
Implications of Edge Computing for Static Site Generation

Juho Vepsäläinen a, Arto Hellas and Petri Vuorimaa
Department of Computer Science, School of Science, Aalto University, Espoo, Finland

fi

Keywords: Edge Computing, Incremental Static Regeneration, JavaScript, Performance, Static Site Generation, Static
Site Generators, Web Development, Web Performance, Web, WWW.

Abstract: Static site generation (SSG) is a common technique in the web development space to create performant web-
sites that are easy to host. Numerous SSG tools exist, and the approach has been complemented by newer
approaches, such as Jamstack, that extend its usability. Edge computing represents a new option to extend
the usefulness of SSG further by allowing the creation of dynamic sites on top of a static backdrop, providing
dynamic resources close to the user. In this paper, we explore the impact of the recent developments in the
edge computing space and consider its implications for SSG.

1 INTRODUCTION

Historically, websites have been hosted on web
servers that serve static content (Berners-Lee et al.,
1992). The advent of content management systems
(CMSs) brought about a dynamic approach that al-
lowed editing the served contents with an online edi-
tor, leading to additional requirements and complex-
ity from the server, including server-side rendering
(SSR) (Boiko, 2005; W3Techs, 2022). Static site
generators (SSGs) that build static files out of dy-
namically edited contents were developed to mitigate
the need for server-side rendering, yielding the possi-
bility to serve the content with static file servers with
little need for dynamic functionality. This possibility
of serving static content – coupled with an increased
demand in throughput – in part led to the emergence
of content delivery networks (CDNs), which lever-
age a global network of servers for faster content de-
livery through geographical distribution.

With the emergence of commercial server
providers and the decline of self-hosting, server farms
were developed. On top of server farms, new meth-
ods for trading computational resources emerged, in-
cluding the cloud computing market. Contemporary
offerings allow paying based on the execution of indi-
vidual function calls, potentially accounting for CPU
and memory usage. This shift significantly contrasts
the traditional trading of computational power, as
the payment unit can be measured through individ-
ual computations rather than pieces of hosted hard-

a https://orcid.org/0000-0003-0025-5540

ware (Lynn et al., 2017). From the point of view of
a computation resource vendor, this has enabled new
economies of scale while encouraging custom hard-
ware development.

The combination of these advancements – CDNs
and the more fine-grained control and billing of com-
putation power – has led to the emergence of edge
computing as a viable option for web developers.
While CDNs have benefits, edge computing allows
programmability and selling function executions on
top of CDNs. Edge computing has emerged as a
viable option for software developers as it allows
them to shape client requests and server responses
at a scale near to the client, enabling faster response
times (Carvalho et al., 2021). The shift to the edge
has resulted in new technical solutions, such as edge-
friendly databases, and the problem of cold starts fa-
miliar from cloud computing is becoming solved (Par-
tovi, 2022).

In the present study, we explore the impact of
edge computing for static website hosting to evaluate
how the ideas from static and dynamic realms may be
mixed, answering the question What are the techni-
cal opportunities and challenges of edge computing
for static website hosting? A version of the question
was previously posed in (Vepsäläinen and Vuorimaa,
2022), where the authors discussed the challenges of
SSG when adjusting site contents and proposed an in-
termediate JSON representation format for site data.
The work expands on a recent overview of edge com-
puting research by (Cao et al., 2020) in the specific
case of SSG.

Vepsäläinen, J., Hellas, A. and Vuorimaa, P.
Implications of Edge Computing for Static Site Generation.
DOI: 10.5220/0012173900003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 223-231
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

223



The approach to answering the research question
is two-fold. We first explore the advances of website
rendering and hosting in Section 2 to create a view
of the recent movements in the space. Then, to illus-
trate the benefits of edge computing in practice, we
explore the efficacy of rendering a blog platform us-
ing three rendering mechanisms and two popular edge
providers, outlined in Sections 3 and 4. The results of
our experiment and the potential of edge computing
for SSG are discussed in Section 5. Finally, Section 6
provides a conclusion and outlines directions for fu-
ture study.

2 BACKGROUND

In this section, we outline the main movements lead-
ing to the present state of creating websites and deliv-
ering websites. We also consider how these develop-
ments align with the emerging trend of edge comput-
ing in the web space.

2.1 Evolution of Website Rendering
Techniques

Website rendering techniques have evolved since the
beginning of the web to address the new requirements
set for websites. The evolution has been supported by
the growing market and the shift in use cases for the
web as it grew from a site platform to an application
platform as web applications became popular with the
introduction of social networking and related trends.
The growth of the web platform motivated the devel-
opment of multiple website rendering techniques that
each address specific pain points related to developing
websites and web applications.

2.1.1 Server Side Rendering

Early websites developed in the 1990s were mainly
static and served using static file servers. A static
site consists of HTML pages, documents, and media,
which can be read by the server from persistent stor-
age and served to the client (usually a web browser)
without further customization (Petersen, 2016). Due
to a need to provide a degree of interactivity and to al-
low changing the served data, dynamic functionality
was added to the servers. Dynamic websites are typi-
cally stored in a format not directly renderable by the
browser (Petersen, 2016). In the dynamic case, the
server takes an incoming request, performs some ac-
tions in between, and generates a response that is then
sent to the client. The process is commonly known as
server-side rendering (SSR).

2.1.2 Client Side Rendering and Single Page
Applications

SSR was the prevalent technology for building con-
tent for the web for over a decade until its slow de-
cline in favor of client-side rendering (CSR) in the
late 2000s and early 2010s. The move towards CSR
stemmed from a potential for increased perceived us-
ability as while SSR required the whole site to be
reloaded per request, CSR allowed changing only the
parts needed on a page using technologies such as
JavaScript without forcing a refresh (Flanagan and
Novak, 1998). A culmination point of this develop-
ment was the emergence of single-page applications
(SPA) in which it became possible to dynamically
adjust the shown content based on the user interac-
tions (Mikowski and Powell, 2013; Carniato, 2021).

2.1.3 Static Site Generation

Both SSR and CSR are complemented by static site
generation (SSG). In SSG assets are compiled to-
gether to a format that can be hosted using a static
file server (Newson, 2017) while coming with bene-
fits related to security (Petersen, 2016; Camden and
Rinaldi, 2017), fast page load times (Petersen, 2016;
Camden and Rinaldi, 2017), scaling (Petersen, 2016),
compatibility with versioning systems (Camden and
Rinaldi, 2017), and efficient resource usage (Petersen,
2016).

Traditionally, SSGs have been a great fit for small
content sites as in the worst case and the most naı̈ve
implementation, an SSG must recompile the entire
site when the content changes. However, techniques
such as incremental compilation enable an SSG to
reuse the previous results while recompiling only the
parts that a change made by the user affects.

There exists a wide variety of SSGs. For exam-
ple, https://jamstack.org/ enumerates over 350 SSGs
(August 2023) in their listing (Jamstack, 2022) while
https://staticsitegenerators.net/ has over 460 SSGs
(August 2023) (SSG, 2022).

2.1.4 Jamstack

Jamstack was introduced by Matt Biilmann at Smash-
ing Conf in 2016 as a response to the weaknesses
of the SSG model. It represents a change in think-
ing compared to the traditional web (Kumar, 2019)
and shifts the perspective on how websites should be
composed. The idea is to decouple content from the
layout and then collect them together. The approach
goes well with headless CMSs that expose their data
through an API for third parties to consume (Barker,
2017). Standard webhooks allow refreshing a website

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

224



Figure 1: In Jamstack approach, data from a content man-
agement system is combined with templates (HTML, JS,
CSS, etc.) that are then compiled using a SSG. The result-
ing static website is then deployed on a CDN hosting ser-
vice. (Utomo et al., 2020).

when the data changes (Hoang, 2020).
From a deployment point of view, Jamstack sites

are still static and can be hosted through a static file
server, therefore inheriting the SSG approach’s ben-
efits (Markovic et al., 2022). Jamstack relies on ex-
ternal services for dynamic functionality, such as au-
thentication (Peltonen et al., 2021). Due to their static
nature, Jamstack sites can be hosted on CDNs and
gain their benefits in terms of security and scalabil-
ity, as with SSGs earlier. Figure 1 shows how the dy-
namic and static portions of Jamstack go together and
how a Jamstack site is deployed on a CDN.

According to (Markovic et al., 2022), the hype
around Jamstack is currently at its peak, and their
findings indicate that although Jamstack is a promis-
ing approach, it may not become the de facto model
for web development as there are concerns related to
handling dynamic use cases and that is one of the
main challenges the advocates of the Jamstack ap-
proach have to resolve in the coming years. Several
early pain points of Jamstack have already been re-
solved through improved service offerings that cover
features such as authentication or payment. The prob-
lem of previewing the impact of data changes has
been alleviated to some extent through techniques
such as incremental static regeneration (Markovic
et al., 2022).

2.1.5 Incremental Static Regeneration and
Distributed Persistent Rendering

Recent frameworks, such as Next.js, offer the possi-
bility for SSR, CSR, and SSG, leading to hybrid func-
tionality. Hybrid approaches enable developers to use
the rendering technology that makes the most sense
at a given time. On top of this, Next.js innovated a
rendering method called incremental static regenera-
tion (ISR), mixing SSG and SSR, that allows the use

of SSG without rebuilding the entire site by shifting
some of the work to on-demand (Nguyen, 2022). In
the on-demand case where ISR is leveraged, pages are
cached, and subsequent requests rely on the cache.

In 2021, Netlify introduced distributed persistent
rendering (DPR). The idea of DPR is to address the
shortcomings of ISR by providing atomic and im-
mutable deploys consistent with the notion of Jam-
stack. In ISR, the users may see stale content on the
first render by design, and this perceived shortcoming
has been removed in DPR (Williams, 2021).

To understand how different rendering techniques
relate to the client and the developer, Figure 2 sum-
marizes them in a graphical form.

2.1.6 Islands Architecture

As discussed by (Vepsäläinen et al., 2023), islands
architecture is a way to include dynamic portions to
a static page and define strategies for loading them.
Deferring loading allows pushing work performed by
JavaScript to the future; some of the work may not oc-
cur depending on usage. As the architecture was for-
malized in 2019 (Miller, 2020), there is not much ex-
perience in using it but at the same time solid adoption
of Astro framework leveraging the approach shows
increasing developer interest.

2.2 Evolution of Website Hosting

Similar to website rendering techniques, the ways to
host websites have evolved. The evolution of website
hosting comes together with rendering techniques as
they form a pair in the sense that hosting enables ren-
dering at different levels of technical infrastructure,
allowing new models for developing websites.

2.2.1 Rented Servers and Virtual Machines

At the beginning of the web, companies and individ-
uals had to maintain their servers. A whole hosting
market emerged to make it easier for people to host
their websites and applications. The early providers
offered space for static websites and offered dedi-
cated servers to rent. Later, virtual machines (VMs)
emerged as an abstraction, decoupling hosting from
hardware and enabling the sharing resources across
multiple users. A key enabler here was HTTP/1.1,
which provided the means to indicate the host to
which a request was directed, in addition to the IP.

2.2.2 Content Delivery Networks

With increasing demand and an acknowledgment that
parts of the served contents were static and rarely

Implications of Edge Computing for Static Site Generation

225



Figure 2: Workflow from a client to a developer. The workflow applies to traditional web and edge computing; the number of
web servers can be scaled.

changed, CDNs, such as Akamai, emerged (Nygren
et al., 2010). CDNs provided both the possibility of
distributing requests over a broader range of servers
to decrease individual server load and to respond to
requests from servers close to the client, thereby re-
ducing the latency experienced by the user (Triukose
et al., 2011).

2.2.3 Cloud and Serverless Computing

Cloud computing was a movement in offering com-
puting resources that abstracted away physical hard-
ware. One could still buy a virtual machine when buy-
ing resources from cloud computing providers. Still,
the location of the virtual machine might have been
unclear, and it was also possible that the physical ma-
chine running the virtual machine could change dy-
namically. The infrastructure built to support cloud
computing slowly led to the emergence of the server-
less computing paradigm, where the notion of start-
ing a server was abstracted away, and developers in-
stead defined entry points to applications. In server-
less computing, functions are triggered on demand
while having access to databases (Jonas et al., 2019).

2.2.4 Edge Computing

Edge computing represents the next step in how and
where computation occurs. Edge computing is a nat-
ural evolution over the CDN approach as instead of
only serving resources; it enables computation close
to the client on demand (Shi et al., 2016). The dis-
tributed approach leads to new technical challenges
as traditional ways of thinking about aspects, such
as databases, must be reconsidered to be compatible
with a global infrastructure. In general, edge comput-
ing shows promise in improving web page and con-

tent rendering performance (Zhu et al., 2013; Viitanen
et al., 2018), reinvigorating discussions on making in-
formed decisions on what content to serve to account
for network quality (Zhu et al., 2013).

2.2.5 Discussion

The latest developments in rendering techniques and
edge computing allow us to address the traditional
limitations of SSG and Jamstack while gaining their
benefits. Most importantly, edge computing provides
a way to intercept user requests before they reach the
file server. Alternatively, the edge network can work
as a server and return suitable payloads to the client
directly. Perhaps more interestingly, edge comput-
ing enables the development of hybrid websites where
some portions are static and others are dynamic. The
islands architecture is a good example of an approach
ready to leverage edge computing.

There are some concerns related to the lock-in po-
tential of edge platforms. At the same time, initia-
tives such as WinterCG provide hope of collaboration
to make JavaScript-based edge runtimes compatible
with each other. In the ideal case, developers should
be able to move edge workers from one platform to
another with minimal effort.

3 METHODOLOGY

To illustrate the implications of edge computing for
SSG, we benchmark a statically hosted site against
one served from an edge platform. We hypothesize
that their performance is close to each other, although
we expect the latter solution to come with a slight per-
formance cost depending on the use of caching. To

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

226



provide a third point of view, we examine the impact
of ISR as it is a technique between SSG and SSR.

3.1 Platform and Implementation

For the present study, we explored the efficacy of a
blog platform with the following constraints1:

1. There are three variants to compare: static site
generation (SSG), pure edge server-side rendering
(SSR), and edge server-side rendering with ISR,
which leverages Cloudflare KV for caching 2

2. All variants are implemented using TypeScript.

3. The static variant is generated using an ad hoc im-
plementation based on ES2015 templates for tem-
plating. The edge variants use the same logic.

4. The static variant is hosted on both Cloudflare
Pages and Netlify so it will be measured twice to
see the impact of the platform.

5. The edge variants are implemented using Cloud-
flare workers.

6. The site to test mimics a blog with a blog index
and individual pages.

7. Styling and images are kept out of scope to keep
the test case simple and to avoid loading costs.

8. All variants fetch content from a small server, re-
turning pseudorandom data for repeatability.

9. Each implementation had a fixed 100ms delay to
simulate the cost of server-side logic.

Cloudflare and Netlify platforms were chosen;
both offer edge computing facilities. Cloudflare is
a company that started as a CDN provider and has
then expanded to hosting and edge computing, which
are natural extensions to the CDN business. Cloud-
flare has developed solutions to cloud computing
problems, including approaches for eliminating cold
starts related to starting edge workers (Partovi, 2022).
Netlify, similar to Cloudflare, provides edge comput-
ing capabilities and a Git-connected way to deploy
applications on their platform (Netlify, 2022). For
the scope of the present work, Netlify is used only
as a static host. These platforms were chosen by their
relative popularity in the developer community, and
an expanded study should include more options to
benchmark.

1For replication and analysis of the implementation, the
source code for the project has been made available at https:
//github.com/bebraw/ssg-benchmark

2We have adapted Matteo Rigon’s implementation for
this purpose, and the original version can be found at https:
//reego.dev/blog/achieving-isr-on-cloudflare-workers.

3.2 Measurement of Performance

For performance measurements, we used Playwright
with Google Lighthouse. We created a test suite that
is run against the blog site variants, intended to cap-
ture any differences in performance. For the present
study, each blog site variant hosted a hundred blog
posts, and when measuring performance, we focused
on First Contentful Paint and Server Response Time.
In addition, we used Autocannon to capture rough
throughput as responses per second and latency for
each variant. Lighthouse and Autocannon have com-
monly used tools for assessing website performance,
and blogs are a common archetype in web applica-
tions.

Following (Heričko et al., 2021), who noted that
performing Lighthouse performance audits five times
reduces variability in results significantly in a reason-
able time, we executed the tests five times. This is
in line with the Lighthouse documentation that sug-
gests that measuring the median of five runs is twice
as stable as measuring a single run (Google, 2022).

For the Lighthouse tests, we measured the render-
ing performance of the blog index page (listing 100
blog links) and the performance of a blog page (show-
ing a blog entry), and we throttled the network using
mobile (1.6 Mbps down / 750 Kbps up) with 150 ms
latency. For the Autocannon tests, we measured the
performance of the blog index page. We wrote the test
to run for 30 seconds per variant to decrease the im-
pact of variability in connection quality. Before every
ISR variant-related test, the cache was emptied man-
ually to avoid skewing results.

3.3 Threats to Validity

The tests we perform are black-box by their nature.
In other words, we do not control and know anything
about the underlying infrastructure. There may be
significant differences at the infrastructure level and
technical implementations we are unaware of. How-
ever, the platforms we benchmark claim to implement
the edge paradigm and expose related APIs.

Another threat to validity has to do with the scope
of testing. Given we test from a single location, we do
not test the scalability of the approach from a global
perspective. Global scaling is considered one of the
selling points of the CDN approach, but it is out of
the scope of the study.

Our test project is synthetic and reflects only a
simple static use case. In practice, web applications
can be far more complex and dynamic by nature. The
test project provides a baseline for more dynamic tests
that build on top of static functionality.

Implications of Edge Computing for Static Site Generation

227



4 RESULTS

In the following subsections, we show Lighthouse and
Autocannon results separately.

4.1 Lighthouse Results

Lighthouse scores pages from zero to a hundred based
on the categories: performance, accessibility, best
practices, SEO, and PWA. While we focused on First
Contentful Paint and Server Response Time, we also
briefly studied the other Lighthouse metrics. For each
page tested, the performance, accessibility, and best
practices metrics received a full score of hundred.
SEO varied between 82 and 91, suggesting that the
implementation was missing a meta description and
the blog page implementation had too tiny tap targets
on mobile.

For each variant, the First Contentful Paint (FCP)
and Server Response Time (SRT) values have been
listed in Table 1. Time to Interactive (TTI) followed
FCP closely in this scenario. The values have been
rounded to the closest value and are provided in mil-
liseconds (ms). The first test run and the subsequent
four test runs are reported separately in the table.

4.2 Autocannon Results

For measuring the application’s throughput, we uti-
lized Autocannon, studying how the latency behaves
over the requests in the 30-second time, focusing on
the blog index page for each variant. Figure 3 out-
lines the latency per percentile, which shows sub-100
millisecond latencies for most requests. In the Fig-
ure, the 100 ms latency embedded in the blog code
to highlight additional server-side logic is visible in
the SSR option, as the option does not benefit from
caching. The differences would be negligible if we
omit the additional 100 ms latency.

In general, the Autocannon results are somewhat
consistent with the Lighthouse server response times,
although the Lighthouse server response times show
more variance, perhaps due to the fewer tests. In the
Autocannon test, we view that the 100% percentile
could be safely dropped as it represents individual
outliers – on average, over the thirty seconds, the Au-
tocannon tests yielded between 18,000 and 30,000 re-
sponses, which our single-computer test setup may
partially limit.

0 20 40 60 80 100

102

103

Percentile

T
im

e(
m

s)

Cloudflare SSR
Cloudflare ISR
Cloudflare SSG

Netlify

Figure 3: Autocannon latency per percentile over each vari-
ant over a thirty-second interval shown using a logarithmic
scale. Note the peak at the end. Also, note that ISR and
SSG follow each other as the cost of ISR is visible only on
the first render, and due to the number of runs it vanishes.

5 DISCUSSION

Given the measurements, we can see that the laten-
cies of edge platforms are low, especially for the SSG
and ISR cases. SSR is expected to come at a cost as
there is more processing. The difference became ap-
parent due to the artificial delay added to SSR, and in
practice, the delay could be even more visible due to
database requests and further work to perform per re-
quest. The benefit of ISR is that it allows us to avoid
build time work and shift it to runtime at the cost of
potentially stale cache for the client.

It would be possible to discard the entire ISR
cache during deployment to address the staleness
issue. Doing this would shift the implementation
closer to Netlify’s Distributed Persistent Rendering
(DPR) (Biilmann, 2021), which seeks to address the
shortcomings of ISR by providing atomic and im-
mutable deploys consistent with the idea of Jamstack.
Furthermore, assuming the ISR cache has a staleness
factor, such as time, related to it, the Stale While
Revalidate (SWR) technique could be applied to re-
turn stale results while generating a new page in the
background. In this case, the next request would yield
fresh results (Rigon, 2021).

5.1 When to Apply ISR?

Given there’s a cost related to SSG and especially to
building sites on content change, the question is when
it becomes beneficial to apply techniques such as ISR.
There is added complexity for small sites due to hav-
ing to use a framework or program on the edge. For

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

228



Table 1: Summarized measurement results (each result is given in ms). CF = Cloudflare, FCP = First Contentful Paint, SRT
= Server Response Time. The suffix index indicates the performance of the index page with 100 blog post links, while the
suffix post indicates the performance of an individual blog page with the blog post contents.

FCP SRT
Run 1 2-5 (med.) 2-5 (avg.) 1 2-5 (med.) 2-5 (avg.)
CF SSR index 1053 1028 1039 283 282 276
CF SSR post 1030 991 1053 280 263 322
CF ISR index 895 879 889 145 131 135
CF ISR post 879 880 876 166 159 148
CF SSG index 919 1026 987 160 272 227
CF SSG post 873 860 862 145 128 133
Netlify SSG index 963 880 924 241 140 186
Netlify SSG post 955 861 872 241 149 170

highly dynamic use cases where the content changes
often, the added complexity may be worth it, as oth-
erwise, you would have to build the site constantly.
For example, for social media platforms with rapidly
changing content, static site generation might not be
a feasible option – in such a case, one could rely on
hybrid rendering approaches, which were scoped out
from the present work. It could be argued that tech-
niques, such as incremental compilation, can signifi-
cantly decrease the cost of doing this.

5.2 No Cold Start Cost at Cloudflare

Interestingly, Cloudflare does not seem to have a cost
associated with a cold start, while Netlify has a cold
start penalty, as evidenced in the server response time
measurements. The lack of penalty is a good sign,
which means response times are more predictable for
developers. At the same time, we could observe, how-
ever, that an individual response might occasionally
take up to a second at the extreme outliers while, gen-
erally, response speeds were stable.

Our measurement server latencies (SR) generally
seem low and are within the 300 ms range. The rest of
the cost occurs on the browser side (FCP), implying
that development practices matter as developers can
optimize this cost. It is also good news for framework
authors, given they can use the findings to optimize
asset delivery.

5.3 Shift of JavaScript Frameworks
Towards the Edge

The latest generation of JavaScript frameworks, such
as Astro or Qwik, are compatible with the edge out of
the box and support the most popular edge platforms
as deployment targets while coming with static func-
tionality as well. They support hybrid rendering and
allow developers to choose what technique to use and
where. The results of the study support this movement

as there are clear benefits to SSG combined with edge
computing.

5.4 Potential of Edge-Powered Islands

Since the edge provides simple ways to encapsulate
logic within workers, developers can leverage islands
architecture on top of their static sites. Using an
appropriate strategy, the idea is to encapsulate dy-
namic functionality behind an edge worker and call
that within an island. To simplify the task, 11ty/is-
land implements multiple strategies while allowing
any framework to be used for rendering the islands,
making it a good companion for the edge. The idea
would be to leverage the template element of HTML
while pointing to the edge endpoint that implements
the island contents.

Eleventy, a popular SSG, implements edge sup-
port natively through shortcodes included in tem-
plates (Eleventy, 2023). The feature is experimen-
tal and works only with the Netlify Edge platform
(Eleventy, 2023). First-class support for the edge on
an SSG tells about the direction and the fact that tool
authors have recognized the potential of the edge. The
same is visible in solutions like Astro that allow host-
ing and processing on edge while supporting pure
SSG.

Cloudflare research team devised the fragments
architecture, and the target of this work was to al-
low building micro-frontends using Cloudflare Work-
ers(Darwin et al., 2022). The idea is consistent with
edge-powered islands and approaches it from a ven-
dor point of view while considering legacy and mixed
systems enabled by micro-frontends where teams can
develop using technologies they prefer. Cloudflare
researchers’ work implies a crossing point between
micro-frontends, islands, and edge computing, which
alone may be a direction worth exploring in further
study as a technological intersection.

Edge-powered islands come with challenges re-

Implications of Edge Computing for Static Site Generation

229



lated to a state shared by multiple islands. It is also
likely more suitable for cases with limited interac-
tivity than experiences where the whole page has to
be dynamic by definition. In other words, edge-
powered islands expand the types of applications that
can be developed on top of SSG but encounter limits
in highly dynamic use cases.

6 CONCLUSION

We started this paper by asking the question What
are the technical opportunities and challenges of edge
computing for static website hosting? and found out
the intersection expands the usefulness of SSG by al-
lowing more dynamic use cases to be covered on top
of it. There are clear opportunities in leveraging archi-
tectures like islands architecture on top of a static site.
The performance of edge platforms seems reasonable
enough in terms of latency, and techniques, like ISR,
address problems related to SSG build speed.

Our empirical evaluation demonstrated how SSG
and edge computing can work together to enable per-
formant websites and applications to be developed, in
part yielding evidence on the efficacy of mixing web
technologies as asked for in (Vepsäläinen and Vuori-
maa, 2022). That said, there are still open questions
related to techniques, their applicability in other en-
vironments, and their limitations. Furthermore, there
are questions related to the costs of the platforms in
comparison to the cloud and self-hosting. It’s undeni-
able developing a comparable infrastructure yourself
would be cost-prohibitive for many but at the same
time not all applications require the same capabilities.

On top of build and server infrastructure, there
are layers of techniques related to leveraging caching,
prefetching, and pushing work to the client. These
techniques are often orthogonal and may be used to
complement server-side optimizations. In terms of re-
search, it would be valuable to understand which op-
timizations can be done at each level how much can
they contribute towards the overall performance of a
web service, and at what cost.

There are also questions related to reproducing
the study results globally. Given edge infrastructure
operates on top of CDN, the assumption is that the
results should be fairly consistent across the globe
depending on CDN density. That starkly contrasts
traditional architecture where the server is in a spe-
cific location. Measuring the difference and repro-
ducing the study with a global scope would be worth-
while. To help with this goal, our implementation
and evaluation code are available on GitHub at https:
//github.com/bebraw/ssg-benchmark.

REFERENCES

Barker, D. (2017). The state of the headless cms market.
Berners-Lee, T., Cailliau, R., Groff, J.-F., and Pollermann,

B. (1992). World-wide web: the information universe.
Internet Research.

Biilmann, M. (2021). Distributed Persistent Rendering: a
new idea in the Jamstack to make deploys faster and
bring a wider range of use cases. — netlify.com. https:
//www.netlify.com/blog/2021/04/14/distributed-persi
stent-rendering-a-new-jamstack-approach-for-faste
r-builds/. [Accessed 17-Jan-2023].

Boiko, B. (2005). Content management bible. John Wiley
& Sons.

Camden, R. and Rinaldi, B. (2017). Working with Static
Sites: Bringing the Power of Simplicity to Modern
Sites. ” O’Reilly Media, Inc.”.

Cao, K., Liu, Y., Meng, G., and Sun, Q. (2020). An
overview on edge computing research. IEEE access,
8:85714–85728.

Carniato, R. (2021). Understanding transitional javascript
apps. [Accessed 29-Sep-2022].

Carvalho, G., Cabral, B., Pereira, V., and Bernardino,
J. (2021). Edge computing: current trends, re-
search challenges and future directions. Computing,
103:993–1023.

Darwin, P. B., Culveyhouse, J., and Minar, I. (2022). Cloud-
flare Workers and micro-frontends: made for one an-
other — blog.cloudflare.com. https://blog.cloudflare.c
om/better-micro-frontends/. [Accessed 15-Jun-2023].

Eleventy (2023). Edge — 11ty.dev. https://www.11ty.dev
/docs/plugins/edge/. [Accessed 11-May-2023].

Flanagan, D. and Novak, G. M. (1998). Javascript: The
definitive guide.

Google (2022). lighthouse/variability.md at main ·
GoogleChrome/lighthouse — github.com. https://gi
thub.com/GoogleChrome/lighthouse/blob/main/d
ocs/variability.md#run-lighthouse-multiple-times.
[Accessed 11-Oct-2022].

Heričko, T., Šumak, B., and Brdnik, S. (2021). To-
wards representative web performance measurements
with google lighthouse. In Proceedings of the 2021
7th Student Computer Science Research Conference,
page 39.

Hoang, T. (2020). Jamstack continuous integration and con-
tinuous deployment with circleci and netlify. Bach-
elor’s thesis, Metropolia University of Applied Sci-
ences.

Jamstack (2022). Static Site Generators - Top Open Source
SSGs — Jamstack. https://jamstack.org/generators.
[Accessed 29-Sep-2022].

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C.,
Khandelwal, A., Pu, Q., Shankar, V., Carreira, J.,
Krauth, K., Yadwadkar, N., et al. (2019). Cloud pro-
gramming simplified: A berkeley view on serverless
computing. arXiv preprint arXiv:1902.03383.

Kumar, S. (2019). A review on client-server based applica-
tions and research opportunity. International Journal
of Recent Scientific Research, 10(7):33857–3386.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

230



Lynn, T., Rosati, P., Lejeune, A., and Emeakaroha, V.
(2017). A preliminary review of enterprise serverless
cloud computing (function-as-a-service) platforms. In
2017 IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom), pages
162–169. IEEE.

Markovic, D., Scekic, M., Bucaioni, A., and Cicchetti, A.
(2022). Could jamstack be the future of web appli-
cations architecture? an empirical study. In Proceed-
ings of the 37th ACM/SIGAPP Symposium on Applied
Computing, pages 1872–1881.

Mikowski, M. and Powell, J. (2013). Single page web appli-
cations: JavaScript end-to-end. Simon and Schuster.

Miller, J. (2020). Islands architecture. [Accessed 29-Sep-
2022].

Netlify (2022). Hosting Web applications on netlify edge -
serverless web apps — netlify.com. https://www.ne
tlify.com/for/web-applications/. [Accessed 09-Oct-
2022].

Newson, K. (2017). Tools and workflows for collaborating
on static website projects. Code4Lib Journal, 38.

Nguyen, T. (2022). Jamstack: A modern solution for e-
commerce. Master’s thesis, Vaasan ammattikorkeak-
oulu.

Nygren, E., Sitaraman, R. K., and Sun, J. (2010). The aka-
mai network: a platform for high-performance inter-
net applications. ACM SIGOPS Operating Systems
Review, 44(3):2–19.

Partovi, A. (2022). Eliminating cold starts with cloudflare
workers. https://blog.cloudflare.com/eliminating
-cold-starts-with-cloudflare-workers/. [Accessed
09-Oct-2022].

Peltonen, S., Mezzalira, L., and Taibi, D. (2021). Mo-
tivations, benefits, and issues for adopting micro-
frontends: a multivocal literature review. Information
and Software Technology, 136:106571.

Petersen, H. (2016). From static and dynamic websites to
static site generators. University of Tartu, Institute of
Computer Science.

Rigon, M. (2021). Incremental Static Regeneration on
Cloudflare Workers — reego.dev — reego.dev. https://
reego.dev/blog/achieving-isr-on-cloudflare-workers.
[Accessed 02-Oct-2022].

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge
computing: Vision and challenges. IEEE internet of
things journal, 3(5):637–646.

SSG (2022). Static Site Generators — staticsitegenera-
tors.net. https://staticsitegenerators.net/. [Accessed
29-Sep-2022].

Triukose, S., Wen, Z., and Rabinovich, M. (2011). Mea-
suring a commercial content delivery network. In
Proceedings of the 20th international conference on
World wide web, pages 467–476.

Utomo, P. et al. (2020). Building serverless website on
github pages. In IOP Conference Series: Materials
Science and Engineering, volume 879. IOP Publish-
ing.

Vepsäläinen, J., Hellas, A., and Vuorimaa, P. (2023). The
rise of disappearing frameworks in web develop-

ment. In International Conference on Web Engineer-
ing, pages 319–326. Springer.

Vepsäläinen, J. and Vuorimaa, P. (2022). Bridging static
site generation with the dynamic web. In Web Engi-
neering: 22nd International Conference, ICWE 2022,
Bari, Italy, July 5–8, 2022, Proceedings, pages 437–
442. Springer.

Viitanen, M., Vanne, J., Hämäläinen, T. D., and Kulmala, A.
(2018). Low latency edge rendering scheme for inter-
active 360 degree virtual reality gaming. In 2018 IEEE
38th International Conference on Distributed Com-
puting Systems (ICDCS), pages 1557–1560. IEEE.

W3Techs (2022). W3Techs - extensive and reliable web
technology surveys. https://w3techs.com/. [Accessed
03-Oct-2022].

Williams, C. (2021). Distributed Persistent Rendering
(DPR) · Discussion #549 · jamstack/jamstack.org —
github.com. https://github.com/jamstack/jamstack.o
rg/discussions/549. [Accessed 17-Jan-2023].

Zhu, J., Chan, D. S., Prabhu, M. S., Natarajan, P., Hu, H.,
and Bonomi, F. (2013). Improving web sites perfor-
mance using edge servers in fog computing architec-
ture. In 2013 IEEE Seventh International Symposium
on Service-Oriented System Engineering, pages 320–
323. IEEE.

Implications of Edge Computing for Static Site Generation

231


