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Abstract: The analysis of time efficiency and solution size has recently gained huge interest among researchers of Gram-
matical Evolution (GE). The voluminous data have led to slower learning of GE in finding innovative solu-
tions to complex problems. Few works incorporate machine learning techniques to extract samples from big
datasets. Most of the work in the field focuses on optimizing the GE hyperparameters. This leads to the mo-
tivation of our work, Adaptive Case Selection (ACS), a diversity-preserving test case selection method that
adaptively selects test cases during the evolutionary process of GE. We used six symbolic regression synthetic
datasets with diverse features and samples in the preliminary experimentation and trained the models using
GE. Statistical Validation of results demonstrates ACS enhancing the efficiency of the evolutionary process.
ACS achieved higher accuracy on all six problems when compared to conventional ‘train/test split.’ It outper-
forms four out of six problems against the recently proposed Distance-Based Selection (DBS) method while
competitive on the remaining two. ACS accelerated the evolutionary process by a factor of 14X and 11X
against both methods, respectively, and resulted in simpler solutions. These findings suggest ACS can poten-
tially speed up the evolutionary process of GE when solving complex problems.

1 INTRODUCTION

Evolutionary Algorithms (EAs) (Slowik and Kwas-
nicka, 2020) have become popular in solving complex
optimization problems in various domains. Grammat-
ical Evolution (GE) (Ryan et al., 1998) is one such
algorithm that can evolve programs or models in any
language, which makes it versatile in solving different
kinds of problems such as program synthesis (O’Neill
et al., 2014), circuit design (Ryan et al., 2020; Gupt
et al., 2022a), symbolic regression (Ali. et al., 2021;
Gupt et al., 2022b; Murphy et al., 2021) etc.

Symbolic Regression (SR) is a problem where
a mathematical expression or formula is evolved
through an iterative process to fit a given data set
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(Zhang and Zhou, 2021). Unlike traditional regres-
sion analysis, where a pre-defined functional form
is used to fit the data, SR allows for discovering an
expression that best captures the underlying relation-
ships in the data. This expression can be in the form
of a mathematical formula or equation and can in-
volve various mathematical functions and operators.
This problem is ubiquitous in many fields, including
finance (Chen, 2012), clinical informatics (Cava et al.,
2020), and many fields of engineering (La Cava et al.,
2016a; Abdellaoui and Mehrkanoon, 2021).

One common approach to solving SR problems
is Genetic Programming (GP), where a population of
individuals gradually improves throughout an evolu-
tionary process (Koza, 1992). However, GE is also
a suitable candidate for this task and has been used
in several studies (Ali. et al., 2021; Gupt et al.,
2022b). We employ GE due to its versatility in
tackling real-world problems, incorporating domain-
specific knowledge and constraints into the grammar,
with plans to extend the proposed research to other
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problem domains in the future. During the evolution-
ary process, parents are chosen based on their fitness,
often determined by performance on training data.

Evolutionary methods can be computationally ex-
pensive, especially when dealing with big datasets
in problems like real-world SR. Limited computing
resources further compound the computational com-
plexity and cost challenges in the design and testing
phase.

In this paper, we propose Adaptive Case Selection
(ACS) to minimize the training cost of GE while re-
taining the quality of the solutions. ACS is a diversity-
preserving test case selection approach that aids GE
by adaptive training case1 selection during the evolu-
tionary process. This ensures cases are selected based
on their degree of dissimilarity, promoting high cov-
erage and a reduced computational cost. We compare
the solutions’ quality with the conventional ‘train/test
split’ and the state-of-the-art Distance-Based Selec-
tion (DBS) (Ryan. et al., 2021; Gupt et al., 2022a)
method on six well-known SR benchmarks. Further-
more, we analyze the time efficiency of the ACS over
the evolutionary process.

2 BACKGROUND

This section provides the GE background used to
evaluate the proposed ACS, and state-of-the-art DBS,
considered as one of the baselines. Following these,
it briefly covers the recent research contributions to
case optimization focused on SR problems, which are
most relevant to this study.

2.1 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algo-
rithm that combines GP with formal grammars. The
individuals in GE are represented as codons, which
are sequences of binary digits that map to a cor-
responding string in the Backus–Naur Form (BNF)
grammar. Grammar plays a crucial role in defin-
ing individuals’ genetic makeup and characteristics in
the evolutionary process. During evolution, individu-
als are generated by applying the production rules of
grammar. These individuals are then evaluated using
a fitness function that measures their performance on
a set of training data.

The fitness evaluations in GE are typically com-
putationally expensive, as each individual needs to be

1Dataset or test cases used for model training is referred
to as training data/cases, while those for testing the model’s
performance are termed testing data.

evaluated on all training cases. The size and complex-
ity of the training data can significantly impact the fit-
ness evaluation process and, hence, the performance
of GE.

2.2 Distance-Based Selection

DBS is a test case selection algorithm for selecting
data from a given set of test cases. It follows a greedy
approach during selection based on dissimilarity be-
tween test case pairs. Test case pairs with the highest
dissimilarity are selected first, followed by pairs with
decreasing dissimilarity until the desired number of
test cases or a subset of the desired size is obtained.
While using DBS in conjunction with GE exhibits
promising results in enhancing solution quality and
reducing the computational cost, there is uncertainty
regarding the optimal subset size for a given prob-
lem (Gupt et al., 2022a). However, the algorithm of-
fers flexibility in selecting an appropriate subset size
based on design budgets.

Despite its advantages, DBS has limitations when
compared to the proposed ACS. ACS explores the po-
tential of test case selection in both increasing and de-
creasing order of diversity and employs adaptive se-
lection based on the evolutionary budget, resulting in
a more thorough test case selection process. In con-
trast, DBS does not employ these strategies, which
may lead to a potentially significant data loss.

2.3 Related Work

Balancing computational cost with solution quality
in EAs is challenging, and researchers must care-
fully evaluate trade-offs to determine the optimal ap-
proach. Several studies have used methods such as
adaptive population sizing (Lobo and Lima, 2007)
or parameter tuning (Huang et al., 2019) to help re-
duce the computational cost of EAs. However, tuning
hyper-parameters is tiresome and could take longer
to find the optimal solution (Huang et al., 2019).
Some studies have used parallelization that could ef-
fectively improve the evolutionary time (Streichert
et al., 2005). This comes at the cost of high compu-
tational resources and communication overhead be-
tween processors. Another method that significantly
improves time efficiency is fitness approximation (Jin,
2005). Despite their benefits, these approaches result
in longer evaluation times, high resource consump-
tion, or compromised solution quality.

Researchers have proposed various methods that
aim to reduce the computational expenses of the
evolutionary process. To reduce the evaluation fre-
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quency and cost, (Schmidt and Lipson, 2007)
suggested co-evolving the fitness models where two
populations (the individuals and their fitness models)
are evolved simultaneously. (Helmuth et al., 2014)
in their work proposed lexicase selection, a parent
selection method for evolutionary algorithms based
on the lexicographic ordering of test cases. The
approach works well for discrete error spaces but has
been shown to perform poorly for continuous-valued
problems that are common in system identification
tasks. To address this issue, (La Cava et al., 2016b)
proposed e-lexicase selection, which redefines the
pass criteria for individuals on each test case more
effectively. This approach has been shown to improve
the performance of lexicase selection for continuous-
valued issues and has been successfully applied to
various system identification tasks.

The authors in (Gonçalves and Silva, 2013) intro-
duced a method of randomly choosing a single train-
ing instance at each generation and balancing it peri-
odically using all training data. (Kordos and Blach-
nik, 2012) used a variety of instance selection algo-
rithms for regression problems, including Condensed
Nearest Neighbor (CNN) and Edited Nearest Neigh-
bor (ENN). These algorithms were modified for re-
gression problems and used Euclidean measures to
determine the difference between the output values of
two vectors for selection.

In a separate study, (Kordos and Łapa, 2018) used
the k-Nearest Neighbor (k-NN) algorithm and pre-
sented an instance selection approach for regression
tasks. Their method employs a multi-objective EA to
search for the optimal subset of the training dataset
efficiently. However, combining k-NN and multi-
objective EAs can increase the computational com-
plexity of the selection algorithm, making it a compu-
tationally expensive approach.

In another study, (Son and Kim, 2006) proposed
an algorithm where the dataset was divided into sev-
eral partitions, and the entropy value was calculated
for each attribute in every partition. Further, they used
the attribute with the lowest entropy to segment the
dataset and used Euclidean distance to find the repre-
sentative cases that best capture the characteristics of
each partition. However, the approach is more suit-
able for pre-processing tasks like data mining rather
than SR.

To compare and choose training datasets, (Kaj-
danowicz et al., 2011) employed clustering to divide
the dataset into groups. Their selection method as-
sesses the distance between training and testing data,
favoring the selection of training data that exhibit
greater similarity to the testing data. This raises con-
cerns about biased training, as it predominantly uti-

lizes data that closely resemble the testing data for
training purposes.

Efficiently selecting a representative subset of
training cases significantly impacts machine learning
model performance. However, this task is non-trivial,
leading to the present study’s motivation to evaluate
the efficacy of the ACS algorithm in the selection and
adaptive use of training case subsets, offering opti-
mal search space coverage while substantially reduc-
ing computational costs.

3 ADAPTIVE CASE SELECTION

The Adaptive Case Selection algorithm proposed in
this paper selects training cases adaptively while eval-
uating the models during the evolutionary run. The
objective is to find a balance between training time
and accuracy. The proposed ACS algorithm incor-
porates a Distance-Based Selection method to select
subsets of diverse training data. This approach helps
capture a broad range of features and patterns present
in the data.

In most problems, test cases or data instances are
typically distributed across a vast space. To apply
ACS, we first group them using clustering (Kshirsagar
et al., 2022), a machine-learning technique of divid-
ing data into groups (clusters) based on similar char-
acteristics or patterns. K-Means clustering is used
with the Euclidean distance metric to group the cases.
Note that clustering is not a part of ACS; rather, it is a
pre-processing step. Once we have a stable group of
clusters, the selection is done by creating a distance
matrix for the data of each cluster. The distance is
used to select the data pair from each cluster.

The ACS method consists of two approaches for
selecting data from a larger dataset based on their di-
versity2. It measures diversity based on the Euclidean
distance between data points in each cluster. Data
pairs exhibiting greater Euclidean distance in a given
cluster are considered diverse, indicating a significant
dissimilarity between them. Conversely, those with
a closer resemblance or smaller distances are less di-
verse. The selection strategy is discussed below.

• Incremental-ACS (Inc-ACS): This involves se-
lecting the data in increasing order of diversity.
This means that the least diverse data points are
selected first, followed by increasingly diverse
ones.

• Decremental-ACS (Dec-ACS): This involves se-
lecting data in decreasing order of diversity. In

2Diversity is considered as opposed to similarity (Chen,
2010; Gupt et al., 2022a)
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this case, we select the most diverse data points
first, followed by increasingly less diverse ones.
To implement these approaches, we first compute

a diversity score for each data point in the clusters.
This is done by calculating the Euclidean distance be-
tween each pair of data points in each cluster as

dE (p,q) =

√
n

∑
i=1

(qi − pi)
2 (1)

where p and q are two test case points in Euclidean
n-space. Based on the diversity scores, we sort the
data points in ascending/descending order of diversity
and select the data pairs individually, starting from the
least/most diverse one. This is done to promote di-
versity (to represent a vast test case space) and max-
imum coverage. This is done for all clusters until
the required budget is fulfilled, and based on the data
size and computational budget, training subsets are
formed. For instance, if the desired number of sub-
sets Sn is specified, the total data is divided into Sn
subsets of size Ss ≈ data/Sn cases in each subset. Al-
ternatively, if the size of a subset S% is provided, the
data is split into Sn = ⌈1/S%⌉ subsets, and selection
is performed accordingly. The steps are described in
Algorithm 1.

The two selection approaches, Inc/Dec-ACS, offer
the flexibility of prioritizing the data based on require-
ments. The former approach may be helpful when we
want to ensure that we cover all the different types
of data in the dataset, starting from the less common
ones; the latter approach may be useful when we want
to focus first on the most representative or informative
data points in the dataset while ignoring the less im-
portant ones. We test both approaches in this paper.

Once the subsets are formed, GE uses them as
training data and updates during the evolutionary pro-
cess based on Inc/Dec-ACS applied. The adaptive use
of these subsets also helps ensure the model can learn
from a wide range of training cases without overfit-
ting any particular data subset.

4 EXPERIMENTAL SETUP

To assess the efficacy of the proposed ACS algo-
rithm, we tested the method on six problems from
symbolic regression. The selected problems are pop-
ular, frequently used in SR, and have recently been
used to evaluate various algorithms and tools (Ali.
et al., 2021; Gupt et al., 2022b; Murphy et al., 2021;
Youssef et al., 2021). While selecting these key prob-
lems, we tried considering benchmarks with differ-
ent levels of complexity. Ideally, they should be non-
trivial and orthogonal enough to uncover the strengths

Algorithm 1: Adaptive Case Selection.

Input: data: the size of the dataset,
clusters: k clusters of the dataset,
approach: Inc/Dec-ACS,
budget: Sn or S%,
Output: subset: a list of data subsets

1 if S% is given then
2 Calculate Sn = ⌈1/S%⌉ ;
3 end
4 Calculate Ss ≈ data/Sn;
5 Initialize an empty list - subset[Sn];
6 for each k do
7 Compute the distance matrix;
8 if Inc-ACS == 1 then
9 Sort data pairs by increasing

diversity;
10 else
11 if Dec-ACS == 1 then
12 Sort data pairs by decreasing

diversity;
13 end
14 end
15 for i in range(Sn) do
16 if (i ̸= Sn −1) then
17 append top Ss data points in

subset[i];
18 end
19 else
20 append remaining data to the

subset[i];
21 end
22 end
23 end
24 Return subset;

Table 1: Benchmark candidates used.

Dataset # Features # Instances

Keijzer-4 1 402
Keijzer-9 1 1102
Keijzer-10 2 10301
Keijzer-14 2 3741
Vladislavleva-5 3 3000
Vladislavleva-6 2 991

and weaknesses of the ACS algorithm being exam-
ined. A list of problems used in this paper is summa-
rized in Table 1.

For a given benchmark, we employed the conven-
tional ‘train/test split’ method, allocating the initial
70% of the total data for training and reserving the
remaining 30% as testing data. A total of 30 inde-
pendent runs are performed for each benchmark. The
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solutions are tested against the testing data, and the
results are reported. We take an average of the best
test scores and use them as a baseline 1.

Further, we use DBS and consider its best results
as baseline 2. One issue in this approach is that it is
not known in advance which data sample will be use-
ful. Considering this, we select a number of subsets
using a decremental approach (Olvera-López et al.,
2010), which begins with a large training data and
is reduced by omitting instances during the selection
process. For all six problems, we apply DBS on the
baseline 1 training data and select a range of subsets.
We select six subsets of different sizes, viz. 70%,
65%, 60%, 55%, 50%, and 45% of baseline 1 training
data and perform 30 independent runs on each sub-
set for each of the six benchmarks used. For ease of
understanding, we represent training data or a sub-
set of size 70% of baseline 1 selected using DBS as
DBS(70%), and so on. The best performing DBS sub-
set amongst them for a given benchmark is considered
for comparison, and we call it DBS* (the best result
of DBS).

While the training data size may vary for experi-
ments using different selection approaches, the testing
data is kept the same for a specific benchmark. The
total number of instances used in training data dur-
ing the different sets of experiments using baseline 1,
baseline 2 or DBS*, and ACS is given in Table 2.

The evolutionary process of GE works similarly
for all approaches, and GE parameters are kept the
same across all experiments as given in Table 3.

In the proposed ACS, we used S = 20%, meaning
a subset could hold a maximum of 20% of the base-
line 1 training data. This produced a total number of
subsets Sn = 5. Running on a budget of 50 gener-
ations, we preferred to allow an equal run time for
each subset, and hence, the training subset is updated
with another subset after every 10 generations. How-
ever, to ensure that the best individuals or their off-
spring are retained in the evolutionary process across
generations, we analyzed a few runs across 50 genera-
tions. We observed the offspring’s genotype that was
carried throughout, thus preserving the evolutionary
prospects.

The GE training setup incorporating ACS is given
in Figure 1. The proposed algorithm with GE pro-
vides the flexibility to choose the desired number of
subsets or size of subsets depending on the require-
ments like available budget or complexity of the prob-
lem, etc. For instance, in problems like approximate
circuits (Traiola et al., 2018) where a set of test cases
are not mandated to be fulfilled, or a certain level of
tolerance is allowed, the ACS can deprioritize those
cases and allocate them a lesser or even no training

ACS
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Selection
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Grammar
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Stop ?
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Figure 1: Pipeline of the proposed approach using ACS.

budget. Also, depending on the problem at hand or
training strategy, different subsets can have different
evolutionary budgets.

We use Root Mean Square Error (RMSE) as the
fitness function. This is one of the most commonly
used measures for evaluating the quality of predic-
tions and is represented as

RMSE =

√
∑

ηo
i=1 (Pi −Oi)

2

ηo
. (2)

Here, Pi and Oi are the predicted and observed (ac-
tual) values for the ith observation, respectively, while
ηo is the total number of observations. The trained
mathematical models are assessed using testing data,
and the RMSE score is calculated to compare with the
baseline 1 and DBS*.

The ACS algorithm is written in Python, incorpo-
rating libraries such as SciPy and SKlearn, which is
further used with libGE (Nicolau and Slattery, 2006),
a C++ library for GE. We used an Intel i5 CPU @
1.6GHz machine with 4 cores, 6 MB cache, and 8GB
of RAM.

5 RESULTS AND DISCUSSION

We performed 180 (30 runs/problem) independent
runs for the baseline 1, 1080 (30 runs on 6 subsets per
problem) runs for DBS where 6 different training sub-
sets were used per benchmark, and 180 runs each for
Inc-ACS and Dec-ACS. This section presents a graph-
ical representation of the average test scores from 30
independent runs performed on each distinct pair of
training data and benchmarks. In addition, we con-
duct a statistical analysis to assess the significance of
our test results and provide time analysis of the GE
run time to measure the computational cost of the ap-
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Table 2: Training and testing size used in different experiments.

Benchmarks Training size Testing size
Baseline 1 DBS(70%) DBS(65%) DBS(60%) DBS(55%) DBS(50%) DBS(45%) ACS

Keijzer-4 282 199 185 170 157 141 128* 58 120
Keijzer-9 772 540 503* 464 426 386 349 155 330
Keijzer-10 7211 5049 4689 4328 3968 3606 3247* 1444 3090
Keijzer-14 2619 1835 1704 1572 1443 1310 1180* 525 1122
Vladislavleva-5 2100 1471 1366* 1261 1157 1051 946 422 900
Vladislavleva-6 694 488* 452 418 383 349 315 141 297

Table 3: Evolutionary parameters used.

Parameter Value

Number of Runs 30
Total Generations 50
Population Size 250
Selection Type Tournament
Crossover Type Effective
Crossover Probability 0.9
Mutation Probability 0.01
Initialisation Method Sensible

proaches used. We also compare the sizes of the best
solutions obtained from each experiment.

5.1 Test Score

We present a comparative analysis of the performance
of our proposed method using the fitness score on test
data. Recall the baselines are defined as follows:

• Baseline 1: the conventional ‘train/test split’
method

• Baseline 2: best score obtained from the six DBS
subsets used on each benchmark. For clarity, we
write the best of DBS as DBS* (indicated with *
in Table 2).
The graphs in Figure 2 depict the mean, median,

minimum, and maximum values from the average of
the best test scores.

Figure 2(a) presents the results from the
Keijzer-4 dataset. The mean test score of the
Inc-ACS approach is better than the baseline results.
For Keijzer-9, the test score of ACS approaches
is superior to both of the baselines as shown in
Figure 2(b). Figure 2(c) shows the test scores from
Keijzer-10 experiments. The mean best test score
obtained from the models trained using the ACS
approach appears superior to the considered baselines
in both of its instances.

As shown in Figure 2(d), the mean best test scores
of Keijzer-14 experiments obtained using the Dec-
ACS approach seem to be better than the considered
baselines. Although Inc-ACS performed better than
baseline 1, it appears similar to DBS*. However, the

differences between these scores are small; it may be
difficult to determine which approach is the most ef-
fective based solely on the figure. In this case, we
analyzed the numerical data to clarify the results and
found the test score at Inc-ACS is comparable to the
DBS*.

Figure 2(e) presents the test score of the best solu-
tions for the Vladislavleva-5 problem. The best
test scores of Inc-ACS are better or similar to the
baselines. In the case of Vladislavleva-6, the mean
test score in all cases was observed to be superior, as
shown in Figure 2(f).

In each of the six SR benchmarks presented in this
research, we observe ACS producing better solutions
regarding test scores.

We employ statistical tests to analyze and deter-
mine the significance of the results. The Shapiro-Wilk
Test, with a significance level of α=0.05, was used to
evaluate normality. We discovered that the difference
between the data sample and the normal distribution is
big enough to be statistically significant. The results
do not match the requirements for parametric tests.

The Wilcoxon Signed-Rank test3 (a non-
parametric test) is thus employed to test the statistical
significance with α=0.05.

A statistical difference between the two samples
must be confirmed first. We compare Inc-ACS and
Dec-ACS both with the baseline 1 and DBS*, test
with a null hypothesis (the test score of the baseline 1
and DBS* are equal to ACS approaches) and label the
outcome as equal/similar (=) if no statistically signif-
icant difference is noted. Otherwise, the following
hypotheses are tested, and results are marked as + to
indicate significantly better results, as shown in Table
4.

– Null Hypothesis: The test scores of base-
line 1/DBS* are better than the test scores of
ACS.

– Alternative Hypothesis: The test score of ACS is
better than the test scores of baseline 1/DBS*.

3Normality is not an assumption for the Wilcoxon
Signed-Rank test! We only examine normality to see if a
more appropriate test could be applied
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(a) Keijzer-4 (b) Keijzer-9 (c) Keijzer-10

(d) Keijzer-14 (e) Vladislavleva-5 (f) Vladislavleva-6

Figure 2: Mean best test score of best solutions obtained across 30 independent runs.

Table 4: Results of the Wilcoxon Signed-Rank test for six benchmarks considering a significance level of α = 0.05. Values
shown are the mean best test score across 30 independent runs. The symbols +, =, - indicate, whether the corresponding
results for ACS are significantly better, not significantly different, or worse than the baseline. The last row summarizes this
information.

Benchmark Baseline 1 DBS* Inc-ACS Dec-ACS

Score Score Score Vs. baseline 1
p-value

Vs. DBS*
p-value Score Vs. baseline 1

p-value
Vs. DBS*

p-value

Keijzer-4 0.2052 0.21298 0.20302 2.2694E-3 + 3.06E-08 + 0.28625 1E0 - 1E0 -
Keijzer-9 0.68085 0.69296 0.57311 5.27E-10 + 1.49005E-06 + 0.42009 4.14E-10 + 1.29E-09 +
Keijzer-10 0.29691 0.133 0.06433 3.90E-10 + 3.90E-10 + 0.08394 3.90E-10 + 3.90E-10 +
Keijzer-14 0.66978 0.52197 0.52832 6.71E-10 + 0.650042 = 0.40789 3.89E-10 + 3.89E-10 +
Vladislavleva-5 1.17529 1.15988 1.16663 3.4040E-2 + 8.24293E-1 = 1.22414 1E0 - 1E0 -
Vladislavleva-6 4.47298 4.14764 3.88021 3.90E-10 + 3.89437e-10 + 4.0199 4.14E-10 + 4.13854e-10 +

#Better/#Same/#Worse – – – 6/0/0 4/2/0 – 4/0/2 4/0/2

We found the p-value below the significance level
and rejected the null hypothesis on all of the six prob-
lems when comparing Inc-ACS with baseline 1. The
results were better on 4 and similar on 2 problems
(Keijzer-14 and Vladislavleva-5) when com-
pared with DBS*.

Similarly, Dec-ACS was found to be better than
existing methods at 4 (Keijzer-9, Keijzer-10,
Keijzer-14, and Vladislavleva-6) of the bench-
marks. Although the results are improved and equally
effective or viable in most of the cases of the used
problems, the choice of using the ACS algorithm for
such problems could come down due to factors like
time and computational cost.

5.2 Performance Analysis

We conduct a comprehensive performance analysis
of the ACS algorithm. We assess the algorithm’s
efficiency and ability to handle various input sizes
through a detailed time analysis. Additionally, we an-
alyze the solution size to gain insights into the effect
of ACS on the solutions generated.

5.2.1 Time Analysis

An important objective we aim for while proposing
the ACS algorithm is that a reduced amount of data
will reduce the fitness evaluation and, hence, the com-
putational cost of the evolutionary run. While the pro-
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posed method is good for producing quality solutions,
it is also important that the computational efficiency
match or be better than the baseline level. The graph
in Figure 3 shows an average of the total run time
across 30 independent runs for six benchmarks.

For Keijzer-4 dataset, the GE run time has sig-
nificantly reduced for ACS compared to baseline ap-
proaches used to evolve the solution.

Figure 3: Average time taken (along with std error) per GE
run using baselines and proposed ACS approaches.

For the Keijzer-9 problem, the average run time
is clearly improved for both approaches of ACS. The
improved time efficiency is clear and evident in the
case of Keijzer-10 and Keijzer-14.

A similar observation is made for
Vladislavleva-5 and Vladislavleva-6 datasets.
Note that the run time for SR benchmarks used in this
paper is denominated in seconds.

When compared to the baseline 1, the perfor-
mance of the GE using ACS has shown a remarkable
improvement, with a minimum of 1.5X speedup in
the case of Keijzer-9. At the same time, the cost-
cutting measures resulted in a maximum reduction in
Vladislavleva-6 with a speedup factor of 14.77X.
The proposed approach has outperformed DBS*, with
a minimum improvement of 1.33X in the case of
Keijzer-4 and a maximum cost-cutting reduction
with a speedup of 11.38X is recorded in the case of
Vladislavleva-6. A detailed quantitative analysis
is given in Table 5.

The time analysis presented in this paper has
demonstrated the ACS algorithm’s efficacy in reduc-
ing the run time of the GE while retaining fitness re-
sults comparable with the baselines. The results vali-
date the rationale behind the development of the ACS
algorithm, which shows consistent and significant im-
provements in the overall computational efficiency of
the evolutionary algorithm. The findings are crucial

as computational efficiency is often a major concern
in real-world applications, where time and resource
constraints are paramount.

5.2.2 Solution Size

To ensure that bloat is not introduced, we present
a comparative analysis of the effective individual
size of the best solutions achieved through the ACS
method, as shown in Figure 4. We report the value for
effective size averaged over 30 runs.

The effective size of the best solutions produced
for Keizer-4 is shown in Figure 4(a). The mean
solution size produced using Inc-ACS and Dec-ACS
is comparable to or smaller than the baseline 1 and
DBS* in all instances. A similar result is observed
in the case of the Keijzer-9 problem as shown in
Figure 4(b). In the Keijzer-10 problem, the mean
effective size of the best solutions generated by ACS
is smaller in all scenarios as indicated in Figure 4(c).

Figure 4(d) presents the performance of the ACS
algorithm in comparison to baseline 1 and DBS* on
the Keijzer-14 dataset. Both approaches of ACS
perform better than DBS* in terms of solution size.
We observe a smaller solution size in Dec-ACS com-
pared to baseline 1 and DBS*. However, the mean ef-
fective solution size of the Inc-ACS approach appears
similar to baseline 1.

Figure 4(e) reveals the impact of different case se-
lection strategies on the size of solutions produced
for the Vladislavleva-5 problem. The ACS ap-
proaches have smaller mean effective solution sizes
than both of the considered baselines.

Figure 4(f) shows the results for the
Vladislavleva-6 problem where the mean ef-
fective size of the best solutions achieved using the
Dec-ACS is better than the baselines. A quantitative
analysis of the solutions’ size is reported in Table 6.

The models trained using the two approaches of
the ACS algorithm pose solution sizes that are smaller
or equal to the baseline 1 and DBS*. For instance,
Dec-ACS produced smaller solutions in all bench-
marks tested. One possible reason is that the ACS
utilizes a more efficient mechanism to guide the evo-
lutionary search. This can be particularly important in
real-world applications where solutions must be im-
plemented and maintained. Smaller solutions are eas-
ier to evaluate, adding value to the algorithm regard-
ing computational efficiency and run time. Moreover,
smaller solutions or solutions with less bloat are less
prone to overfitting and, therefore, are more likely to
generalize to unseen data.
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Table 5: Computational time analysis of six SR benchmarks. The tables display the GE run time for baseline 1, DBS*, and
the proposed Inc/Dec-ACS approaches averaged over 30 runs. The ACS methods are compared to both baselines, and the
resulting speedup factor is calculated.

(a) Keijzer-4

Inc-ACS Dec-ACS

Time (s) 1.666 1.366

Baseline 1 4.966 2.98X 3.63X

DBS* 2.233 1.33X 1.63X

(b) Keijzer-9

Inc-ACS Dec-ACS

Time (s) 2.366 3.33

Baseline 1 5.037 2.12X 1.51X

DBS* 4.7 1.98X 1.41X

(c) Keijzer-10

Inc-ACS Dec-ACS

Time (s) 2.4 2.933

Baseline 1 23.666 9.68X 8.06X

DBS* 13.098 5.45X 4.46X

(d) Keijzer-14

Inc-ACS Dec-ACS

Time (s) 2.4 2.133

Baseline 1 8.4 3.5X 3.93X

DBS* 4.870 2.02X 2.28X

(e) Vladislavleva-5

Inc-ACS Dec-ACS

Time (s) 2.366 2.433

Baseline 1 4.633 2.8X 2.72X

DBS* 4.759 2.01X 1.95X

(f) Vladislavleva-6

Inc-ACS Dec-ACS

Time (s) 1.2 1.2

Baseline 1 17.733 14.77X 14.77X

DBS* 13.666 11.38X 11.38X

(a) Keijzer-4 (b) Keijzer-9 (c) Keijzer-10

(d) Keijzer-14 (e) Vladislavleva-5 (f) Vladislavleva-6

Figure 4: The mean effective individual size of the best solutions, averaged across 30 runs.

6 CONCLUSIONS

In this paper, we introduce ACS, an adaptive and
diversity-preserving algorithm, for selecting subsets
of training instances from SR datasets. We validate
it on six diverse SR problems with varying levels of
complexity in terms of features and instances. We
use two approaches, Inc-ACS and Dec-ACS, for se-
lecting the training instances in increasing and de-
creasing order of diversity. We compare the results
against the conventional ‘train/test split’ and existing

state-of-the-art DBS. The ACS algorithm produces
comparable or superior accuracy and quality solutions
across all six benchmarks. Hypothesis testing through
statistical analysis confirms the effectiveness of the
ACS, producing comparatively better solutions than
the ‘train/test split’ method on 6/6 problems and 4/6
when compared to DBS*.

We conducted a run-time analysis to measure the
impact of the ACS algorithm on computational effi-
ciency in evolutionary runs. Results showed that the
adaptive selection with reduced training data signif-
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Table 6: Analysis of the mean effective solution size of six SR benchmarks. The tables display the mean effective size of the
best individuals for baseline 1, DBS*, and the proposed Inc/Dec-ACS approaches averaged over 30 runs. The ACS methods
are compared to the baselines, and the resulting decrease in size factor is calculated.

(a) Keijzer-4

Inc-ACS Dec-ACS

Eff. Size 12.84 10.74

Baseline 1 13.8 1.07X 1.28X

DBS* 15.269 1.18X 1.42X

(b) Keijzer-9

Inc-ACS Dec-ACS

Eff. Size 11.1 9.68

Baseline 1 11 0.99X 1.13X

DBS* 11.293 1.01X 1.16X

(c) Keijzer-10

Inc-ACS Dec-ACS

Eff. Size 6.5 7.38

Baseline 1 13.58 2.08X 1.84X

DBS* 11.846 1.82X 1.6X

(d) Keijzer-14

Inc-ACS Dec-ACS

Eff. Size 10.42 8.26

Baseline 1 10.2 0.97X 1.23X

DBS* 13.079 1.25X 1.58X

(e) Vladislavleva-5

Inc-ACS Dec-ACS

Eff. Size 12.72 12.96

Baseline 1 14.44 1.13X 1.11X

DBS* 15.097 1.18X 1.16X

(f) Vladislavleva-6

Inc-ACS Dec-ACS

Eff. Size 7.72 5.12

Baseline 1 6.8 0.88X 1.32X

DBS* 8.22 1.06X 1.6X

icantly decreased the fitness evaluation time of GE,
producing solutions up to 14.77X and 11.38X faster
than baseline 1 and DBS*, respectively.

Additionally, the impact of the ACS method on the
size of solutions was investigated. In most instances,
solutions obtained incorporating the ACS approach
were shown to have effective solution sizes smaller
or similar to the state-of-the-art results indicating the
potential of ACS in producing efficient solutions with
a smaller probability of creating bloat. Smaller solu-
tions with fewer bloats are important considerations
in EAs producing more efficient and generalizable so-
lutions.

This paper’s experiments can serve as both an
early case study and a platform for selecting test cases
in other problem domains. The effectiveness of the
two ACS variants depends on the problem type, and
it would be interesting to explore which approach is
best for specific problem sets.

For future work, we plan to extend this research
and test the proposed algorithm on other domains like
Boolean problems. Additionally, we aim to increase
the robustness of ACS by making it self-adaptive by
choosing training subsets based on the population’s
fitness score during run time.
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