCTION 

Many engineered and physical systems contain 
parameters that are time-varying and contain 
uncertainties. Various techniques have been proposed 
for parameter estimation in linear and nonlinear 
mathematical models, such as Neural Networks 
(Calderón, 2000), Kalman Filter (Van der 
Merwe,2001), nonlinear population Monte Carlo 
(Koblents,2016), Bayesian Approach (Bradley,1992) 
and Adaptive Sequential MCMC1 (Wenk,1980). 
While numerous techniques have been proposed, the 
selection of an appropriate methodology is of 
significance, given its potential impact on both the 
accuracy of estimated parameters and the efficiency 
of computational processes (Bigoni,2012).  The aim 
of this paper is to estimate unknown parameters in 
nonlinear state space models (SSM) using Bayesian 
approach by observing the kinematic quantities. 
Many of the parameter estimation techniques use 
optimization formulations such as linear least-
squares, orthogonal least-squares, gradient weighted 
least-squares, bias-correlated renormalization and 
Kalman filtering techniques. While these techniques 
are efficient and reliable for linear mathematical 
models, their implementation for non-linear models 
does not guarantee a reliable parameter estimation 

 
1 Markov Chain Monte Carlo 
2 Sequential Monte Carlo 

(Beck,,1977). Techniques such as Sequential 
Bayesian methods and specifically Sequential 
MCMC has been introduced to cope with highly non-
linear dynamic systems (Andrieu,2010).  

The Gibbs sampler, an MCMC technique, draws 
samples from conditional distributions of model 
parameters, providing an accurate representation of 
marginal posterior parameter densities 
(Nemeth,2013). C. Andrieu et al. introduced a novel 
approach that blends SMC2 and MH3 sampling to 
estimate unknown parameters in nonlinear dynamic 
models (Andrieu,2010). They adopted Particle 
MCMC (PMCMC) algorithms, replacing regular 
MCMC due to unreliable performance resulting from 
weak convergence assumptions. In this paper we 
discuss how utilizing two main algorithms of 
PMCMC: Particle Gibbs (PG) sampler and Particle 
Metropolis Hastings (PMH) sampler, could 
accurately estimate the unknown joint torques of the 
Baxter manipulator by observing the kinematic 
quantities. This paper is organized as follow: section 
two describes important mathematical preliminaries 
and background, section three provides the detail of 
the SMC technique, PG and PMH algorithms. In 
section four, the detail of Baxter dynamic model in 
State Space form is discussed, Also, the detail of the 
simulation setup is explained. Section five shows the 

3 Metropolis Hastings 
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results of the PG and PMH algorithms and analyses 
the effectiveness of PG and PMH samplers. 

2 PMCMC APPROACH 

In probabilistic systems, the SSM can be considered 
as a Markov Chain with a sequence of stochastic 
random variables (Andrieu,2010). In hidden Markov 
model, the system being modelled is assumed to be a 
Markov process with unobservable states. It can be 
also written in below form. 𝑥௧ାଵ = ℎఏ(𝑥௧, 𝑢௧) (1)
 𝑦௧ = 𝑔ఏ(𝑥௧, 𝑣௧) (2)

In this context, If T considered as period of 
interest in the SSM, a hidden Markov state process: 𝑥ଵ:் ≅ {𝑥ଵ,𝑥ଶ, . . . , 𝑥்} is characterize by its initial 
density and transition probability 
densityℎఏ(𝑥௧ାଵ|𝑥௧), for some statistical parameter θ 
which might be multidimensional (Andrieu,2010). 
The state process of 𝑥ଵ:் can be observed through 
process of observations as 𝑦ଵ:் ≅ {𝑦ଵ,𝑦ଶ, . . . , 𝑦்}. 
These observations are assumed to be conditionally 
independent with probability density 𝑔ఏ(𝑦௧|𝑥௧). 𝑢௧ is system noise and  𝑣௧ is observation error.  
In this paper, ℎఏ and 𝑔ఏ in Eq. (1) and (2), considered 
as a pair of non-linear functions and model 
parameters θ are unknown and need to be estimated 
from the observed data. Also, two probability density 
functions, 𝑝ఏ(. ) and 𝑝(𝜃, . ), corresponding to cases 
whose parameters are known and unknown, 
respectively. The posterior density of unknown 
parameter θ, based on the Bayes rules is as following: 𝑝(𝑥ଵ:், 𝜃|𝑦ଵ:்) ∝ 𝑝(𝜃)𝑝ఏ(𝑦ଵ:்|𝑥ଵ:்) (3)

Where 𝑝(𝜃) considered as prior density of θ and  𝑝ఏ(𝑦ଵ:்|𝑥ଵ:்) considered as a likelihood function and 𝑝(𝑥ଵ:், 𝜃|𝑦ଵ:்) is the posterior density of unknown 
parameter θ.  

3 SMC AND PMCMC APPROACH  

SMC methods are a class of algorithms used to 
sequentially approximate the posterior density 𝑝ఏ(𝑥ଵ:்|𝑦ଵ:்) by utilizing a set of N weighted random 
samples called particles through the Eq. (4). 
(Andrieu,2010). This posterior function is simply 
expressing the plausibility’s of different parameter 
values for a given sample of data. 

𝑝ఏ(𝑥ଵ:்|𝑦ଵ:்) ≈ ෍ 𝑊௜்𝛿௫భ:೅೔ (𝑑𝑥ଵ:்)ே
௜ୀଵ  (4)

Where,  𝑊௜்  is importance weight associated with 
particle 𝑥ଵ:்௜ , 𝛿௫(𝑆) is a Dirac measure at given state 
x. Importance weight acts as a correction weight to 
balance the probability sampling from a different 
distribution. The SMC algorithm does state and 
posterior density estimation through propagating 
particles 𝑥ଵ:்௜  and updating the weights of each 
particle (samples) using Eq. (8)., normalizes them and 
computes 𝑊௧௜ using Eq. (9).  This approached is 
iterated using importance sampling technique and 
predetermined importance density𝑞ఏ(. |. ). In SSM 
models, usually, transition probability density ℎఏ(𝑥௧ାଵ|𝑥௧) will be used as importance density 𝑞ఏ(. |. ). The algorithm for SMC is described below 
(Andrieu,2010): 

Step1: at time t=1, (Sample noted as upper case 𝑋ଵ௜ , where superscript i denotes the 𝑖௧௛ sample and 1 
in the subscript notes as sample at step 1 or initial 
sample) 

a) Draw samples 𝑋ଵ௜~ 𝑞ఏ(. |𝑦ଵ) (importance 
density given observation 𝑦ଵ at time t=1) 

b) Compute and normalize the weights (for N 
samples) 𝑤ଵ(𝑋ଵ௜): = 𝑝ఏ(𝑋ଵ௜|𝑦ଵ)𝑞ఏ(𝑋ଵ௜|𝑦ଵ) (5)

 𝑊ଵ௜: = 𝑤ଵ(𝑋ଵ௜)∑ 𝑤ଵ(𝑋ଵ௜)ே௜ୀଵ  (6)

Step2: at time t=2… T, 
 

a) Draw a sample 𝐴௧ିଵ௜ ~𝐹(. |𝑊ሬሬሬ⃗ ௧ିଵ) (where 𝑊ሬሬሬ⃗ ௧ିଵ = (𝑊௧ିଵଵ , 𝑊௧ିଵଶ , . . . , 𝑊௧ିଵே )  (36)            
b) Sample 𝑋௧௜~𝑞ఏ(. |𝑦௧, 𝑋௧ିଵ஺೟షభ೔ ) and set  𝑋ଵ:௧௜ : = (𝑋ଵ:௧ିଵ஺೟షభ೔ , 𝑋௧௜) (7)

c) Compute and normalize the weights. 
 𝑤௧(𝑋ଵ:௧௜ ): = 𝑝ఏ(𝑋ଵ:௧௜ |𝑦ଵ:௧)𝑝ఏ(𝑋ଵ:௧ିଵ஺೟షభ೔ |𝑦ଵ:௧ିଵ)𝑞ఏ(𝑋௧௜|𝑦௧, 𝑋௧ିଵ஺೟షభ೔ ) (8)

                             𝑊௧௜: = 𝑤௧(𝑋ଵ:௧௜ )∑ 𝑤௧(𝑋ଵ:௧௜ )ே௜ୀଵ  (9)
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Where 𝐴௧ିଵ௜  indicate the index of sample 𝑖 at time 
t-1 of particle𝑋ଵ:௧௜  . 𝑤௧(𝑋ଵ:௧௜ ) refers to the weight of 
particle 𝑋ଵ:௧௜  before normalizing.  𝐹(. |𝑊ሬሬሬ⃗ ௧ିଵ) is 
discrete probability distribution of sample weights.  𝑊௧௜ is associated with the normalized weights of 
particles𝑋ଵ:௧௜ . Generally, the algorithm assigns higher 
weights to particles that are more likely to generate 
the observed value, denoted as 𝑦௧,recorded by the 
model. Subsequently, the algorithm normalizes these 
weights to ensure their sum equals 1. 

4 PG ALGORITHM 

In PG algorithm, the target distribution is 𝑝(𝑥ଵ:், 𝜃|𝑦ଵ:்). To calculate this target distribution, 
the algorithm samples iteratively from 
 𝑝(𝜃|𝑦ଵ:்,𝑥ଵ:்) and 𝑝ఏ(𝑥ଵ:்|𝑦ଵ:்) (Andrieu,2010). 
Since the posterior density𝑝ఏ(𝑥ଵ:்|𝑦ଵ:்) becomes 
highly multidimensional in nonlinear dynamic 
systems, direct sampling from it becomes intractable. 
Consequently, the PG algorithm employs sampling 
from an SMC approach instead. In this 
algorithm, 𝑋ଵ:்௜  are sampled from 𝑝ఏ(𝑥ଵ:்|𝑦ଵ:்) by 
using conditional SMC. In conditional SMC 
algorithm, there is pre-specified path for particles  𝑋ଵ:்௜   and this path has pre-specified ancestral lineage 𝐵ଵ:்௜ . In conditional SMC, in each iteration, the 
generated particles are conditional on particles of 
previous steps which means that if  𝑋ଵ௜~ 𝑞ఏ(. |𝑦ଵ), 
then the next particle 𝑋ଶ௜  will be sampled as below: 𝑋ଶ௜ |𝑋ଵ௜  ~ 𝑞ఏ(. |𝑦ଵ) for each N and path is updated 
in each iteration. The pseudocode of PG sampler is 
described as follow: 

Step1: initialize Markov chain at i=0. For 𝜃(0) 
sampling from its full conditional distribution  𝑝(𝜃|𝑦ଵ:், 𝑥ଵ:்(0)) .set 𝑋ଵ:்(0)  and ancestral lineage 𝐵ଵ:்(0) arbitrarily. 

Step2: for i=1…, M 
a) Sample a new parameter 𝜃(𝑖) from the full 

conditional distribution     𝑝(𝜃|𝑦ଵ:், 𝑥ଵ:்(𝑖 −1)) which is conditional distribution of 
unknown parameter θ 

b) Run conditional SMC to estimate the 
posterior density of 𝑝ఏ(௜)(𝑥ଵ:்|𝑦ଵ:்) for 
parameter 𝜃(𝑖)  , conditional on particles of 𝑋ଵ:்(𝑖 − 1) and their ancestral lineage 𝐵ଵ:்(𝑖 − 1) (Particles of previous step) 

c) Sample new particles 𝑋ଵ:்(𝑖) from estimated 𝑝ఏ(௜)(𝑥ଵ:்|𝑦ଵ:்) and its ancestral lineage. 
Step3: iterate step2 and record Markov Chain 𝜃(𝑖) and particles 𝑋ଵ:்(𝑖) for i=0, …, M 

In summary, the algorithm first initialize value for 𝜃(𝑖 = 0) and 𝑋ଵ:்(0) and its ancestral lineage at zero. 
In the next step the new sets of  𝜃(𝑖) for i=1, 2,…,M 
will  be sampled from the full conditional distribution 
conditional on sampled𝑋ଵ:்(𝑖 − 1) in previous step.  

5 PMH ALGORITHM 

This algorithm employs SMC method to estimate the 
posterior density 𝑝(𝑥ଵ:், 𝜃|𝑦ଵ:்) and samples from the 
updated posterior density to estimates the unknown 
parameter (Andrieu,2010). Unlike PG algorithm, 
PMH sampler jointly updates θ and particles 𝑋ଵ:் and 
constructs the Markov Chain of (𝑥ଵ:், 𝜃).   

To summarize, in each iteration of PMH 
algorithm, the algorithm draws a new parameter value 
from proposal density 𝑞(. |𝑥ଵ:், 𝜃), then, based on the 
posterior density generated by SMC algorithm and 
the prior distribution of the parameter, the PMH 
algorithm calculated the acceptance ratio of the 
parameter shown in Eq. (10). The PMH algorithm is 
as follow: 
Step1: initialization, i=0 𝑞(. |𝜃) 
Set 𝜃(0) arbitrarily. 
Run SMC algorithm targeting 𝑝ఏ(଴)(𝑥ଵ:்|𝑦ଵ:்) and 
sample 𝑋ଵ:்(0) from the resulting estimated 
distribution �̂�ఏ(଴)(. |𝑦ଵ:்)  . 
Step2: for iteration i ≥1, 
Sample the new parameter 𝜃∗ from the proposal 
density 𝑞(. |𝜃(𝑖 − 1)) 
Run SMC algorithm targeting 𝑝ఏ∗(𝑥ଵ:்|𝑦ଵ:்). Sample 
new samples 𝑋∗ଵ:் from its transition probability 
distribution ℎఏ(𝑥௧ାଵ|𝑥௧) 
Let 𝑝ఏ(𝑦ଵ:்) denote marginal likelihood estimate 
with probability. 𝑚𝑖𝑛( 1, 𝑝(𝑥ଵ:்∗ , 𝜃∗|𝑦ଵ:்)𝑞(𝑥ଵ:், 𝜃|𝑥ଵ:்∗ , 𝜃∗)𝑝(𝑥ଵ:், 𝜃|𝑦ଵ:்)𝑞(𝑥ଵ:்∗ , 𝜃∗|𝑥ଵ:், 𝜃)= 𝑞(𝜃|𝜃∗)𝑝ఏ∗(𝑦ଵ:்)𝑝(𝜃∗)𝑞(𝜃∗|𝜃)𝑝ఏ (𝑦ଵ:்)𝑝(𝜃) 

(10)

accept the new samples. We generate a random value 
between 0 and 1 and compare it with the acceptance 
ratio generated in Eq. (10). The new parameter 𝜃∗ will 
be accepted if the acceptance ratio is greater than the 
generated random number and set 𝜃(𝑖) = 𝜃∗, 𝑋ଵ:்(𝑖) = 𝑋∗(ଵ:்); otherwise we reject the new 
sample and set 𝜃(𝑖) = 𝜃(𝑖 − 1) and 𝑋ଵ:்(𝑖) =𝑋ଵ:்(𝑖 − 1) 
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6 SSM FOR BAXTER 
MANIPULATOR 

The robotic platform utilized was a 7 DOF Baxter 
Research robot. In each joint, Series Elastic Actuators 
(SEAs) are the actuation mechanisms responsible for 
moving the robot links. Non-linear dynamic model of 
Baxter manipulator is described by a second-order 
differential equation is shown as following: 𝑀(𝑞)𝑞ሷ + 𝐶(𝑞, 𝑞ሶ ) + 𝐺(𝑞) = 𝜏 (11)

Where q denotes the vector of joint angles, which 
in our case is 7× 1 vector; 𝑀(𝑞) ∈ ℜ଻×଻ is the 
symmetric, bounded, positive definite inertia matrix 
(including mass and moment of inertia), 𝐶(𝑞, 𝑞ሶ )𝑞ሶ ∈ℜ଻×଻ denotes the Coriolis and Centrifugal force; 𝐺(𝑞) ∈ ℜ଻ is the gravitational force, and 𝜏 ∈ ℜ଻ is 
the vector of actuator torques which in our case is 7×
1 vector. A Euler discretization of the differential 
equation of the robot manipulator model yields: 𝑞ଵ,௧ାଵ = 𝑞ଵ,௧ + ℎ𝑞ଶ,௧ (12)
 𝑞ଶ,௧ାଵ = 𝑞ଶ,௧ − ℎ𝑀ିଵ൫𝑞ଵ,௧൯𝐶൫𝑞ଵ,௧, 𝑞ଶ,௧൯𝑞ଶ,௧− ℎ𝑀ିଵ(𝑞ଵ,௧)𝐺(𝑞ଵ,௧)+ ℎ𝑀ିଵ(𝑞ଵ,௧)𝜏 

(13)

Where 𝑞ଵ,௧and 𝑞ଶ,௧ are 7×1 vector and h is the step 
size. We assume that the manipulator model is 
influenced by the disturbance which is a stochastic 
white noise with zero mean and a covariance matrix 𝛴ଵ, 𝛴ଶ ∈ ℜ଻×଻.  

Considering these disturbances in Eq. (12). and 
Eq. (13).   yields: 𝑞ଵ,௧ାଵ = 𝑞ଵ,௧ + ℎ𝑞ଶ,௧ + 𝑢ଵ,௧ 𝑞ଶ,௧ାଵ = 𝑞ଶ,௧ − ℎ𝑀ିଵ൫𝑞ଵ,௧൯𝐶൫𝑞ଵ,௧, 𝑞ଶ,௧൯𝑞ଶ,௧− ℎ𝑀ିଵ(𝑞ଵ,௧)𝐺(𝑞ଵ,௧)+ ℎ𝑀ିଵ(𝑞ଵ,௧)𝜏 + 𝑢ଶ,௧ 

(14)

 𝑦௧ = 𝑞ଶ,௧ + 𝑣௧ (15)

Where noise is defined as vector 𝑢௧ = (𝑢ଵ௧, 𝑢ଶ௧) 
and measurement error considered as vector 𝑣௧ =𝑢ଷ௧. As we assumed to have a white noise in the 
dynamic system, the noise and measurement 
distributions considered as follow:  𝑢ଵ௧ ≈ 𝑁(0, 𝛴ଵ)                                (16)                                                                                                                      𝑢ଶ௧ ≈ 𝑁(0, 𝛴ଶ)                              (17)                                                                                                                            𝑢ଷ௧ ≈ 𝑁(0, 𝛴ଷ)                                (18)                                                                                                                            𝑁(. , . )represents normal distribution. 

 Also, we assume that measurement error is in 
form of additive white noise with zero mean and a 

covariance matrix 𝛴ଷ.  𝛴ଵ, 𝛴ଶ, 𝛴ଷ are 7 × 7 positive 
definite matrices corresponding to variances of 𝑢ଵ௧, 𝑢ଶ௧, 𝑢ଷ௧, respectively.  The goal is to estimate 
unknown parameters of vector θ where 𝜃 =(𝜏, 𝛴ଵ, 𝛴ଶ, 𝛴ଷ) by using two algorithms: the PG 
algorithm and PMH algorithm, based on system 
kinematic data. In the PG algorithm, first 𝜃(0) is 
initialized and then a new sample θ is drawn from the 
full conditional distribution of θ. The SMC algorithm 
is run to estimate the posterior density and obtain 
samples {𝑞ଵ:்(௜) }௜ୀଵே .  In the Baxter, the lower and upper 
bound for the parameter τ is given and because the 
probability of all torque values within this boundary 
is equal, the proper prior distributions for the 
unknown parameter τ is a multivariate uniform 
distribution: 𝜏 ≈ 𝑈(𝑎, 𝑏)                                  (19)                              𝑎 = (0,0,0,0,0,0,0)்                       (20)                              𝑏 = (50,50,50,50,15,15,15)்             (21)                              

Multivariate uniform distribution is a 
generalization of one-dimensional uniform to higher 
dimensions (Wackerly,2016). Values of these vectors 
came from the Baxter manipulator joint torques 
limits. The prior distribution for the parameters of the 
measurement error and the noise considered as 
multivariate inverse gammas distribution which is 
also called inverse Wishart. As  𝛴ଵ, 𝛴ଶ, 𝛴ଷ are the 
parameters of the measurement error and the noise 
and they are coming from multivariate normal 
distributions and they are covariance matrices, 
inverse Wishart distribution, represented as 𝐼𝑊(𝑄, 𝑝), with scale matrix ‘Q’ and degrees of 
freedom ‘p’, is the conjugate prior distribution for 
them. The priors for the parameters measurement 
error and the noise considered as follow: 𝛴ଵ ≈ 𝐼𝑊(𝑄ଵ, 𝑝ଵ)                                (22)                              𝛴ଶ ≈ 𝐼𝑊(𝑄ଶ, 𝑝ଶ)                              (23)                             𝛴ଷ ≈ 𝐼𝑊(𝑄ଷ, 𝑝ଷ)                             (24)                              

Where 𝑄ଵ, 𝑄ଶ, 𝑄ଷ are symmetric positive definite 
scale matrices and 𝑝ଵ, 𝑝ଶ, 𝑝ଷ are degrees of freedom. 
As the full conditional distributions of each unknown 
parameters are needed for PG algorithm to sample the 
new parameters from them, these full conditional 
distributions have been derived and the derivation 
results are shown below: 𝑓(𝜏|−𝜏, 𝑞ଵ:், 𝑦ଵ:்)~𝑁ሾ௖,ௗሿ(෍ 𝐴௧்்ିଵ

௧ୀଵ ෍ 𝐴௧ଶିଵ )ିଵ ൭෍ 𝐴௧்்ିଵ
௧ୀଵ ෍ 𝐵௧ଶିଵ ൱, ∑ 𝐴𝑡𝑇𝑇−1𝑡=1 ∑ 𝐴𝑡2−1 ))                                           

(25)
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𝑓(𝛴ଵ| − 𝛴ଵ, 𝑞ଵ:், 𝑦ଵ:்)~𝐼𝑊(𝑝ଵ + 𝑇 − 1, 𝑄ଵ +∑ 𝑢ଵ௧்ିଵ௧ୀଵ 𝑢ଵ௧்)         (26)
 𝑓(𝛴ଶ| − 𝛴ଶ, 𝑞ଵ:், 𝑦ଵ:்)~𝐼𝑊(𝑝ଶ + 𝑇 − 1, 𝑄ଶ +       ∑ 𝑢ଶ௧்ିଵ௧ୀଵ 𝑢ଶ௧்)  (27)
 𝑓(𝛴ଷ| − 𝛴ଷ, 𝑞ଵ:், 𝑦ଵ:்)~𝐼𝑊(𝑝ଷ + 𝑇, 𝑄ଷ +       ∑ 𝑢ଷ௧௧்ୀଵ 𝑢ଷ௧்)                                                (28)

Where, 𝑁ሾ௖,ௗሿ(. , . )is a truncated normal 
distribution within interval [c,d] and the minus before 
a parameter means this parameter in not in the 
parameter set θ.  

Other terms in Eq. (25).  are: 𝐴௧ = ℎ𝑀ିଵ(𝑞ଵ,௧)                         (29)  𝐵௧ = 𝑞ଶ௧ାଵ − 𝑞ଶ௧ + ℎ𝜛(𝑞ଵ௧, 𝑞ଶ௧)              (30)                                                                                                                           

Where: 𝜛൫𝑞ଵ,௧, 𝑞ଶ,௧൯ = 𝑀ିଵ൫𝑞ଵ,௧൯𝐶൫𝑞ଵ,௧, 𝑞ଶ,௧൯𝑞ଶ,௧ + 𝑀ିଵ(𝑞ଵ,௧)𝐺(𝑞ଵ,௧)                         (31)

In the PMH algorithm, to run the SMC algorithm 
and updating the state variables and their weights, 
transition density and observation density is needed. 
Regarding to assumptions described in (Dahlin,2019) 
for the PMH algorithm, we considered below 
multivariate normal densities as the probability 
transition density ℎఏ(𝑞௧ାଵ|𝑞௧) and observation 
density 𝑔ఏ(𝑦௧|𝑞௧)   ℎఏ(𝑞ଵ,௧ାଵ|𝑞௧)~𝑁(𝑞ଵ,௧ + ℎ𝑞ଶ,௧, 𝑢ଵ௧) ℎఏ(𝑞ଶ,௧ାଵ|𝑞௧)~𝑁(𝑞ଶ,௧ − ℎ𝑀ିଵ(𝑞ଵ,௧)𝐶(𝑞ଵ,௧, 𝑞ଶ,௧)𝑞ଶ,௧ − 

(32)

      ℎ𝑀ିଵ(𝑞ଵ,௧)𝐺(𝑞ଵ,௧) + ℎ𝑀ିଵ(𝑞ଵ,௧)𝜏, 𝑢ଵ௧)    (33)                                                                                                                   𝑔ఏ(𝑦௧|𝑞௧)~𝑁(𝑞ଶ,௧, 𝑢ଷ௧)                   (34)                                                                                                        

In PMH algorithm, we need to define a proposal 
distribution. In our case, due to considering multiple 
unknown parameters in the system and because θ is 
multidimensional, a multivariate normal distribution 
has been considered for proposal distribution. 

7 RESULTS 

To test the PG algorithm, initial settings and prior 
distributions for the system parameters have been 
used. This algorithm first initialized 𝜃(0) using its 
full conditional distributions and the new parameter 𝜃(𝑖) sampled from full conditional distributions. PG 
algorithm were run for 10,000 steps and the first 

2,500 steps are discarded as a burn-in step. The 
number of the particles were chosen as N= 1000 for 
the SMC algorithm. The bigger number of particles 
results in better estimation (Elvira,2016) but 
increasing the number of particles over a certain value 
may not significantly improve the quality of the 
approximation while decreasing the number of 
particles can dramatically affect the performance of 
the filter (Elvira,2016). The posterior distributions of 
the unknown parameters 𝜃 = (𝜏, 𝛴ଵ, 𝛴ଶ, 𝛴ଷ) including 
seven joint torques, observation error and noise 
generated by the PG algorithm are shown in Fig.1. As 
mentioned earlier, 𝛴ଵ, 𝛴ଶ, 𝛴ଷ are 7×7 diagonal 
matrices which diagonal elements are 𝜎1, 𝜎2, . . . , 𝜎7. 
The same initial settings have been considered for the 
PMH algorithm. The proposal density 𝑞(. |𝜃)~𝑁(𝜃, 𝐶) where all elements of C, are 10ିହ 
has been considered. Same as PG algorithm, the 
number of the particles in SMC algorithms, were 
chosen as N=1000 particles. In practical applications, 
the convergence of the algorithms has been checked 
to ensure that the samples drawn from the sequential 
Markov Chain are sampled from correct target 
distributions. The algorithms ran for 10000 steps, and 
the first 2500 steps are discarded as burn-in steps. 
Table 1 and Table 2 compares the true and estimated  

Table 1: True and estimated parameter values for Baxter 
manipulator system using PG algorithm. 

 

Table 2: True and estimated parameter values for Baxter 
manipulator system using PMH algorithm. 

 

 

 Parameters True values Estimated 
values  Parameters True 

values 
Estimated 

values
 𝜏1  0.7 0.70007317130  𝜎1  2e-7 2.6164e-7 
 𝜏2 0.6 0.60503887197  𝜎2  2e-7 1.9921e-7 
 𝜏3 1.8 1.79937309232  𝜎3  2e-7 2.6292e-7 

τ 𝜏4 1 0.99945268679 𝛴2 𝜎4  2e-7 2.20990e-7 
 𝜏5 0.6 0.59990970609  𝜎5  2e-7 2.1428e-7 
 𝜏6 0.25 0.24996085840  𝜎6  2e-7 3.5965e-7 
 𝜏7 0.085 0.08499487445  𝜎7  2e-7 2.8616e-7 

 𝜎1  2e-7 2.7761 e-7  𝜎1  2e-7 2.4346e-7 
 𝜎2  2e-7 2.8072 e-7  𝜎2  2e-7 6.6409 e-7 
 𝜎3  2e-7 2.9171 e-7  𝜎3  2e-7 2.6719 e-7 𝛴1  𝜎4  2e-7 2.9808 e-7 𝛴3 𝜎4  2e-7 5.197 e-7 
 𝜎5  2e-7 2.7667 e-7  𝜎5  2e-7 5.7298 e-7 
 𝜎6  2e-7 2.9012 e-7  𝜎6  2e-7 6.0577 e-7 
 𝜎7  2e-7 2.8435 e-7  𝜎7  2e-7 1.1084 e-7 
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parameter values using a PG and PMH algorithms, 
respectively. The generated PMH algorithm is not 
sensitive to the initial values of parameters. 

8 CONCLUSIONS 

This paper employs two Particle Markov Chain 
Monte Carlo (PMCMC) methods to estimate 
unknown parameters of the Baxter robotic 
manipulator, including joint torques, noise, and 
measurement errors within a nonlinear dynamic 
system. Accurate estimates of true state variables are 
achieved by estimating state variables within the 
State-Space Model. In this study, SMC technique is 

employed to estimate the states, and based on these 
estimates, the system parameters are further estimated 
using both PG and PMH algorithms. 

SMC's capability to construct high-dimensional 
proposal distributions in each iteration enhances the 
reliability of PG and PMH algorithms in estimating 
joint torques, noise, and measurement errors. This 
contrasts with regular MCMC algorithms, which rely 
on lower-dimensional proposal distributions.  

Consequently, implementing these methods 
enables the precise estimation of unknown robotic 
parameters, providing more realistic data for 
subsequent investigations. 

The results indicate that for the Baxter 
manipulator, both PG  and  PMH  algorithms  perform  

 

Figure 1: Histogram approximation of posterior densities of parameters τ1, τ2, τ3, τ4, τ5, τ6 based on output of the PG 
algorithm. 
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Figure 2: Histogram approximation of posterior densities of parameters τଵ, τଶ, τଷ,τସ,τହ,τ଺ based on output of PMH algorithm. 

satisfactorily, with PG demonstrating superior 
performance owing to its utilization of parameters' 
conditional distributions. 
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