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Abstract: Over the years, the major advancements in the field of robotics have been enjoyed more by the mainstream 
population, e.g. in industrial and office settings, than by special groups of people such as the elderly or persons 
with impairments. Despite the advancement in various technological aspects such as artificial intelligence, 
robot mechanics, and sensors, domestic service robots are still far away from achieving autonomous 
functioning. One of the main reasons for this is the complex nature of the environment and the dynamic nature 
of the people living inside it. In our laboratory, we have started to address this issue with our minimal degrees 
of freedom MARIS robot, by upgrading it from a teleoperated robot to an autonomous robot that can operate 
in a robot-inclusive space that is purposely designed to adopt algorithms that are not very computationally 
intensive, and hardware architecture that is relatively simple. This paper discusses the implementation of 
suitable SLAM algorithms, to select the best method for mapping and localization of the MARIS robot in this 
robot-inclusive environment. The emphasis is on the development of low-complexity algorithms that can map 
the environment with lesser errors. The paper also discusses the 3D mapping, and the ROS based navigation 
stack implemented on the MARIS robot, using just a LiDAR, a Raspberry Pi processor, and DC motors with 
encoders as main hardware architecture, so as to keep low costs.

1 INTRODUCTION 

In recent years, service robots have found their way 
into public environments, such as in hospitals to 
deliver food and medicines to patients in quarantine 
(e.g. UBTECH robot) (Seidita et al., 2021), or in high 
end restaurants to deliver food to the customers while 
attaining a competitive advantage over their rivals 
(e.g. SERVI robot (SERVI robot, 2023)). But perhaps 
a more pressing requirement for these service robots 
is in home settings, to serve the elderly and impaired 
as their population is increasing globally. Some 
companies have put their efforts to bring service 
robots into home spaces (Polaris-Market-Research, 
2023), but these robots are not very effective in 
performing the daily household tasks to serve the 
elderly and impaired satisfactorily. A primary reason 
for this is the complex nature of the environment 
including the dynamic nature of the people living in 
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it, that typically demand the use of highly complex 
robot technologies (Sosa et al., 2018). High end 
complex robots such as ASIMO (ASIMO robot, 
2023) and SPOT (Boston Dynamics - Spot robot, 
2023) may in principle be capable of performing 
certain demanding household tasks, but these robots 
would not be widely affordable. Thus, a minimally 
complex robot that still has the functionalities to 
perform daily household tasks, in particular to 
address the specific needs of the elderly, could be 
applied to operate in a robot friendly home 
environment called a robot-inclusive space (RIS) 
(Sosa et al., 2018). Prior to the present work, in the 
first part of our Mobile Assistive Robot in an Inclusive 
Space (MARIS) project, a survey was conducted to 
understand the common needs of the elderly and 
impaired (Aquilina et al., 2019). In subsequent work, 
ten representative tasks were extracted to encapsulate 
these needs, namely: 1) preparing or bringing 
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medication; 2) heating a meal in a microwave oven; 
3) operating a telephone; 4) preparing a small snack; 
5) getting items from a refrigerator or cupboard;  
6) taking out the garbage; 7) preparing tea or coffee; 
8) arranging vegetables for chopping and/or cooking; 
9) drying and putting away dishes; and 10) setting and 
clearing a table (Naraharisetti et al., 2022). The RIS 
principles such as observability and accessibility will 
be considered in designing home environments that 
are suitable for mapping and navigation by the 
MARIS robot to perform the representative set of 
tasks. The objective of this research is to conduct a set 
of experiments to obtain quantitative evaluations that 
determine the robot’s complexity and to illustrate the 
fact that by increasing the inclusiveness of the home 
environment, the robot complexity can be reduced. 
To perform these representative tasks, a robot 
platform should have the capability to move around 
the environment while avoiding obstacles and 
choosing the shortest routes to reach the target.  

A first prototype of a mobile assistive robot 
(MARIS-I), that was intended to be used in a RIS, and 
that incorporates only teleoperated control, was 
introduced in (Aquilina et al., 2019). The present 
work discusses an autonomous system based upon the 
Simultaneous Localization and Mapping (SLAM) 
(Alsadik and Karam, 2021) approach implemented on 
the MARIS Omni directional three-wheeled robot 
base using a Light Detection and Ranging (LiDAR) 
sensor. The work emphasizes the implementation of 
autonomous robot functionalities to map the 
environment, to self-locate in that environment, and 
to navigate to a destination with minimal instructions 
using Robot Operating System (ROS)-based SLAM 
algorithms, and a ROS navigation stack that 
integrates with a camera or LiDAR.  

The rest of this paper is organized as follows: 
Section 2 explains the general methodology adopted 
in this paper. Section 3 describes the LiDAR-based 
SLAM approaches implemented on the MARIS 
robot. Section 4 discusses the vision-based SLAM 
implementations on the MARIS robot. Section 5 
describes the selection of the most suitable SLAM 
method. Section 6 describes the ROS-based 
navigation stack implemented on MARIS for 
autonomous navigation. Finally, section 7 
summarizes the work and briefly discusses the 
ongoing work to improve the RIS and to implement 
pick and place functionalities to the MARIS robot. 

2 GENERAL METHODOLOGY 

Based on the RIS principles of observability and 
  

accessibility (Elara et al., 2018), some general features 
in a one-floor home environment were mandated a 
priori. These were: no very bright objects, no dark 
colour wall paints, no sharp edges on the furniture, no 
rough floor surfaces, a less clustered environment, 
non-slippery floors, no uneven surfaces, non-
reflective floor surfaces, no rooms with heavy doors, 
and no glass or transparent environments.  

 
(a) 

 
(b) 

 
(c) 

Figure 1: RIS environments (a) RIS 1 with more objects in 
the environment, (b) RIS 2 with a hallway, (c) RIS 3 with 
hallways on both sides of the bedroom. 

For the LiDAR investigation, three different RIS 
environments were designed using Gazebo (Gazebo 
Building Editor, 2023) considering the general 
features with minor improvements from one another 
in terms of furniture placements, room location and 
hallway designs as shown in figure 1. 

RIS 1 environment consists of an enclosed kitchen 
separated from the hall by a wall. So, eight of the ten 
representative sets of tasks require the robot to move 
from the kitchen to the hall. RIS 2 environment has a 
hallway with a kitchen in the hall that allows the robot 
to move with ease. The blue shaded regions in figure 
1, represent the LiDAR rays that will be converted to 
2D maps.  Additionally, artificial landmarks such as 
familiar shapes in the environment help to map the 
environment precisely and help for better robot 
localization. RIS 3 environment has two hallways with 
a room at the center that allows the robot to move from 
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any direction to find the optimal path for 
navigation. The LiDAR investigation was carried out 
firstly in the ROS-RVIZ simulation environment 
(Kam et al., 2015). 

Both LiDAR and machine vision investigations 
were then carried out experimentally in the Robotic 
Systems Laboratory (RSL) of the Department of 
Mechanical Engineering of the University of Malta. In 
order to determine the least complex mapping suitable 
for our MARIS robot to perform the representative set 
of tasks, the approach shown in figure 2 was adopted, 
which will be further elaborated in the rest of the 
paper. 

 
Figure 2: Approach to design a less complex SLAM to 
navigate the robot. 

3 LiDAR-BASED SLAM 
APPROACH 

3.1 Overview 

In order to conform to our objectives to introduce a 
less complex and more economically accessible 
autonomous robot in the RIS home environments, we 
implemented LiDAR based SLAM using a relatively 
low cost 2-D RPLiDAR from SLAMTEC 
(SLAMTEC RPLiDAR, 2023). The SLAMTEC 2-D 
RPLiDAR emits and receives the reflected laser beam 
and measures the time the beam takes to return. This 
process is repeated for more than 8000 times per 

second, producing a map of the surroundings with a 
desirable point density. This method was investigated 
only after considering its quick and precise solution to 
create maps. The GMapping (Revanth et al., 2020) 
and Hector LiDAR-based SLAM (Sat t et al., 2020) 
algorithms were investigated and implemented on the 
MARIS Omni directional three-wheeled holonomic 
base, which is equipped with DC motors with 
encoders and control hardware that runs on the 
Arduino platform. To implement a portable high-level 
control system, a widely used ROS software 
framework was installed on a Raspberry Pi 4 single-
board computer running the Ubuntu operating system. 
ROS-based SLAM techniques compatible with the 
SLAMTEC LiDAR software development kit 
provided a way to map the surroundings and localize 
the robot. 

3.2 GMapping 

GMapping is based on a Rao-Blackwellized Particle 
filer (RBPF) (Revanth et al., 2020; Sarkka et al., 2007) 
SLAM approach that is widely used for robot 
navigation, and uses a particle filter in which each 
particle carries an individual map of the environment. 
GMapping considers the movement of the robot and 
compares it with the recent environment data to 
decrease the inaccuracies of the robot pose. The 
parameters considered in the research are kernel size, 
linear update, resample threshold and the number of 
particles that combinedly determine the accuracy of 
the map. The inputs to the GMapping SLAM 
algorithm are the robot transform, laser data and 
odometry data that give the information of the robot 
pose, and generate the 2D occupancy grid or map that 
displays the obstacles and free spaces. The obtained 
map can be saved using the map server package of 
ROS to make the robot localize and navigate in the 
map. Initially, the GMapping SLAM algorithm was 
implemented. The laser inputs for GMapping SLAM 
were obtained from the SLAMTEC 2D LiDAR 
connected to Raspberry Pi. The odometry data that are 
used to estimate the robot position and orientation 
were obtained from the encoders of the three DC 
motors on the MARIS base, by determining the speed 
and distance travelled by MARIS. 

3.3 Hector SLAM 

Hector SLAM on the other hand uses a scan matching 
algorithm based on the Gauss-Newton approach 
(Cheng et al., 2021) that can be used without odometry 
data. The high update rate and accuracy of modern 
LiDAR hardware make the scan matching algorithm 
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sufficient for a robot to achieve accurate poses. The 
scan matching algorithm matches the current scan to 
the previous scan to determine the robot movement. 
The parameters of the Hector SLAM including map 
size, map update distance threshold, map update angle 
threshold, laser minimum and maximum distance, can 
be modified to obtain a better map of the environment. 
The choice of these parameters makes the SLAM 
adaptable to the specific environment, however 
changing the parameters adds to the computational 
cost of the algorithm. The speed of the algorithm and 
frequency of data logging have an impact on map 
accuracies. The parameters under each SLAM 
algorithm mentioned before were modified uniformly 
until a better map was reached.  This kind of 
adaptations helped us to determine the robot 
complexity and quantify the RIS environments in 
terms of inclusivity. Figure 3 shows the results of the 
GMapping and Hector SLAM algorithms 
implemented on the three RIS environments. For 
instance, under predefined SLAM algorithm 
parameters, higher complex environments will 
generate distorted and less accurate maps than lesser 
complex environments. 

Enviro-
nment 

GMapping Hector SLAM 

Enviro-
nment 

1 

 

 

 

Enviro-
nment 

2 

 

  

 

Enviro-
nment 

3 

 

 

 

Figure 3: GMapping and Hector SLAM implemented on 
RIS environments 1,2,3. 

The second and third columns of Table 1 compare 
the GMapping and Hector SLAM algorithms for the 
three RIS environments combinedly, based on their 
average values. For instance, the map error of 
GMapping for the three RIS environments 1, 2, and 3 

are 2cm, 2.4cm, and 2.1cm respectively. Their average 
((2+2.4+2.1)/(3) = 2.17cm) is taken as a measure to 
evaluate the accuracy of the SLAM algorithms. Other 
factors such as noise and features detected in the maps 
were assigned a value based on a widely followed 5-
point Likert scale (Allen and Seaman, 2007). 

Table 1: Comparison of factors of GMapping, Hector, 
Vision and LiDAR fusion SLAM. 

Factors GMapping Hector Vision and 
LiDAR fusion 

mapping 
Map accuracy 

(average across 
RIS 1, 2, 3) 

2.17 cm 
error 

2.3 cm error 0.5 cm error 

Time to build a 
map 

18 
seconds 

10 seconds 16 seconds 

Noise of the 
environment 

3 (Likert 
scale) 

2 (Likert 
scale) 

3 (Likert 
scale) 

Number of 
mapping 
parameter 
changes 

4 5 No changes, 
but under 

uncluttered 
and amiable 

lighting      
conditions 

Computational 
load 

   

a) Memory 
in % 

18 6 42 

b) CPU load 
in % 

89 16 98 

Features detected 
in the map 

3 (Likert 
scale) 

4 (Likert 
scale) 

5(Likert 
scale) 

4 VISION-BASED SLAM 
IMPLEMENTATIONS 

To move a robot autonomously to some desired 
location, the spatial representation of the environment 
should be known to the robot. The robot needs to have 
a sensor or sensors that save the data of the 
environment to enable robot localization. For the 
autonomous robot (MARIS-II), this mapping refers to 
the construction of the spatial environment to help the 
robot perceive its surroundings and localize itself, and 
to navigate accordingly. This SLAM process would, 
in our case, involve continuously fusing onboard 
sensor data from the LiDAR and/or the cameras and 
from wheel encoders. With the recent advancements 
in vision-based technologies, camera-based vision-
SLAM is gaining importance because it provides 3D 
information of the environment. However, these 
systems are mostly used in an indoor environment as 
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the camera range is limited and the machine vision is 
sensitive to variations in light (Debeunne and Vivet, 
2020).  

As the objective is to adopt a suitable algorithm 
with no compromise in performing the representative 
set of tasks or subtasks, we have also implemented 
and evaluated the vision-based SLAM. The vision-
based SLAM uses an Intel RealSense 435i depth 
camera (Intel RealSense 435i depth camera, 2023) 
that runs on Ubuntu, an open source Linux 
distribution installed on a Raspberry Pi single board 
computer. The resulting pure 3D map of the 
environment of the laboratory (Figure 4 (a)), which is 
9.15x5.73m in size is shown in figure 4 (b). The pure 
3D map algorithm utilized only the camera to 
perceive the environment, but we will need a map that 
contains floor as well as static and dynamic obstacles 
for autonomous navigation. So, we have implemented 
vision and LiDAR fusion-based mapping on MARIS. 

 
(a) 

 
(b) 

Figure 4: Image of the RSL (a) actual RSL (b) pure 3D map 
of RSL. 

The pure 3D map is fused with the LiDAR data 
using the Real-Time Appearance-Based Mapping 
algorithm (Labbé and Michaud, 2019) to obtain the 
floor map thus giving a perception of the objects 
around as well as the obstacles in its path (Figure 5). 
When the RSL has a cluttered environment with 
objects spreading unevenly around, the vision system 
has a lot of noise as shown in figure 5(a). But after re-
arranging the chairs and objects around properly the 
map shows minimal noise as in figure 5(b). The inbuilt 
Inertial Measurement Unit (IMU) (Ahmad et al., 
2013) sensor in the RealSense camera also achieves 
the tasks of localizing the robot in an environment, but 
with the progress in the mapping, and the continuous 
localization of the robot in a complex environment, the 
usage of the central processing unit (CPU) of the robot 
will also increase, since feature complexity and 

processing time are correlated. The robustness of the 
CPU is questioned in this situation as real-time 
applications demand graphical processing units 
(GPU) rather than traditional processors. Since the 
Raspberry Pi 4, used in our research to connect to the 
RealSense camera, has a CPU that may not be 
sufficient to perform Realtime SLAM, external GPUs 
would have to be connected. Other ways to 
compensate for the load on the CPU is by using fewer, 
and similar, objects in the environment to facilitate 
their detection by the systems (Kamarudin et al., 
2014). Furthermore, the challenge that limits the 
performance of Visual-based SLAM is due to the 
disruptions in the lighting conditions that introduce 
inaccuracies. The fourth column of Table 1 displays 
the factors of vision-based mapping. 

 
(a) 

 
(b) 

Figure 5: Vision and LiDAR fusion mapping of the RSL: 
(a) in a cluttered RSL environment, (b) in a properly 
arranged RSL environment. 

5 SELECTION OF THE SLAM 
METHOD 

After studying the performance of the three SLAM 
algorithms as implemented separately on the MARIS 
robot, a selection needed to be made as indicated in 
Figure 2. Table 2 summarizes the main features of the 
three methods as extracted from Table 1. Feature 1, 
less intensive computations, refers to performing 
SLAM with minimally sophisticated processing and 
memory storage devices. Feature 2, economical in 
terms of price, refers to performing SLAM with 
comparatively cheaper equipment. Feature 3, less 
prone to distortions, refers to SLAM map with 
minimal unevenness. Feature 4, modification to the 
environment to facilitate SLAM (both LiDAR and 
Vision based) refers to efforts such as ensuring smooth  
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Table 2: Comparison of SLAM methods for the MARIS 
robot. 

Desired Features 
SLAM Algorithms 

Vision 
based 

GMapp
ing Hector 

1. Less intensive 
computations No No Yes 

2. Economical in 
terms of price No Yes Yes 

3. Less prone to 
distortions No Yes No 

4. Require less 
changes in the 
environment to 
facilitate SLAM 

No Yes Yes 

surfaces and maintaining favourable illumination 
(Naraharisetti et al., 2022). 

These features, including the computational load 
and other factors are shown in Table 2, based on which 
the Hector SLAM as investigated and tested on our 
MARIS robot will be used for autonomous navigation. 
Even though GMapping localizes the robot better than 
Hector SLAM, the latter is sufficient and proved to be 
reliable under restricted speed and angular velocities 
of the robot in RIS environments 1,2, and 3.  

Hector SLAM based experiments were also 
performed in our RSL to evaluate the robustness of the 
algorithm (Figure 6). The environment of the lab with 
8 office chairs, tables with almost 24 supports and 
wires under the tables resemble a cluttered 
environment. The experiments helped us to 
understand and tune our robot to navigate better in the 
RIS environments. The parameters that were tuned, 
shown in Table 3, were considered to adjust the robot 
complexity to serve in any RIS environments 
considering proper implementation of RIS principles. 

 
Figure 6: Hector SLAM map of our RSL under fixed SLAM 
parameters.  

6 ROS-BASED ROBOT 
NAVIGATION 

Robot navigation involves planning routes and 
moving the robot safely and conveniently through an  

Table 3: Tuned mapping parameters of the robot after 
experiments. 

Parameters Reason Values 
Speed of the 

robot 
Robot moving at high 
speed distorts the map 

0.3m/s 

Angular 
velocity 

Higher velocity will 
distort map 

1 rad/s 

Map update 
distance 
threshold 

The robot has to travel 
to have an angular 

change 

0.2 m 

Map update 
angle threshold 

The robot has to have 
an angular change 

0.2 rad 

economically beneficial route from one point to 
another. In order to implement autonomous navigation 
on the MARIS robot by integrating the LiDAR and 
other hardware architecture, an open source ROS 
navigation stack (Setup and configuration of 
Navigation stack, 2023) shown in figure 7 was chosen.  

 
Figure 7: ROS Navigation stack architecture implemented 
on MARIS.  

The ROS navigation stack requires the Adaptive 
Monte Carlo Localization (AMCL) ROS nodes to 
localize the robot moving in a 2D space, and AMCL 
takes the data from the laser scans to determine the 
pose of the robot (Matias et al., 2015). Sensor 
transforms refers to publishing the stream of LiDAR 
data over ROS, and the odometry information 
(Publishing Odometry information over ROS, 2023) 
can be published using the transform (“tf”) 
(transform-tf, 2023), which tracks the coordinate 
frames and transforms points and vectors between the 
coordinate frames. The map server node (Map_server, 
2023) of ROS gives the map data to the ROS move 
base package (Move_base package, 2023) that links 
global and local planners to perform the navigation 
task. The global cost map and the local cost map (setup 
and configuration of Navigation stack, 2023) store the 
information of the obstacles to create a long-term plan 
to navigate the robot without colliding with the 
obstacles. The base controller accepts the command 
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velocity topic from the moving base, which gives the 
robot linear and angular velocities at that instant and 
converts them to individual wheel velocities.  

The ROS navigation stack for a differential (two-
wheeled) robot is supported with the required 
information on its website. However, our MARIS 
robot uses an omni directional three-wheeled 
architecture, which is not readily supported in the 
stack. So, changes in parameters such as the Odom 
model type from “differential” to “omni-corrected” in 
the AMCL launch file in ROS; changes in 
odom_alpha1,2,3,4 that determine the expected noise 
in the odometry rotation and translation estimate from 
rotational and translational components of robot 
motion; and the inclusion of a new odom_alpha5 that 
determines the translation-related noise parameters 
that are used to identify only the tendency of the robot 
to translate in a perpendicular direction of travel 
etc.,(AMCL parameters, 2023) were made so as to 
implement a new navigation stack for the omni 
directional three wheeled MARIS robot shown in 
figure 8 (a).  

Finally, as Hector SLAM is selected instead of 
GMapping and vision-based SLAM, we have used the 
pose obtained from the Hector mapping and supplied 
the odometry message to the AMCL of ROS 
navigation stack implemented on the MARIS robot. 
This navigation is computationally low and accurate 
as the 2D-RP LiDAR is used to obtain laser scan 
matching. The navigation stack determines the 
presence of obstacles in the environment and avoids 
them. For instance, the four dark circles on the map 
labelled with a red circle shown in figure 8 (b) are the 
four supports of a table which, together with the 
navigation stack, supply the local and global map to 
the robot to move to the required destination. 

 
(a) (b) 

Figure 8: ROS based Navigation stack of MARIS, (a) 
hardware, (b) global map. 

7 CONCLUSIONS 
In order to perform the representative set of tasks in a 
one-floor home environment, the MARIS robot 
requires mobility features such as obstacle avoidance 
and collision free navigation. One of the objectives of 

the MARIS research project is to design a minimally 
complex robot that is able to perform the tasks in a 
robot-inclusive environment, and as such this research 
has involved conducting an experimental study to 
determine which SLAM algorithm to best adopt in the 
MARIS robot. 

Initially, three RIS environments were considered 
to implement and evaluate two LiDAR-based SLAM 
algorithms, GMapping and Hector SLAM. The 
computational intensity and map quality were 
compared to select one SLAM that is most suitable for 
these RIS environments. Hector SLAM was found to 
be the more suitable.  

Later a vision-based SLAM was also investigated 
and implemented, as this can generate a 3D perception 
or map of the environment. But with the increase in 
the quality of the map, the computational intensity also 
increases, which violates our objective of designing a 
minimal complex robot. So, Hector SLAM was the 
chosen algorithm. We thus tested the MARIS robot in 
our RSL environment to tune and establish the optimal 
Hector SLAM mapping parameters for our RIS 
environments. In this work, it has been shown that 
when the environment has been set up to 
accommodate a robot, i.e. as a RIS, then LiDAR-based 
Hector SLAM can match the functionality of the much 
more computationally demanding LiDAR-based 
GMapping or Visual-based SLAM methods. Based on 
the selected Hector SLAM method with tuned 
parameters, a new ROS based navigation stack was 
implemented for the MARIS robot, for further 
experimentation and development.  

The mapping of the environment was found to 
have inaccuracies if the environment is featureless or 
has limited features, and there was also some 
divergence from the real map because of the 
accumulated inaccuracies. Thus, in a RIS environment 
that facilitates the use of the robot, there should be 
features that are recognizable. However, such features 
may create a cluttered environment that may further 
cause problems for the robot to navigate, and thus a 
compromise must be found between these two 
conflicting aspects. Ongoing work involves the 
development of a system to optimize the number of 
features that an environment should have to obtain a 
better mapping that enables the robot to navigate with 
fewer inaccuracies. The environment should obey 
basic RIS principles, such as observability,  
 

accessibility and manipulability. 
For future developments, the MARIS robot is 

envisioned to also have autonomous pick and place 
capabilities using existing computer vision 
technologies that can detect and track the object. 
Since the MARIS robot is intended to serve the 

MARIS 
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elderly and the impaired in performing household 
tasks, it is also intended to implement voice-based 
manipulation capabilities to provide the robot with 
wider functionality. 
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