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Abstract: In this paper we present an approach to adapt the parameters of controllers during operation. It is targeted
at industrial adoption, relying on controllers of the same type currently in use, but adjusting their gains at
run-time based on varying system and / or environment conditions. As the key contribution of this paper we
present a method to discover what condition variations warrant a control adaptation for cases where this is
not known up front. The goal is not to achieve a better performance than other adaptive control schemes, but
to provide a different method of designing or deciding how to build adaptation logic. To achieve this we use
data-driven methods to, in an offline preprocessing step: (I) derive features that quantify system / environment
variations, (II) optimize the control parameters for the distinct feature values, (III) search for clusters in the
multi-dimensional space of both these features and control parameters, looking for sets of similar features as
well as control parameters to be used. Once a set of clusters is defined, an online adaptive controller is then
synthesized by (I) building a classifier to determine which cluster the currently observed conditions belong
to, and (II) selecting the optimal control parameters for that cluster. This paper provides a first illustration of
the method, without theoretical analysis, on an example case of energy management for a hybrid electrical
vehicle, for which an Equivalent Consumption Minimization Strategy controller is built whose parameters are
adjusted as the detected cluster changes. The results show an increase in energy-efficiency of the adaptive
control method over the non-adaptive one in a variety of scenarios.

1 INTRODUCTION

The industrial need for reduced energy consumption,
increased throughput and increased production ac-
curacy leads to ever-increasing performance require-
ments for mechatronic systems and their controllers.
The historical approach of designing a single fixed
controller that is robust against variability of system
dynamics or changes in the system environment will
result in sub-optimal performance to achieve the re-
quired robustness (e.g., plane fuel consumption re-
duces mass so dynamics change, hybrid electric ve-
hicle driving in different traffic scenarios). There-
fore, adaptive control techniques that adjust control
actions when the system and / or environment change
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have gained widespread attention in academia. Moti-
vated by the performance benefits, these approaches
are even cautiously being adopted by industry where
they were typically not preferred before due to their
complexity, difficult design and tuning, as well as, the
lack of industrial understanding and trust in more ad-
vanced control methods in general.

A survey of literature reveals a wide array of such
adaptive control techniques originating from classic
model-based control theory: MRAC (Kreisselmeier
and Anderson, 1986), approximate direct program-
ming (Powell, 2007), adaptive ECMS (Musardo
et al., 2005), gain scheduling (Leith and Leithead,
2000), adaptive pole placement (Elliott et al., 1985),
dual controllers (Åström and Wittenmark, 2013),
extremum-seeking controllers (Ariyur and Krstic,
2003), iterative learning controllers (Wang et al.,
2009), MIAC (Schreier, 2012), fuzzy adaptive con-
trollers (Yang et al., 2021), any many more. In the
past decade, advances in artificial intelligence (AI)
and machine learning (ML) are pushing data-based
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adaptive control techniques such as the many variants
of Reinforcement Learning (RL) (Khan et al., 2012)
(e.g., Q-learning (Watkins and Dayan, 1992), SARSA
(Rummery and Niranjan, 1994), Monte-Carlo (Sut-
ton and Barto, 2018)) to the forefront. More re-
cently combinations of model-based and data-based
approaches are begin developed e.g., model-based
RL (Berkenkamp et al., 2017) and residual RL (Jo-
hannink et al., 2019) (Staessens et al., 2022). For
completeness, advanced model-based approaches like
Model Predictive Control (MPC) or explicit MPC are
also able adapt to changes, but these are not consid-
ered in this work, since they require good predictions
of the upcoming events or changes in the conditions,
in order to work well, which is not possible for the
considered case of a vehicle driving through various
traffic conditions.

As can be seen in these references, this diverse set
of adaptive control techniques has been applied to a
multitude of engineering fields: robotics, aerospace,
automotive, process control and ranging from aca-
demic demonstrators to industrial cases. Under this
last category of combined model-based and data-
driven methods the proposed approach of this paper
fits best, where we believe our method is a worth-
while extension to the available techniques, because
it is straightforward to implement and control actions
can be inspected a-priori and understood easily, there-
fore making it especially suitable for industrial appli-
cations where these topics matter most.

The approach described in this work relies on the
following assumptions: (I) The system under con-
sideration is a complex non-linear parameter-varying
system that operates in a varying environment. (II)
It is controlled by a parametric controller (e.g., PID).
(III) The optimal control parameter values change as
a function of the system and / or environment, and can
be found by means of optimization.

For such cases we propose to:
• Simulate or experimentally collect a broad set of

system and environment conditions, and for each
find the optimal control parameter values.

• Look for clusters (with K-means) (Jain and
Dubes, 1988)) where both the optimal control val-
ues and the system / environment features are sim-
ilar. These clusters then indicate sets of system /
environment conditions, as well as the most ap-
propriate control parameter values to be used for
them.

• To get to an adaptive controller that performs on-
line adaptation of the control parameters we will
also train a classifier to identify the system / en-
vironment conditions from measurements. Dur-
ing operation / run-time, this classifier indicates

in which cluster the system / environment is, so
that an adaptive controller can be formed by us-
ing this information to select the optimal control
parameter values corresponding to this cluster.

Note that the work presented in this paper builds
upon previous work, where we already built an adap-
tive controller for the same use case as in this paper
(Venkatesan et al., 2021): the key improvement here
is the usage of data-driven clustering methods to de-
termine for what conditions adaptations are most ben-
eficial, as opposed to the engineering insight based
division of conditions that was performed in the pre-
vious work.

To demonstrate the proposed approach a Hybrid
Electric Vehicle (HEV) use case is used. In an HEV,
the energy management controller decides how much
power is requested from the internal combustion en-
gine (ICE) and how much from the electromotor
(EM). At a given vehicle speed, it looks at the de-
sired wheel torque and considers how to best achieve
it: supplying all power with the ICE, only using the
EM, or a mix of the two. This is often called the HEV
power-split. Ideally, the controller selects the power-
split to maximize the fuel-efficiency of the vehicle.
To demonstrate our control approach, we will control
the power split using a widely used parametric Equiv-
alent Consumption Minimization Strategy (ECMS)
controller, see (De Jager et al., 2013; Gao et al., 2017;
Rezaei et al., 2017), knowing that the optimal ECMS
control parameter values will vary for different driv-
ing cycles. This ECMS will be augmented towards
an adaptive ECMS (A-ECMS) using the method de-
scribed before. Note that we are aware of other meth-
ods to improve an ECMS towards an A-ECMS (e.g.,
(Chasse et al., 2010; Onori and Serrao, 2011; Hus-
sain et al., 2019; Frank et al., 2017)), but the goal
of this case is purely demonstration of our approach.
Detailed comparison to other A-ECMS approaches is
for now left to future work.

The paper makes the following contributions:

• The usage of clustering to group similar control
parameters values to features derived from the
varying system / environment is detailed in Sec-
tion 2, and an example is provided on the use-case
in Section 4.

• The training of a classifier to detect cluster mem-
bership at run-time to adjust control parameters
online is detailed in Section 2.

• The integration of the cluster classifier with
the original parameter controller resulting in the
adaptive parametric controller can also be found
in Section 2.
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• The validation of our adaptive controller approach
on a simulated HEV use case (detailed in Sec-
tion 3) can be found in Section 5.

2 PROPOSED ADAPTIVE
CONTROL APPROACH

In this paper we follow an approach to develop con-
trollers that adapt when the system dynamics, op-
erating conditions and / or the system environment
change. We aim for industrial adoption so to that end,
we restrict ourselves to an adaptive control scheme in
which classical non-adaptive controllers are used, but
a layer is added on top to adapt the parameter values
of these non-adaptive controllers to come to an adap-
tive control scheme. To keep things simple to analyze
for industrial use, we restrict ourselves in the adap-
tation logic layer to choosing between a finite num-
ber of conditions, each with its specific set of control
parameter values, and we choose which of the sets
to select. We furthermore aim to find conditions for
which switching between them does not occur very
frequently, but instead once a condition is selected
the control values can remain fixed to the values of
this condition for a substantial amount of control sam-
ples to prevent Zeno-like switching behavior. Exten-
sions towards a framework wherein adaption is not
restricted to the discrete selections but is done con-
tinuously, and as a consequence, also much more fre-
quently (down to every control sample) are possible,
but omitted in this paper to increase the ease of analy-
sis and the confidence we expect industry would have
in the resulting controllers.

Definition 1. In the remainder of this work the term
’context’ is used to describe the current dynamics, op-
erating conditions and / or the system environment at
which the system is operating. We assume each spe-
cific context can be described by a set of feature val-
ues f that can be measured or estimated at run-time.
For an HEV possible context example features could
be: the change in vehicle mass, the mean slope of the
road over a time window and the ambient air temper-
ature.

To obtain the adaptive controller describe above,
the following steps are taken, as shown also in Fig-
ure 1

1. Simulate or experimentally gather a data-set with
a variety of contexts, described by the duty cy-
cle and all sensor signals and a set of features f
derived from them, along with the control param-
eter values popt( f ) that are optimal for each of the
given contexts.

Figure 1: Workflow for constructing the classifier.

2. Use data-based clustering methods to form
Nclusters groups with similar context features f
as well as similar optimal control parameters
popt( f ).

3. Re-compute the optimal control parameters, but
now per cluster to get the cluster-optimal control
parameters popt,i, where i ∈ [1, . . . ,Nclusters].

4. Train a classifier to use context features f col-
lected at run-time to detect cluster membership
during operation.

5. Assemble the adaptive controller by combining
the outcome of the previous 2 bullets.

Firstly, we need data to apply the clustering meth-
ods to. This can be collected in the field, or, like in this
paper, generated in a simulation environment. This
way, we flexibly build a large data-set which contains
variable contexts. On top of that, we also calculate the
optimal control parameters for every sample in this
dataset, as will be described in the next section.

In the second step, this data is then used for the
clustering. This step, like the first, is still done offline,
before deployment. In this step, we look for clusters
that have similar values for both optimal control pa-
rameters and context features. This can be done in a
large space, spanning multiple possible context fea-
tures, with the aim of finding a small set of clusters
with similar context features for which also the con-
trol parameters are similar. As a consequence, when-
ever a context is seen with similar context features
to those of a given cluster, a good choice would be
to also choose the control values that were present in
that specific cluster.

Remark 1. Ideally we would also include sensitivity
of the performance to changes in the control param-
eters. Now we look for points with similar context
features and similar control values, but we don’t ac-
count for how sensitive changes in control values are.
However, since this is harder to do, this was not (yet)
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done in this work, but the authors think it can be an
interesting avenue for future research.

In the third step, a single set of control parame-
ter values is optimized for each cluster from step two.
This does not need to be equal to the cluster mean val-
ues, but the values will of course be similar in value
to those of the points in the cluster.

In the fourth step we build an estimation algorithm
that can, online, i.e., during normal operation, detect
which of the clusters from the previous step most re-
sembles the current context the system will be oper-
ating in. This classifier importantly relies only on the
features, and not on the control values.

In the fifth step finally, a simple adaptive control
scheme is set up, that uses the classifier to estimate the
cluster membership, and then selects the controller
parameters corresponding to the estimated cluster.

More details on these steps and the workflow will
be given in Section 4, when they are applied to the
considered HEV use case, which is first described in
Section 3.

3 HYBRID ELECTRICAL
VEHICLE USE-CASE

As stated in the introduction, the energy management
controller decides the power-split. It looks at the de-
sired wheel torque, and decides the mix of torques
from the ICE and the EM to match it. Ideally, the
controller does so in a manner such that over the long
term, the efficiency is maximized.

Figure 2: Layout of the HEV: consisting of an engine (ICE)
and an electromotor (EM).

3.1 Model of the HEV

The considered vehicle is a series-parallel-hybrid ve-
hicle with an EM and an ICE driving a 9 speed trans-
mission, as shown in Figure 2.

We model the HEV using a backwards-facing
quasi-static vehicle model: the drive cycle is the in-
put, defined by vehicle velocity v(t), and from that we
calculate the corresponding torque T (t) at the wheels
calculated with an inertia and friction model. The

controller chooses the power-split between the torque
delivered by the ICE: TICE,wheels(t), and that by the
EM / battery: Tbat,wheels(t), such that

T (t) = TICE,wheels(t)+Tbat,wheels(t), (1)

and equivalently

P(t) = PICE,wheels(t)+Pbat,wheels(t). (2)

With these, the model then calculates the torques
at the ICE and the EM, based on drive ratios ix and
drivetrain efficiencies ηwheels to x, where iICE for the
ICE also depends on the selected gear (which for con-
venience is currently chosen with standard methods
not relying on ECMS):

TICE(t) =
TICE,wheels(t)

iICE · ηwheels to ICE
, (3)

TEM(t) =
Tbat,wheels(t)

iEM · ηwheels to EM
. (4)

From TICE(t) we can then calculate the fuel rate
ṁfuel(t) of the ICE, according to:

ṁfuel(t) = f
(
TICE(t),ωICE(t)

)
, (5)

wherein ωICE(t) = iICE ·v(t), and where f () is an em-
pirical map from which we extract the fuel rate using
2D-interpolation.

Similarly, we can calculate the change in battery
state-of-charge according to

˙SOC(t) = h
(
TEM(t),ωEM(t)

)
, (6)

wherein ωEM(t) = iEM · v(t), and where to calculate
h() we again use an empirical 2D efficiency map of
the EM, coupled with a simple battery model with a
loss resistance.

The maps f () and h() and the model parameters
used are those of a custom, modified version of a non-
hybrid Range Rover Evoque, which was made into a
hybrid-through-the-road using two in-wheel electro-
motors added at the rear wheels, as was described in
(Venkatesan et al., 2021). The resulting vehicle model
is made in MATLAB model as described in (Goos
et al., 2017).

In the remainder we will simplify notation. Since
we will always be looking at powersplits at the wheel
level, we will leave out the distinction between values
at the wheel level and those at the ICE or EM/bat-
tery. We will redefine PICE(t) and Pbat(t) to indicate
the powers from both sources at the wheels, requir-
ing that P(t) = PICE(t)+Pbat(t). We will furthermore
leave out many dependencies from the notation, so
that we can denote the fuel rate as ṁfuel

(
PICE(t)

)
.
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3.2 ECMS Control Algorithm

As denoted previously, in this paper we consider
an ECMS controller. This choice is made since it
matches our requirements, i.e., we can make it adap-
tive by tuning its gains. Furthermore, it is a control
technique that is simple enough to facilitate industrial
adoption, and last, it is a well-known and often-used
approach, see e.g., (De Jager et al., 2013; Gao et al.,
2017; Rezaei et al., 2017).

Rooted in optimal control, ECMS is a class of sub-
optimal control methods that aims to approximate a
fully optimal solution. The power split is calculated
at each time step, without future predictions, consid-
ering only the current speed and desired load. The
calculation minimizes the expected equivalent con-
sumption, which is a combination of the modeled fuel
usage and the modeled electrical energy used, as ex-
plained previously. Since there is no need for future
predictions, and since the optimization is only done
over a single time-step, it can be solved very effi-
ciently, and it can even be pre-computed for (a grid
of) all possible loads and speeds, and stored in a look-
up-table. This leads to it being very efficient to imple-
ment, especially if compared to prediction based ap-
proaches such as for example dynamic programming
(DP) (Bellman, 1966). However, ECMS methods are
still able to sufficiently approximate optimal control
methods employing a longer prediction horizon, see
e.g., (De Jager et al., 2013; Frank et al., 2017; Onori
and Serrao, 2011). However in order to achieve this,
the control parameters of the ECMS need to be tuned
well. The tuning of the ECMS can be different for
each drive cycle. Therefore, in this paper, we will
look to adjust the tuning of the ECMS controller on-
line based on (estimated) context, and as stated above,
focus on discovering what contexts we need to adapt
to. In this paper, we consider an ECMS method that
has been broadly used to control the power split of
HEVs, see e.g., (De Jager et al., 2013; Gao et al.,
2017; Rezaei et al., 2017). Later on in this paper, we
will modify it to make it context-dependent.

The ECMS algorithm is optimization problem,
which calculates the combination of PICE(t) and
Pbat(t)) that minimizes a given cost J(t) at time instant
t, while meeting the total required power Pdesired(t):

PICE(t)opt,Pbat(t)opt = arg min
PICE(t),Pbat(t)

J(t), (7)

s.t. Pdesired(t) = PICE(t) + Pbat(t).

A commonly selected cost function J(t) is:

J(t) = ṁfuel

(
PICE(t)

)
+ λPbat(t), (8)

wherein λ is the control parameter, which makes the
trade-off between the usage of the ICE and EM. In or-
der to obtain a well-tuned ECMS controller, λ needs
to be chosen properly. If λ is selected too high or too
low, the battery will fill up or drain in the long run,
which can be undesired. Since this effect (and cor-
responding λ) is dependent on the considered drive
cycle, ECMS is often made charge sustainable by
making λ dependent on the state of charge. This is
done by splitting λ in λ1 and λ2, where λ1 regulates
the power split (as considered before), and λ2 pro-
motes charge sustainability by penalizing the differ-
ence between the current SOC(t) and it’s reference
value SOCref (which we set to 50%) (Onori and Ser-
rao, 2011; Rezaei et al., 2017). The following cost
function is then obtained, and will be considered in
the remainder of this paper:

J(t) = ṁfuel

(
PICE(t)

)
+(

λ1 +λ2(SOC(t)−SOCref)
)

Pbat(t). (9)

To practically solve the optimization at every time
step, the ECMS uses the model described in Section
3.1 to predict ṁfuel(t). We do this over a fine grid
of discretized values for ∆SOC(t), since each defines
Pbat(t) and through the constraint also PICE(t), thus
allowing to evaluate J(t). We can thus essentially
solve the optimization without needing to explicitly
solve a numerical optimization, and we can even pre-
compute the solution for a large grid of speeds and
torques and interpolate to find solutions that way. In
any case, once solved, the powers from the best solu-
tion are applied to the vehicle, and the next time step
the procedure is repeated.

In this paper the aim is to adapt both λ1 and λ2
depending on the context, with the aim to reduce the
overall energy consumption relative to the case when
they are kept constant.

3.3 Generation of Training and
Validation Data

In this section, we will describe the data used for
training and validation. The data-set is built using the
velocity profiles described by several standard driv-
ing cycles: WLTP, FTP, UDDS, CADC, Australia
SPC240, and US HWFET (Dieselnet, 2022).

Figure 3 shows all these cycles in a concatenated
form. These cycles are divided into segments, where
each belongs to one of 3 categories: urban, suburban
or highway, based on average velocity, as indicated in
the Figure. Every segment is in turn split up again in
even smaller sub-segments. These small sub-cycles
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are then used as building blocks to construct a larger
set of training and validation velocity cycles, by con-
catenating several of them in varying order. Segments
are only concatenated when the velocity at the end of
segment one matches to the starting velocity of seg-
ment two, in order to avoid an unrealistic acceleration
profile. Note that none of the sub-segments used for
validation are used for training and vice-versa. By
augmenting the original set of velocity cycles in this
way, a larger variety of training and validation scenar-
ios is obtained (more variation in length, more transi-
tions, etc.).

We know that clustering methods will perform
better when a more complete set of simulated sen-
sor signals is available, since it will allow for a more
diverse set of context features to be calculated. So
to generate our data-set we integrate the model from
Section 3.1 into the automotive simulator IPG Car-
Maker (IPG Automotive, 2022) and simulate the same
driving cycles. The new extended data-set then con-
tains the same vehicle speeds and torques as predicted
by our MATLAB model, but also additional simulated
signals (e.g., throttle and braking pedals, steering in-
put) from which additional features can be extracted.
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Figure 3: The considered velocity cycle data, which is man-
ually split into 3 categories: urban, suburban and highway.

4 CONTROL-CONTEXT
GROUPING

This section details the approach to group similar con-
trol parameter values to features derived from vary-
ing contexts, matching steps 1-4 outlined earlier. This
allows to later on adapt the control parameters as a
function of the observed context.

4.1 Computation of Optimal Control
Parameters

As mentioned in step 1) earlier, We need to calcu-
late optimal controller parameters for a variety of con-
texts, so they can later on be clustered together with

the context features. For each training cycle Vk in
the complete training data set V consisting of Ncycles
cycles, we compute the optimal power split (i.e., the
control parameters λopt,k

1 and λopt,k
2 ) using Dynamic

Programming (DP) (Goos et al., 2017) as:

λopt,k
1 ,λopt,k

2 =arg min
λ1,λ2

mfuel(t), (10)

s.t. Pdesired(t) = PICE(t) + Pbat(t),
vdesired(t) = Vk, k ∈ [1, . . . ,Ncycles].

Note that here we use DP to find optimal values
for every cycle. We do this to generate training data
for our approach, but DP cannot easily be used di-
rectly online as an alternative, since the calculations
are very time consuming and rely on preview of the
entire upcoming cycles.

4.2 Extraction of Context Features

To complete step 1) we also need to extract and save
the features f to describe the context. To do so, we:

• Select a driving cycle Vk from the complete data-
set V and extract all signals (e.g., speed, torque,
pedal positions, steering input, etc.).

• Define a time window of length N. Note that the
choice of N will need some iteration, depending
on the resulting clustering.

• For each signal compute aggregate (e.g., mean,
RMS, variance) context features f j for each win-
dow j that fits within the driving cycle Vk.

• For each time window j we also store the ac-
tive control parameters λ1, j = λopt,k

1 and λ2, j =

λopt,k
2 . Note that these are constant for all win-

dows within the selected driving cycle Vk, but will
change when moving to the next cycle.

• Move the the next driving cycle Vk+1 and con-
tinue until all driving cycles are processed.

Note that features computed over a window are as-
sociated with the last timestamp within this window,
thus looking at Figure 4, window 1’s features f1 are
associated with timestep tN .

The steps above result in a set of aggregated con-
text features f j and a set of optimal control parameter
values λ1, j and λ2, j for every time window j in V .
These can then be represented by a point in a high di-
mensional space, spanning both the context features
and control parameter attributes.
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Figure 4: Context features are computed over a window
in the past and linked to control parameters at the current
timestep.

4.3 Clustering of Context Features and
Control Parameters

Once the controller parameters and context features
are computed, we perform step 2), and group them
in such a way that the similarity within a group is as
high as possible, without ending up with a high num-
ber of groups. We have used K-means clustering to
do so, but before trying to form clusters in this highly
dimensional space, it is best to remove some context
features to only retain the relevant ones. The approach
used in this paper is to compute the ‘permutation fea-
ture importance’ (PFI) values for each context feature,
with respect to the controller parameters (Leo, 2001;
Venkatesan et al., 2021). Only features that have an
importance value above a set threshold are used for
clustering.

The number of clusters has to be given as an input
parameter to the clustering algorithm, but the ideal
number is not known beforehand and is use-case de-
pendent. Selecting the right number of clusters is
therefore an iterative process, and comes down to a
trade-off between having better control performance
(by being able to adapt to a more diverse set of con-
texts) and still maintaining sufficient controller ro-
bustness / avoiding continuously switching between
context clusters. Furthermore, as described in Section
2, a lower number of clusters will result in an adaptive
controller which is easier to validate.
Remark 2. Other methods to avoid switching can
include deadbands or hysteresis controllers, or even
adding features to promote temporal similarity during
the clustering. For now we have not looked into these,
but we have restricted ourselves to using a small (2)
number of clusters.

In this paper we have chosen to use 2 clusters. An
example of the clustering outcome is depicted in Fig-
ure 5 where the 2 clusters are each indicated with a
different color. Both clustering methods which have
been used rely on the Scikit-learn (Buitinck et al.,
2013) machine learning toolbox in Python.
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Figure 5: Example outcome of the clustering, yielding 2
clusters with similar controller parameters and context fea-
tures.

4.4 ECMS per Cluster

Since only a single set of controller parameters can
be used for a given cluster during on-line implemen-
tation, the controller parameters for each cluster must
be chosen to be as optimal as possible in all condi-
tions represented by this cluster i ∈ [1, . . . ,Nclusters].
Therefore, in step 3) the controller parameters are re-
optimized for each cluster before deployment, using
all data within the cluster. This is done by solving
the following optimization problem for each cluster i
(with time horizon t ∈ [tstart , . . . , tend ]):

λopt,i
1 ,λopt,i

2 = arg min
λ1,λ2

mfuel, eq., (11)

s.t. |SOC(tstart)−SOC(tend)| ≤ ε,
where mfuel, eq. describes equivalent spent fuel and ε
is some small number to get a well-conditioned prob-
lem. This comprises the effective fuel spent, but also
a term to take into account the difference in chemical
energy due to differences in the final SOC at tend at
the end of the horizon (duty cycle):

mfuel, eq. = mfuel(tend)+ν · ∆SOC(tend), (12)
where ν is a factor expressing the average efficiencies
of ICE and EM. This is found by calculating the aver-
age value of ν(t) over the entire horizon:

ν(t)=


1

ηwh to EMηEMηbat ηwh to ICEηICE QLHV

if ∆SOC(t)> 0,
ηwh to EMηEMηbat

ηwh to ICEηICE QLHV
otherwise,

(13)
where η denotes the efficiency of each component
(ICE, EM, battery), and QLHV is the lower heat value
of the fuel. The constraint in Equation 11 ensures
(approximate) charge sustainability. The problem is
solved using the Matlab Global Optimization toolbox,
using the patternsearch algorithm (MathWorks, 2022).
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4.5 Integration with Classifier

In order for the adaptive controller to be imple-
mentable on-line, it must know which cluster from
the training data best represents the current working
conditions. Because the desired controller parameters
are not known beforehand but depend on the cluster,
we cannot simply look for the closest cluster in the
full clustering space described in Section 4.3. There-
fore, in step 4) a random forest classifier (a variant of
supervised learning), see e.g., (Ho, 1995), is built to
estimate the cluster membership, using only (a subset
of) the windowed context features as described above,
but not the controller parameters.

The considered workflow used to construct the
classifier is shown in Figure 6. As described in Sec-
tion 4.2, features are extracted from timeseries data,
using windows of various lengths. Next, highly cor-
related features are removed using the Spearman rank
correlation analysis. Thereafter, similar to as done for
the clustering approach, we use a ’permutation fea-
ture importance’ (PFI) metric to select the most im-
portant features used for training the classifier. Once
the classifier has been trained, it can be used to pre-
dict the context during on-line operation, and select
the corresponding optimal control parameters. The
above workflow is implemented using the Scikit-learn
machine learning toolbox in Python (Buitinck et al.,
2013).

Figure 6: Workflow for constructing the classifier.

4.6 Assembly of Resulting Adaptive
Controller

Given the building blocks of earlier sections, we can
now assemble the adaptive controller itself. Online
we continuously run the random forest classifier from
the previous section, and using it estimate the cluster
j to which the current conditions are the most similar.
Based on that, we then take the values (λopt, j

1 ,λopt, j
2 )

according to (11) which were optimized offline for
this cluster j, and use it to calculate the ECMS power-
split and thus PICE(t)opt,Pbat(t)opt according to (7) for
the current vehicle speed and desired wheel torque.

5 SIMULATION RESULTS AND
DISCUSSION

In this section we evaluate the performance of the pro-
posed adaptive controller on the validation data de-
scribed earlier.

First, we compare it to a benchmark ECMS (bm-
ECMS) controller with fixed control parameters, with
λ1 and λ2 chosen to be optimal, using the ECMS clus-
ter optimization approach detailed in Equation 11, but
given the complete training data-set V instead of only
the data in a single cluster.

In order to benchmark the controllers, we use
the equivalent fuel consumption, see Equation 11.
Table 1 compares the developed adaptive approach
(a-ECMS) to the benchmark ECMS for the training
and validation driving cycles. It can be seen that
for validation data the performance gain when using
our adaptive controller is 0.72% over the benchmark
ECMS with fixed parameters. This gain is moreover
attained over the best possible fixed ECMS controller,
optimized on our training data-set, which is already a
high-performance baseline. Given the amount of ve-
hicles on the road and in industrial settings, such a
gain could yield a significant reduction of fuel usage
and exhaust gasses. Furthermore, this can be achieved
without the need for additional hardware since we are
only using existing sensor signals and requires only
limited additional computational power compared to
traditional ECMS.

Table 1: Comparison of proposed adaptive ECMS, to the
benchmark ECMS controller with fixed parameters.

Cycle Description
ma-ECMS

fuel, eq. −mbm-ECMS
fuel, eq.

mbm-ECMS
fuel, eq.

Training data-set -1.28%
Validation data-set -0.72%

To further evaluate the developed controller, we
compare it to DP. As mentioned earlier in this paper,
DP is computationally heavy and hard to implement
online. However, when used offline with preview of
the entire duty cycle it can be seen as the best-case
controller and thus a lower bound on fuel consump-
tion. For comparing our adaptive ECMS to DP we do
not need to use the equivalent fuel defined above. In-
stead we can directly evaluate the effective fuel spent
for a DP constrained to end up with the same SOC(tN)
as the adaptive ECMS. Table 2 shows the outcome,
indicating that the adaptive ECMS approaches the
DP to within 0.47%. The proposed approach has thus
cut the gap between fixed ECMS and the upper bound
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provided by DP roughly in half, achieving a
performance just closer to DP than to the fixed
ECMS.

Table 2: Comparison of proposed adaptive ECMS using
clustering, to DP solution which is the best case solution.

Cycle Description
ma-ECMS

fuel −mDP
fuel

mDP
fuel

Training data-set 0.69%
Validation data-set 0.47%

6 CONCLUSIONS

A method for deriving an adaptive controller was pre-
sented focused on discovering the relevant changes in
system dynamics and / or environment conditions to
adapt to. A clustering based approach is used to detect
conditions where optimal control parameter values
differ significantly and adaptation is beneficial. Us-
ing these clusters an adaptive controller is then made
that during operation (I) determines what cluster the
current conditions reside in, and (II) selects the opti-
mal control parameters computed offline beforehand
for that cluster.

Owing to the generic nature of the clustering ap-
proach, the authors expect this technique to be useful
for many applications where adaptation of paramet-
ric controllers is needed, yet the dependencies or con-
texts to adapt to are not known. As more machines
are connected, and more (complex) sensors become
available, the authors expect applications where the
contexts to adapt to are not known up front to occur
ever more frequently.

On the considered HEV use case this approach
outperforms a non-adaptive but well-tuned ECMS
controller by 0.72%, and comes to within 0.47% of
the dynamic programming gold standard that cannot
be implemented as an online controller. This pro-
vides a proof-of-concept for the developed method to
design adaptive controllers, but we do not claim the
outcome outperforms other adaptive control schemes,
which is a topic still to be tackled in future research.

The proposed method is developed to be espe-
cially suitable for industrial usage since (I) it can be
added on top of existing parametric controllers, (II) its
implementation is limited in complexity, and (III) its
adaptations can be inspected before deployment and
are straightforward to understand. There are however
still a few remaining drawbacks as well. Currently
a training set is obtained from simulation, for which
we can calculate optimal control parameters for each
sample, but finding optimal control values for a large

experimental dataset will be harder to do. Further-
more, the grouping approach including the cluster-
ing still has many algorithm choices and factors to be
tuned which are less obvious for a typical application
engineer, like choosign the number of clusters, choos-
ing features, selecting window lengths, .. So while
the overall controller has been kept simple conceptu-
ally (combining a typical ECMS with an additional
routine to detect cluster and switch between ECMS
parameter sets), future work can look into improving
the design procedure itself.

Summarizing the previous, future work will focus
on:

• Improving the design procedure and the choices
made therein, comparing different clustering
methods, trying out more clusters, looking into
automatic feature extraction and selection using
e.g. tsfresh (Christ et al., 2018).

• Investigation of optimal data collection, hopefully
with reduced datasets, and optionally sparse ex-
perimental sets.

• Extending the clustering with additional fixes to
avoid excessive parameter switches in time.

• Comparing the a-ECMS approach considered in
this paper with other adaptive approaches targeted
at HEVs.

• Validation of methods on different cases, possibly
with more complex variability in dynamics / envi-
ronment.
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