
The State of Disappearing Frameworks in 2023

Juho Vepsäläinen a, Arto Hellas and Petri Vuorimaa
Department of Computer Science, School of Science, Aalto University, Espoo, Finland

fi

Keywords: Astro, Code Splitting, Disappearing Frameworks, Fresh, Islands Architecture, JavaScript, Marko,
Programming, Qwik, Qwik City, Svelte, SvelteKit, Software Architecture, Web, Web Programming,
www.

Abstract: Disappearing frameworks represent a new type of thinking for web development. In the current mainstream
JavaScript frameworks, the focus has been on developer experience at the cost of user experience. Disappear-
ing frameworks shift the focus by aiming to deliver as little, even zero, JavaScript to the client. In this paper,
we look at the options available in the ecosystem in mid-2023 and characterize them in terms of functionality
and features to provide a state-of-the-art view of the trend. We found that the frameworks rely heavily on
compilers, often support progressive enhancement, and most of the time support static output. While solutions
like Astro are UI library agnostic, others, such as Marko, are more opinionated.

1 INTRODUCTION

Since its beginning in the 90s, the world wide web
(Berners-Lee et al., 1992) has become an enormous
success. Although initially designed with the delivery
of static websites in mind, over time, the web has al-
lowed developers to build cross-platform applications
with relative ease (Severance, 2012). The evolution of
JavaScript has supported the transition from a website
delivery platform to an application platform (Wirfs-
Brock and Eich, 2020). With this transition, the de-
mands for the platform have grown over time as the
users expect more.

The growing expectations have been intertwined
with the evolution of web application development
approaches. While traditional web relied on refresh-
ing pages during operation, approaches such as sin-
gle page applications (SPAs) have raised the bar in
responsiveness and interactivity (Severance, 2012;
Woychowsky, 2006). As shown by (Vepsäläinen
et al., 2023), SPAs come with a cost of their own
as they depend on client-side JavaScript and may
be challenging to optimize for Search Engine Op-
timization (SEO) purposes. One particular chal-
lenge is the increasing amount of code shipped to
the client (HTTP Archive, 2023). Newer approaches,
such as disappearing frameworks, try to address these
problem points.

To remedy the problems of SPAs, disappearing

a https://orcid.org/0000-0003-0025-5540

frameworks shift the focus on shipping a minimal
amount of JavaScript to the client; hence the term
disappearing (Vepsäläinen et al., 2023). Depending
on the implementation, the way the framework disap-
pears may differ, and it is an ongoing space of tech-
nical competition. The crux of disappearing frame-
works is to take the best ideas from the early web –
delivering static content – and combine them with the
lessons learned from building SPAs, delivering as lit-
tle as possible, even zero, JavaScript to the client.

This article surveys the currently available disap-
pearing frameworks to understand possible ways to
implement them and to create a map of the emerg-
ing space. The overarching research question of this
article is as follows: Which disappearing frameworks
exist in the ecosystem, and how can they be character-
ized in terms of functionality and features while con-
sidering their pros and cons?

The framing responds to the question, “What
are the pros/cons of the solutions from a developer
and a user perspective relative to the incumbent ap-
proaches” proposed in (Vepsäläinen et al., 2023).
This more specific question motivates considering the
discovered frameworks against popular solutions to
understand how they differ from mainstream ones.

To address the question, we first discuss disap-
pearing frameworks in the context of earlier work in
Section 2, before providing a technical review and
comparison of them in Section 3. We discuss the find-
ings in Section 4 and conclude the findings in Sec-

232
Vepsäläinen, J., Hellas, A. and Vuorimaa, P.
The State of Disappearing Frameworks in 2023.
DOI: 10.5220/0012174000003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 232-241
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

tion 5 while outlining future research directions.

2 BACKGROUND

As described in (Vepsäläinen et al., 2023), the evolu-
tion of the web can be characterized through several
phases: formation in the 90s, the rise of SPAs, and
re-evaluation of current practices. Although a simpli-
fied view, this evolution provides a brief background
for understanding the current developments. Early
websites and applications could be characterized as
multi-page applications (MPAs), which relied heavily
on server logic triggered through navigation (Kaluža
et al., 2018). In part motivated by a need to reduce
loading times (Nah, 2004), SPAs lifted the need to
reload the whole page on each content change, im-
proving user experience (UX) (Kaluža et al., 2018)
while also fundamentally changing and improving
the developer experience (Vepsäläinen et al., 2023).
In the current phase of re-evaluating development
practices, solutions mixing the benefits of both ap-
proaches are being explored, and disappearing frame-
works form one of the potential options.

2.1 Libraries and Frameworks

Libraries and frameworks form one of the fundamen-
tal divisions in web development. Libraries such as
React aim to do a single thing well. At the same time,
frameworks such as Angular come with opinions, po-
tentially increasing developers’ productivity if they
align with the framework’s approach and work within
its constraints. The border between a library and a
framework is occasionally unclear, but this rough def-
inition is sufficient for the present discussion.

To add complexity to the discussion, we also
acknowledge the existence and emergence of meta-
frameworks such as Astro. Meta-frameworks are
headless as they do not rely on a specific user inter-
face (UI) library but let the developer decide which
one, or even many, to use.

2.2 Sprinkles Architecture a.k.a.
jQuery and Friends

jQuery (2006) is an early example of a success-
ful JavaScript library that has wide usage to this
day(w3techs, 2023). jQuery was developed to ad-
dress browser deficiencies in terms of ergonomics.
jQuery could reduce twenty lines of standard DOM
API code to a mere three through its chaining de-
sign while solving browser-incompatibility issues un-
derneath (Bibeault et al., 2015). The style jQuery

adopted could be characterized as “Sprinkles archi-
tecture”, where JavaScript is sprinkled into the appli-
cation to add interactivity while following the prin-
ciple of progressive enhancement (Champeon, 2003).
The example below shows what jQuery declarations
look like:
$(".selector").on("click", () => alert("hi"))

The architecture pioneered by jQuery is still rel-
evant, and most recently, several solutions, such as
Alpine.js (2019), Sidewind (2019), and htmx (2020)
have taken its ideas and moved it to HTML markup
itself while still allowing JavaScript to be used when
necessary.

2.3 Current Web Application
Development Landscape

React, Angular, and Vue.js dominate the current web
application development landscape. Still, it is good to
keep in mind that they hold only a small portion of
the global market, highlighting that modern web ap-
plications are still a small subset of the whole web1.
Overall, these libraries and frameworks rely on com-
ponents to allow the reuse and composition of code,
leverage a templating solution (i.e., JSX) for com-
ponent definition, and use a process called hydration
to make the client-side code alive to the user by en-
abling event handlers and running component logic
(Vepsäläinen et al., 2023).

Although the current technologies enable the cre-
ation of complex web-based experiences, it is not al-
ways clear what to use and when, as requirements
tend to differ depending on the use case (Miller,
2019). For instance, for a simple website, using a
complete framework might be too much in terms of
complexity. On top of this, there is a development-
related cost to consider, as frameworks can take time
to configure and learn. Furthermore, by definition,
frameworks are collections of opinions; at times,
the framework opinions might not match what is re-
quired, which leads to additional work – frameworks
can make complex tasks possible and possible tasks
easy. Still, it is challenging to go against the inherent
opinions of the frameworks.

Similarly, there are differences in the perfor-
mance of frameworks that influence their suitabil-
ity for specific tasks. As an example, (Ollila et al.,
2022) explored the cost of rendering using contem-
porary frameworks and observed that the cost of Re-
act grows radically with the number of components,
not to mention the amount of component code that

1E.g., the global market share of React is approximately
3.7% (Vepsäläinen et al., 2023).

The State of Disappearing Frameworks in 2023

233

must be loaded. In particular, leveraging a compiler
can yield benefits when optimizing client-side perfor-
mance (Ollila et al., 2022).

2.4 Islands Architecture

As pointed out by (Vepsäläinen et al., 2023), islands
architecture can be considered as a stepping stone to-
wards disappearing frameworks. The idea of islands
architecture is to let the developer define which por-
tions of a page are interactive while attaching a load-
ing strategy to each interactive section; these areas are
loaded only when they are needed (e.g., a user scrolls
to a location on the page that was previously not visi-
ble), while not being loaded at all if not needed.

Compared to loading and hydrating the entire
page before it becomes accessible to the user, islands
are an improvement for the users. Astro framework
has popularized the approach, and it is good to rec-
ognize islands architecture as a recent development
aiming at the same direction (2019) (Miller, 2020;
Hallie and Osmani, 2022). We cover one possible im-
plementation when discussing Astro in detail in Sec-
tion 3.1.

The key differences between server-side rendering
(SSR), progressive hydration, and islands architecture
are illustrated in Figure 1. Compared to regular hy-
dration, progressive hydration goes further by hydrat-
ing key components first and the rest later (Hallie and
Osmani, 2022).

2.5 Disappearing Frameworks

The term disappearing frameworks appeared to the
public in (O’Shaughnessy, 2018) (2018), and as de-
scribed by (Carniato, 2021a), disappearing frame-
works represent a paradigm-level shift by rephras-
ing the problem addressed by contemporary frame-
works. Rather than addressing the problem of devel-
oping complex web applications, disappearing frame-
works aim to remove themselves from an application
and try to start from close to zero cost in terms of
JavaScript shipped to the client (Vepsäläinen et al.,
2023). At the same time, disappearing frameworks
leverage ideas, such as using components of the ear-
lier generation, but how they are framed differs, espe-
cially from a loading point of view.

By shifting focus to the cost of what is shipped,
disappearing frameworks reach towards the best prac-
tices discovered during the early web. Although the
client still has to perform some work, the target is to
defer the work performed and avoid it when possi-
ble. By reducing the amount of scripting in the client,
accessibility is improved, especially in performance-

limited contexts, such as mobile devices (Ollila et al.,
2022).

The idea of disappearing frameworks is consis-
tent with Rich Harris’ transitional web applications
(TWAs) from 2021 that aim to capture the best ideas
of both the traditional web and the SPAs (Harris,
2021) and practices such as progressive enhancement
from 2008 (Gustafson et al., 2008) that encourage de-
velopers to think markup and styling first before ap-
plying JavaScript logic. TWAs go a step further, and
the idea is that such a web application should be able
to work without JavaScript enabled and, therefore,
contain the necessary fallback mechanisms to work
in this case.

Disappearing frameworks respond to the demands
of both developers and users as they take the ad-
vancements gained during the SPA era and adapt
them to the best practices discovered during the ear-
lier practices established for developing MPAs. In
other words, the movement aims to remedy the gap
in the approaches while delivering better user experi-
ences, especially in contexts with limited bandwidth
and computing power. As a side benefit, the shift also
aligns with green computing that highlights the need
for increased mindfulness of resource usage (Kurp,
2008).

2.6 Developing Web Applications
Server-First

While the previous examples have heavily focused
on client-side development, there is also an em-
phasis on server-side functionality. For example,
Phoenix LiveView emphasizes what happens at the
server, and sites written in LiveView can work with-
out JavaScript, but when enabled, changes are relayed
to the client through a WebSocket (Phoenix LiveView,
2023). The approach allows Elixir developers to build
complex applications while staying within the Elixir
language environment. The approach is interesting
because it optimizes for First Meaningful Paint (FMP)
while leaving JavaScript under the hood, allowing de-
velopers to stay within their preferred environment.
Phoenix LiveView is not unique, and there are many
implementations for other programming languages
beyond Elixir, as listed in (GitHub LiveViews, 2023).

3 TECHNICAL REVIEW

By our definition, a framework is a disappearing
framework if the focus is on aiming for zero or near
zero cost in terms of JavaScript delivered to the client.
The definition rules out older frameworks shipping a

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

234

Figure 1: Three examples of rendering of a website. Server-side rendering (SSR) creates the website on the server, sending
it to the client. Progressive hydration allows the prioritization of components rendered and shown to the client. Islands
architecture, on the other hand, creates a static website on the server with placeholders for islands, which are then retrieved
only if needed (Hallie and Osmani, 2022).

runtime and application code to evaluate at the client,
giving a good baseline for evaluating newer options.
In this article, we explicitly focus on frameworks that
self-identify as ones that seek to minimize delivered
JavaScript. To scope further, we limit our analysis to
solutions that are under active development and have
had a recent release.

For the present analysis, we identified ten frame-
works, outlined in Table 1, listing the projects and
their characteristics while showing our selection of
projects to study in detail. The identification of
the frameworks was based on existing discussions
(e.g. (O’Shaughnessy, 2018; Carniato, 2021b)) and an
exploration of conferences focusing on modern web
development practices (e.g., Future Frontend 2023
conference2).

3.1 Astro

Astro is a meta-framework built with islands archi-
tecture in mind. The project aims to allow developer
experience (DX) familiar with contemporary frame-
works within a static environment (Astro, 2023). As-
tro achieves this in several ways:
1. Islands are supported out of the box - In other

words, developers can decide which component
boundaries should be interactive. (Astro, 2023)

2. Server-first API design - To minimize the cost of
hydration, work is offloaded to the server as soon
as possible. (Astro, 2023)

3. Zero JavaScript by default - Astro doesn’t emit
any JavaScript by default. (Astro, 2023)
2https://futurefrontend.com/2023/

4. Edge-ready - Astro sites can be deployed any-
where, edge included, due to its static nature. (As-
tro, 2023)

5. Customizable - Numerous extensions exist to ex-
pand the capabilities of Astro. (Astro, 2023)

6. UI-agnostic - Astro can host many contemporary
JavaScript frameworks. (Astro, 2023)

3.1.1 Astro Islands

Astro implements islands architecture through what
it calls Astro islands (Astro Islands, 2023). The fol-
lowing example illustrates how to load a static React
component through Astro:

import MyComponent from "../MyComponent.jsx";

<MyComponent />

To make the component interactive, you have to
mark it as an island while giving it a loading strategy
as below (Astro Islands, 2023):

import MyComponent from "../MyComponent.jsx";

<!-- The component is interactive on load -->
<MyComponent client:load />

Beyond loading the island immediately, As-
tro provides other strategies, including client:idle,
client:visible, and client:media to mention some
(Astro Directives, 2023).

3.1.2 Observations

Astro is the first framework that embraced the islands
architecture as a first-class citizen and used it as a part

The State of Disappearing Frameworks in 2023

235

Table 1: Potential web application frameworks and libraries.

Name Type Version Compiled Notes Included
Svelte Library 4.2.0, 2023-08-11 ✓ Complemented by SvelteKit for rout-

ing and related functionality
✓

Elder Framework 1.7.5, 2022-05-31 ✓ Built on top of Svelte
Stencil Library 4.1.0, 2023-08-21 Focus on authoring Web Components
Angular Framework 16.2.3, 2023-08-

30
✓ Conventional framework with support

for Web Components
Marko Framework 5.31.6, 2023-08-

25
✓ Implements a DSL on top of HTML,

supports streaming
✓

Qwik Framework 1.2.10, 2023-08-
26

✓ Complemented by Qwik City for
routing and related functionality

✓

Astro Framework 3.0.8, 2023-09-04 ✓ Focus on islands architecture ✓
ı̂les Static site

generator
0.9.5, 2023-04-07 ✓ Implements partial hydration and

comes with zero cost by default
Slinkity Framework 1.0.0-canary.1,

2023-01-09
Based on 11ty static site generator
and Vite bundler, early alpha

Fresh Framework 1.4.2, 2023-08-17 Deno-based, edge friendly framework
with SSR support

✓

of their marketing effort. Astro is not bound to a spe-
cific UI library and provides flexibility in static and
dynamic use cases by supporting both. Astro comes
with zero cost by default for JavaScript shipped to the
client, and the cost is added only by defining islands.
It can be argued that what happens beyond that could
be potentially costly. Still, at the same time, this could
be seen as a pragmatic compromise as the approach
allows leveraging what is available in the ecosystem
of popular UI libraries such as React.

3.2 Fresh

Fresh calls itself the next-generation web framework,
and it claims to have the following features (Fresh,
2023): just-in-time rendering, island-based client hy-
dration (Jiang, 2023), zero runtime overhead, no build
step, no configuration, and TypeScript support. In
other words, Fresh renders on demand over the edge
(JIT) while supporting islands architecture, enabling
developers to ship code for interactivity when needed.
Due to its edge-oriented approach, it avoids the build
step and configuration. By leveraging Deno as the
runtime instead of Node.js for its implementation,
TypeScript support is gained out of the box.

Based on Fresh documentation, Fresh leverages
Preact and JSX for rendering (Fresh Documentation,
2023). Preact is a light (3 kB) implementation of Re-
act API, making it an ideal choice for a framework
like Fresh. The combination of Deno and Preact also
restricts the project as it is not framework-agnostic
like Astro. Still, at the same time, the choice is un-
derstandable, given the project constraints and focus.

3.3 Svelte and SvelteKit

According to its homepage, Svelte lets developers
build “cybernetically enhanced web apps” (Svelte,
2023). Svelte’s central claims to fame are writing
less code, lacking a virtual DOM, and being gen-
uinely reactive. In technical terms, Svelte relies on
a compiler-based approach, and compared to the in-
cumbent frameworks, it claims to avoid the associated
cost at the browser.

3.3.1 Svelte Compiler

The description of Svelte aligns well with the idea be-
hind disappearing frameworks. Furthermore, Svelte
retains many features of the earlier solutions, includ-
ing component orientation, and it comes with a tem-
plating language. At the same time, the hydration
step is achieved through code generated by the Svelte
compiler. The Svelte compiler accepts code such as
the one below adapted from Svelte documentation
(Svelte, 2023):
<script>
let count = 0;
function handleClick() { count += 1; }

</script>
<button on:click={handleClick}>
Clicked {count} time{count > 1 ? "s" : ""}

</button>

Although Svelte alone is enough for simple appli-
cations, it is often complemented by a solution such
as Astro or SvelteKit. We already saw Astro at Sub-
section 3.1 and will discuss SvelteKit next.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

236

3.3.2 SvelteKit

SvelteKit is a framework that builds on top of Svelte
and provides core features, such as routing and
server-side rendering (SSR). SvelteKit leverages Vite
bundler for the added functionality and implements
developer-oriented features such as Hot Module Re-
placement (HMR) for adequate development flow
(SvelteKit, 2023).

While SvelteKit can run as a server in production
mode, it also supports static site generation (SSG). A
SvelteKit site can be hosted on top of popular edge
platforms, including Cloudflare Pages, Netlify, and
Vercel while allowing developers to adapt to any plat-
form beyond the officially supported ones (SvelteKit,
2023).

From the user’s point of view, SvelteKit allows
developing sites that work without JavaScript and
that enhance progressively if JavaScript is available
to provide higher quality user experience (SvelteKit
Form Actions, 2023). SvelteKit provides flexibility to
the developer by allowing them to decide how (CSR,
SSR) and where to render a page (server, client) to
support both dynamic and static use cases depending
on what is required (SvelteKit Page Options, 2023).

3.3.3 Observations

Svelte and SvelteKit align well with the ideas be-
hind disappearing frameworks. It is not a big sur-
prise, given both projects were initiated by Rich Har-
ris, the developer who introduced the idea of TWAs
to the broader public. Given that TWAs are closely
aligned with disappearing frameworks, it makes sense
that Svelte and related solutions comply well with the
target of shipping less JavaScript to the client.

There is some learning curve to Svelte’s approach
as it implies learning to use Svelte’s DSL for defining
components. The connection between state and tem-
plate is mainly intuitive, but learning template control
structures requires effort from the developer.

Svelte was one of the earliest JavaScript frame-
works built as a compiler; other projects have fol-
lowed that choice. Compiler-based approaches con-
trast earlier runtime and bundler-focused frameworks
where client cost was not considered as crucial as dis-
appearing frameworks.

3.4 Qwik and Qwik City

Qwik is a web framework built by Miško Hevery (An-
gular.js), Adam Bradley (Ionic), and Manu Almeida
(Gin Framework) (Adservio, 2022). The framework
addresses the conflicting requirements of interactiv-
ity and page speed (Qwik’s magic, 2022). The con-

flict means you have to compromise in interactivity or
speed due to the hydration cost of the current frame-
works (Qwik’s magic, 2022). According to Qwik
documentation (Qwik, 2022a), the framework is solv-
ing the quandary using the following means:

1. Resumability over hydration – Instead of hydrat-
ing, Qwik can resume code execution on demand.

2. Automatic code splitting – Qwik splits code ag-
gressively due to the approach avoiding manual
effort by developers.

3. Tiny runtime – Qwik runtime is only one kilobyte.
4. Compilation over runtime cost – Qwik’s optimizer

pushes some state management to the server side.

It is these factors that make Qwik unique com-
pared to its competition. Because of its approach,
Qwik represents a paradigm-level shift in how to de-
velop web applications. One of the ways it achieves
its targets is by focusing on different metrics than its
predecessors, namely Time to Interactive (TTI) over
Time to Load (TTL).

While many frameworks focus on TTL, the core
metric of Qwik is TTI (Tyson, 2022). The developers
of Qwik are concerned about how soon a web page
can become responsive to user interaction. This shift
in perspective likely motivated the approach and the
idea of resumability.

3.4.1 Resumability

Resumability allows pages to become interactive on
demand based on user intent (Qwik’s magic, 2022)
while picking up where the server left off (Adservio,
2022). In contrast to hydration-based approaches,
there is less work to do for the browser as a part of
it has already been performed. As a result, TTI can
become low, and the page can quickly respond to user
interaction.

The idea of resumability is not new, as illustrated
by the example of jQuery (2006) (Qwik’s magic,
2022). The difference with jQuery is that working
with Qwik is similar to working with React regard-
ing developer experience (DX). Qwik has adopted a
similar component style and supports reactive state
management out of the box (Qwik’s magic, 2022). To
leverage resumability, Qwik generates both server and
client-side code while serializing using a so-called op-
timizer (Qwik’s magic, 2022)

3.4.2 Optimizer and Automatic Code Splitting

The optimizer is a core part of Qwik generating code
using automatic code splitting applied across compo-
nent and event listeners, meaning Qwik defers load-
ing necessary code as long as possible (Qwik, 2022b).

The State of Disappearing Frameworks in 2023

237

Given deferring isn’t always the preferred behavior,
Qwik supports standard preloading strategies (Qwik,
2022b). The strategies are then used by a service
worker set up by Qwik to monitor application state
(Qwik’s magic, 2022).

For code splitting, Qwik has been split architec-
turally into three parts (Hevery, 2021): view, state,
and handlers. Usually, these three parts are coupled
and held together in code. The coupling means there
are three parts to download, parse, and execute to-
gether (Hevery, 2021). Even if only one part is needed
based on user interaction, all three must be processed
regardless (Hevery, 2021).

Because of the separation of concerns in Qwik,
automatic code splitting has become possible at an
unprecedented level. A specific dollar-based code
convention is used to mark the code splitting bound-
aries, and then the optimizer can compile the code
based on them (Qwik, 2022a). Due to the shift in per-
spective, Qwik can achieve fine-grained code splitting
out of the box that its predecessors couldn’t due to
their tighter coupling of concerns.

3.4.3 Code Splitting Boundaries, Reactive State,
and Components

To better understand how code splitting boundaries
work in Qwik, consider the counter-based example
below from Qwik documentation (Qwik, 2022a). It
also illustrates Qwik’s usage components and reactive
state, specifically signals.
import * as qwik from "@builder.io/qwik";

export default qwik.component$(() => {
const count = qwik.useSignal(0);
return (
<div>
Count: {count.value}
<button onClick$={() => count.value++}>
Click

</button>
</div>

);
});

The example is relatively close to the code you
would write in React. React created suitable program-
ming interfaces as a pioneer, and Qwik decided to
mimic them while adding twists on top.

3.4.4 Qwik City

Qwik City is a meta-framework comparable to Next.js
for React (Qwik’s magic, 2022). It provides the
following features on top of Qwik (Qwik’s magic,
2022): directory-based routing, nested layouts, file-
based menus, breadcrumbs, support authoring content

with .tsx or .mdx file formats, and data endpoints. The
technical target of Qwik City is to provide the capa-
bilities of an MPA with the benefits of a SPA (Qwik’s
magic, 2022). Therefore, navigation-wise, the solu-
tion avoids page refreshes commonly encountered in
MPAs and allows UX familiar from SPAs.

3.4.5 Observations

Qwik represents a paradigm-level shift in how web
applications are developed. It approaches the problem
from a different angle. Compared to earlier solutions,
it tries to quickly solve the issue of providing highly
interactive pages to the client on a tooling level thanks
to its compiler-based implementation. At the same
time, it has adopted ergonomics familiar to developers
from React, easing its adoption.

3.5 Marko

Marko’s main claims are familiarity, performance,
scalability, and trustworthiness. By familiarity,
Marko means that it has been built on top of standard
JavaScript, CSS, and HTML with tweaks as a DSL
for HTML. Performance is achieved through stream-
ing, partial hydration, optimizing the compiler, and a
small runtime. Scalability is reached through com-
ponent orientation, as the system can be expanded as
required. Trustworthiness is gained by the fact that
Marko powers high-traffic sites, such as ebay.com.
(Marko, 2023)

3.5.1 Marko DSL

To illustrate Marko DSL, the documentation pro-
vides the following example showcasing how to loop
through an array and map it as an HTML list (Marko,
2023):
<!doctype html>
<html>
<head><title>Hello Marko</title></head>
<body>

<h1>My favorite colors</h1>

<for|color| of=["red", "tan", "hue"]>
<li style=‘color:${color}‘>

${color.toUpperCase()}

</for>

<shared-footer/>

</body>
</html>

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

238

Table 2: Comparison of disappearing frameworks.

Name Rendering and hosting approach Static
output

Stance on exter-
nal UI libraries

Svelte Compiles only what is needed. Possible to host on popular
edge platforms when using SvelteKit (Svelte Adapters, 2023).

Through
SvelteKit

Svelte only

Marko Compiles what is needed and streams results to the client.
Possible to host on Cloudflare Workers and platforms sup-
porting Node.js (Marko Server Integrations, 2023).

Marko DSL only

Qwik Compiles features within split points loaded on demand and
ships a minimal runtime for bootstrapping. Possible to host
on edge and Node.js platforms (Qwik Deployments, 2023).

✓ Supports React

Astro Implements islands architecture and provides multiple strate-
gies for loading the islands. It includes a compiler and sup-
ports rendering for dynamic use cases on the edge.

✓ Works with Re-
act and others

Fresh Renders on demand on top of the edge. Possible to host on
Deno Deploy or through Docker (Fresh Deployment, 2023).

Depends on Pre-
act

3.5.2 Observations

Marko fits the definition of a disappearing framework
well, as one of its design goals is a small runtime and
optimized rendering. Furthermore, leveraging partial
hydration and streaming further improves user experi-
ence as a page can be rendered while the user receives
data. Marko’s DSL has a learning curve that plugins
for popular code editors have alleviated.

4 DISCUSSION

Several frameworks have already adopted ideas suit-
able for disappearing frameworks. Many adver-
tise to ship zero JavaScript to the client by default,
which shows that the developers of the frameworks
are aware of the problem of increasing delivered
JavaScript (HTTP Archive, 2023) and the associated
costs.

4.1 Main Observations

Our technical review highlights the following obser-
vations: many frameworks are built as compilers,
many solutions support static output, and there are
different takes on interoperability.

Compared to earlier frameworks, such as React,
which leveraged a compiler only for its JSX templat-
ing, it seems the new generation relies heavily on
compilers. The shift enables the new frameworks to
keep the runtime shipped to the client as lean as pos-
sible. The shift is supported by (Ollila et al., 2022), as
he states that runtime-based approaches are costly and
using a compiler helps with client-side performance.

Many solutions support static output, allowing

them to work as SSGs (Petersen, 2016; Camden and
Rinaldi, 2017). For cases that do not support static
output, a solution like ssr-to-html can be used to ex-
tract it, but at the same time, the results may not be
ideal.

Astro is an example of a UI library agnostic frame-
work, while others enforce a specific approach (As-
tro, 2023). Qwik meets somewhere in the middle by
leveraging JSX and providing compatibility with Re-
act (Qwik React, 2023). Marko is an extreme example
with its custom DSL.

4.2 Methods for Improving Existing
Frameworks

As replacing a framework can be costly, research
seeks ways to optimize the use of existing frame-
works. In (Vogel and Springer, 2023), the authors
introduce two new open-source frameworks that can
delay JavaScript code without breaking it. Through
these kinds of tools, it becomes possible to leverage
modern development practices on aging codebases.

4.3 Summary of Results

The rendering and hosting approaches, support for
static output, and the stance on external UI libraries
for the reviewed frameworks are outlined in Table 2.

5 CONCLUSION

Disappearing frameworks are a new trend in web de-
velopment. In this paper, we addressed the research
question Which disappearing frameworks exist in the

The State of Disappearing Frameworks in 2023

239

ecosystem, and how can they be characterized in
terms of functionality and features while considering
their pros and cons? by conducting a technical review
of frameworks that comply with the definition of dis-
appearing frameworks by aiming to delivery zero or
near zero JavaScript to the client. We observe that
many approaches rely on a compiler while also con-
sidering the state in which client-side JavaScript has
been completely disabled. Several options also sup-
port static output, allowing easy hosting. In addition,
solutions such as Astro provide limited interoperabil-
ity with earlier UI libraries.

In this article, we addressed one of the questions
proposed by (Vepsäläinen et al., 2023) and gained
a further understanding of the space of disappearing
web frameworks. Additional research is needed to un-
derstand how the frameworks perform relative to the
mainstream frameworks and each other. Performance
studies should not be limited only to the performance
experienced by the client, as developer experience can
also significantly influence the adoption of new tech-
nologies, as hinted by (Ferreira et al., 2022). In ad-
dition, it would be worthwhile to evaluate the code
authored using the frameworks in detail to understand
differences in understandability, complexity, and the
number of lines of code, for example.

REFERENCES

Adservio (2022). Qwik – The Post-Modern Framework —
adservio.fr. https://www.adservio.fr/post/qwik-the-p
ost-modern-framework. [Accessed 15-Nov-2022].

Astro (2023). Getting Started — docs.astro.build. https:
//docs.astro.build/en/getting-started/. [Accessed
13-Apr-2023].

Astro Directives (2023). Template Directives Reference —
docs.astro.build. https://docs.astro.build/en/referenc
e/directives-reference/. [Accessed 17-Apr-2023].

Astro Islands (2023). Astro Islands — docs.astro.build. ht
tps://docs.astro.build/en/concepts/islands/. [Accessed
17-Apr-2023].

Berners-Lee, T., Cailliau, R., Groff, J.-F., and Pollermann,
B. (1992). World-wide web: the information universe.
Internet Research.

Bibeault, B., De Rosa, A., and Katz, Y. (2015). jQuery in
Action. Simon and Schuster.

Camden, R. and Rinaldi, B. (2017). Working with Static
Sites: Bringing the Power of Simplicity to Modern
Sites. ” O’Reilly Media, Inc.”.

Carniato, R. (2021a). Understanding transitional javascript
apps. [Accessed 29-Sep-2022].

Carniato, R. (2021b). Understanding Transitional
JavaScript Apps — dev.to. https://dev.to/this-is-learn
ing/understanding-transitional-javascript-apps-27i2.
[Accessed 13-Apr-2023].

Champeon, S. (2003). Progressive enhancement and the
future of web design. http://www.webmonkey.com/
03/21/index3a.html. [Accessed over The Wayback
Machine, 15-May-2023].

Ferreira, F., Borges, H. S., and Valente, M. T. (2022). On
the (un-) adoption of javascript front-end frameworks.
Software: Practice and Experience, 52(4):947–966.

Fresh (2023). fresh - The next-gen web framework. —
fresh.deno.dev. https://fresh.deno.dev/. [Accessed
19-Apr-2023].

Fresh Deployment (2023). Deployment — fresh docs —
fresh.deno.dev. https://fresh.deno.dev/docs/concepts
/deployment. [Accessed 19-Apr-2023].

Fresh Documentation (2023). Introduction — fresh docs —
fresh.deno.dev. https://fresh.deno.dev/docs/introducti
on. [Accessed 19-Apr-2023].

GitHub LiveViews (2023). GitHub - liveviews/liveviews:
Phoenix LiveView workalikes for different languages
and frameworks — github.com. https://github.com/l
iveviews/liveviews. [Accessed 27-Apr-2023].

Gustafson, A., Overkamp, L., Brosset, P., Prater, S. V.,
Wills, M., and PenzeyMoog, E. (2008). Understand-
ing progressive enhancement. [Accessed 29-Sep-
2022].

Hallie, L. and Osmani, A. (2022). Islands Architecture —
patterns.dev. https://www.patterns.dev/posts/islands
-architecture/. [Accessed 29-Sep-2022].

Harris, R. (2021). Have single-page apps ruined the web?
— transitional apps with rich harris, nytimes. [Ac-
cessed 29-Sep-2022].

Hevery, M. (2021). Your bundler is doing it wrong —
dev.to. https://dev.to/builderio/your-bundler- is-d
oing-it-wrong-ic0. [Accessed 14-Nov-2022].

HTTP Archive (2023). State of javascript. https://httpar
chive.org/reports/state-of-javascript. [Accessed 15-
May-2023].

Jiang, A. (2023). A Gentle Introduction to Islands —
deno.com. https://deno.com/blog/intro-to-islands.
[Accessed 27-Apr-2023].

Kaluža, M., Troskot, K., and Vukelić, B. (2018). Com-
parison of front-end frameworks for web applications
development. Zbornik Veleučilišta u Rijeci, 6(1):261–
282.

Kurp, P. (2008). Green computing. Communications of the
ACM, 51(10):11–13.

Marko (2023). Marko — markojs.com. https://markojs.co
m/. [Accessed 13-Apr-2023].

Marko Server Integrations (2023). Server Integrations —
Marko — markojs.com. https://markojs.com/docs/ser
ver-integrations-overview/. [Accessed 19-Apr-2023].

Miller, J. (2019). Application Holotypes: A Guide to Ar-
chitecture Decisions - JASON Format — jasonfor-
mat.com. https://jasonformat.com/application-hol
otypes/. [Accessed 10-Jan-2023].

Miller, J. (2020). Islands architecture. [Accessed 29-Sep-
2022].

Nah, F. F.-H. (2004). A study on tolerable waiting time:
how long are web users willing to wait? Behaviour &
Information Technology, 23(3):153–163.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

240

Ollila, R., Mäkitalo, N., and Mikkonen, T. (2022). Modern
web frameworks: A comparison of rendering perfor-
mance. Journal of Web Engineering.

O’Shaughnessy, P. (2018). Disappearing Frameworks —
medium.com. https://medium.com/samsung-inter
net-dev/disappearing-frameworks-ed921f411c38.
[Accessed 11-Apr-2023].

Petersen, H. (2016). From static and dynamic websites to
static site generators. University of Tartu, Institute of
Computer Science.

Phoenix LiveView (2023). Phoenix.LiveView - Phoenix
LiveView v0.18.18 — hexdocs.pm. https://hexdoc
s.pm/phoenix live view/Phoenix.LiveView.html.
[Accessed 27-Apr-2023].

Qwik (2022a). Overview - Qwik — qwik.builder.io. https:
//qwik.builder.io/docs/overview/. [Accessed 14-Nov-
2022].

Qwik (2022b). Resumable - Qwik — qwik.builder.io. https:
//qwik.builder.io/docs/concepts/resumable/. [Ac-
cessed 14-Nov-2022].

Qwik Deployments (2023). Deployments - Qwik —
qwik.builder.io. https://qwik.builder.io/docs/deplo
yments/. [Accessed 19-Apr-2023].

Qwik React (2023). Qwik React - Qwik — qwik.builder.io.
https://qwik.builder.io/docs/integrations/react/. [Ac-
cessed 19-Apr-2023].

Qwik’s magic (2022). Qwik’s magic is not in how fast it ex-
ecutes, but how good it is in avoiding doing any work
— devm.io. https://devm.io/javascript/qwik-javascrip
t-hevery. [Accessed 15-Nov-2022].

Severance, C. (2012). JavaScript: Designing a language in
10 days. Computer, 45(2):7–8.

Svelte (2023). Svelte - Cybernetically enhanced web apps
— svelte.dev. https://svelte.dev/. [Accessed 13-Apr-
2023].

Svelte Adapters (2023). Adapters - Docs - SvelteKit —
kit.svelte.dev. https://kit.svelte.dev/docs/adapters.
[Accessed 19-Apr-2023].

SvelteKit (2023). Introduction - Docs - SvelteKit —
kit.svelte.dev. https://kit.svelte.dev/docs/introduction.
[Accessed 13-Apr-2023].

SvelteKit Form Actions (2023). Form actions - Docs - Svel-
teKit — kit.svelte.dev. https://kit.svelte.dev/docs/fo
rm-actions. [Accessed 13-Apr-2023].

SvelteKit Page Options (2023). Page options - Docs - Svel-
teKit — kit.svelte.dev. https://kit.svelte.dev/docs/pa
ge-options. [Accessed 13-Apr-2023].

Tyson, M. (2022). Intro to Qwik: A superfast JavaScript
framework — infoworld.com. https://www.infoworl
d.com/article/3676577/intro-to-qwik-a-superfast-jav
ascript-framework.html. [Accessed 14-Nov-2022].

Vepsäläinen, J., Hellas, A., and Vuorimaa, P. (2023). The
rise of disappearing frameworks in web develop-
ment. In International Conference on Web Engineer-
ing, pages 319–326. Springer.

Vogel, L. and Springer, T. (2023). Waiter and autratac:
Don’t throw it away, just delay! In Garrigós, I.,
Murillo Rodrı́guez, J. M., and Wimmer, M., editors,
Web Engineering, pages 278–292, Cham. Springer
Nature Switzerland.

w3techs (2023). Usage Statistics and Market Share of
jQuery for Websites, May 2023 — w3techs.com. ht
tps://w3techs.com/technologies/details/js- jquery.
[Accessed 08-May-2023].

Wirfs-Brock, A. and Eich, B. (2020). JavaScript: the first
20 years. Proceedings of the ACM on Programming
Languages, 4(HOPL):1–189.

Woychowsky, E. (2006). AJAX: Creating web pages with
asynchronous JavaScript and XML, volume 8. Pren-
tice Hall Upper Saddle River, NJ, USA.

The State of Disappearing Frameworks in 2023

241

