
Java Binding for JSON-LD

Martin Ledvinka a

Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Technicka 2, Prague 6 - Dejvice, Czech Republic

Keywords: JSON-LD, Java, REST API, Object Model.

Abstract: JSON-LD is an easy-to-understand and use data format with a Linked Data background. As such, it is one of
the most approachable Semantic Web technologies. Moreover, it can bring major benefits even to applications
not primarily based on the Semantic Web, especially regarding their interoperability. This work presents
JB4JSON-LD – a software library allowing seamless integration of JSON-LD into REST APIs of Java Web
applications without having to deal with individual nodes of the JSON-LD graph. The library is compared to
existing alternatives and a demo application as well as a real-world information system are used to illustrate
its use.

1 INTRODUCTION

JSON-LD (JSON for Linking Data) (Sporny et al.,
2020) is an easy-to-use data serialization format. It
is based on the widely popular JSON1 format and, in
essence, adds the possibility to connect information
on how to interpret and identify the data to it (while
staying compatible). Search engines such as Google
recommend adding JSON-LD data to Web pages as
it allows them to better understand the content of the
page and enhance search results, ultimately improv-
ing the visit and interaction rate of the site.2 More-
over, JSON-LD can be especially useful for informa-
tion system interoperability because it helps to disam-
biguate the meaning of APIs and the data they work
with (Bittner et al., 2006; Lanthaler and Gütl, 2012;
Su et al., 2015; Xin et al., 2018).

Consider the plain JSON output of a terminology
management tool shown in Listing 1. It could
represent a detail of a term produced by the tool’s
REST API (Fielding, 2000). A term in this setting
has a label, definition and can be put into a hierarchy
based on its meaning.

a https://orcid.org/0000-0002-2451-2348
1JavaScript Object Notation
2As described in the official documentation at

https://developers.google.com/search/docs/appearance/
structured-data/intro-structured-data, accessed 2023-09-
14.

Listing 1: Example output of a terminology management
tool in JSON.
{

"id": "251",

"label": "Locality",

"definition": "...",

"children": ["252", "253"]

}

For a consumer, this output has several issues that
JSON-LD can fix:

1. The value of the id attribute (presumably identi-
fier) is relevant only within the boundaries of the
tool. Even worse, it is often relevant only within
a certain table in the system’s underlying database
and the same identifier can be used for an instance
of another type.

2. The meaning of the attributes can be ambiguous.
One may, for example, question how the label at-
tribute relates to the same attribute name in a mu-
sic streaming service API (where a record label
denotes a company that owns a particular piece
of music). Similarly with the attribute children.
It might be argued that this could be solved by
better naming but such a solution often comes in
hindsight when the damage is already done and
applying it would break existing clients.

3. The string values by default do not contain any
information about their language. Terminology
management in particular often requires transla-
tions into multiple languages.

4. The output does not indicate the type of the object.

Ledvinka, M.
Java Binding for JSON-LD.
DOI: 10.5220/0012168500003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 207-214
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

207



Extending the JSON from Listing 1 with a JSON-
LD context definition from Listing 2 considerably im-
proves the semantic quality of the data.

Listing 2: Example JSON-LD context for a terminology
management tool based on SKOS (Miles and Bechhofer,
2009).
{

"id": "@id",

"label": {

"@id": "http://www.w3.org/2004/02/skos/core#prefLabel",

"@container": "@language"

},

"definition": {

"@id": "http://www.w3.org/2004/02/skos/core#definition",

"@container": "@language"

},

"children": {

"@id": "http://www.w3.org/2004/02/skos/core#narrower",

"@type": "@id"

}

}

Data modifications in Listing 3 further address the
aforementioned problematic areas by changing the
identifiers to IRIs3 and adding type information.

Listing 3: Modified data sample from Listing 1 better uti-
lizes JSON-LD features.
{

"@context": {... defined in Listing 2 ...},

"id": "http://onto.fel.cvut.cz/ontologies/slovnı́k/datový/

psp-2016/pojem/lokalita",

"@type": "http://www.w3.org/2004/02/skos/core#Concept",

"label": {

"en": "Locality",

"cs": "Lokalita"

},

"definition": {

"en": "...",

"cs": "..."

},

"children": [

"http://onto.fel.cvut.cz/ontologies/slovnı́k/datový/mpp

-3.5-np/pojem/zastavitelná-lokalita",

"http://onto.fel.cvut.cz/ontologies/slovnı́k/datový/mpp

-3.5-np/pojem/nezastavitelná-lokalita"

]

}

Considering the aforementioned issues with plain
JSON:

1. Now the identifier is clearly denoted by the JSON-
LD @id keyword. Moreover, if an IRI is used, it
is globally valid and dereferencing it can give the
client more information about the resource.

2. The added context unambiguously identifies prop-
erties corresponding to the attributes. The client

3Internationalized Resource Identifiers

can use these property identifiers to gather more
information about the properties and possibly
even restrictions on their values (for example, that
a concept’s children must be also concepts).

3. JSON-LD supports language-tagged strings out of
the box.

4. JSON-LD allows classifying objects via the stan-
dard @type attribute.
Another useful feature of JSON-LD is the abil-

ity to reference objects only by their identifier. Plain
JSON applications have to serialize an object multiple
times if it is referenced in multiple places in the out-
put. Or, they come up with ad hoc solutions that their
client needs to know to be able to correctly interpret
the output. In contrast, JSON-LD allows serializing
the object only once and using its identifier to refer to
it in all other places. This prevents issues with circu-
lar references and may reduce the size of the output
and serialization time.

As can be seen, information systems may greatly
benefit from supporting JSON-LD in their Web ser-
vices, especially in conjunction with using an ontol-
ogy to back the underlying domain model (Guarino
et al., 2009; Lanthaler and Gütl, 2012). However, to
be able to do so, developers need the right tools to
integrate JSON-LD serialization and deserialization
into the existing development stack. This paper in-
troduces one such tool – JB4JSON-LD.

The remainder of this work is structured as fol-
lows: Section 2 introduces the library, including
its features and architecture, Section 3 provides an
overview of related work whereas Section 4 describes
two demo applications. The paper is concluded in
Section 5.

2 JB4JSON-LD

JB4JSON-LD (Java Binding for JSON-LD)4 is a Java
library for serializing and deserializing Java objects
to/from JSON-LD. Its main goal is to provide JSON-
LD capabilities to applications without requiring de-
velopers to work with JSON-LD directly. Instead, it
relies on an application’s object (domain) model and
an explicit declarative mapping. This idea is based
on the fact that information systems usually map data
to an object model whose elements (classes) repre-
sent domain concepts like vocabulary, concept, or
user (Booch, 1994). The system’s API then translates
between a data format such as JSON and instances of
the object model classes. The goal of the library is to

4https://github.com/kbss-cvut/jb4jsonld, accessed
2023-09-14.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

208



allow a declarative description of this translation and
not require the developer to implement the translation
themselves. In the case of JB4JSON-LD, the mapping
is specified via Java annotations.

2.1 Mapping with JOPA

To prevent the need to define a new set of annota-
tions and because the library was (and still primarily
is) used in applications that use the JOPA library for
persistence (Křemen and Kouba, 2012),5 JB4JSON-
LD reuses the mapping specified by its annotations.

The example in Listing 4 shows a simple JOPA
entity class representing a term with some basic at-
tributes. To briefly explain:

• @OWLClass denotes the ontological class to
which this entity class is mapped.

• @Id denotes the entity identifier.

• @OWLAnnotationProperty, @OWLObjectProp-
erty, OWLDataProperty (not used in the example)
denote mapping to ontological properties (Motik
et al., 2012). Object properties are used to refer-
ence other objects, while data property values are
literals. Annotation property values can be either.

• @Types are used to access additional classifica-
tion besides the entity class’s mapped type.

Listing 4: JOPA entity with annotation-based mapping.
This mapping is utilized by JB4JSON-LD as well. Multi-
lingualString is a JOPA class used to represent language-
tagged strings.
@Namespace(prefix="skos",

namespace="http://www.w3.org/2004/02/skos/core#")

@OWLClass(iri = "skos:Concept")

public class Term {

@Id

private URI id;

@OWLAnnotationProperty(iri = "skos:prefLabel")

private MultilingualString label;

@OWLAnnotationProperty(iri = "skos:definition")

private MultilingualString definition;

@OWLObjectProperty(iri = "skos:narrower")

private Set<Term> children;

@Types

private Set<String> types;

// Other attributes, getters, setters

}

5Source code and documentation available at https://
github.com/kbss-cvut/jopa, accessed 2023-09-14.

When serializing an object, JB4JSON-LD uses
Java Reflection (Forman and Forman, 2004) to ac-
cess its fields to get the values to serialize and anno-
tations to determine the attributes to serialize them to.
Conversely, when a JSON-LD input is deserialized,
JB4JSON-LD determines the target Java class based
on the input type and the requested Java class and, for
each attribute of the input JSON object, looks for Java
fields with a corresponding mapping.

Listing 2 in Section 1 shows a JSON-LD context
corresponding to the Term class from Listing 4.

2.2 Features

This section highlights the most important features of
JB4JSON-LD.

2.2.1 Multiple JSON-LD Forms

The JSON-LD specification defines multiple seman-
tically equivalent syntactic forms of JSON-LD docu-
ments (Sporny et al., 2020). While the serialization
output form of JB4JSON-LD is defined (compacted
JSON-LD with/without context), to support as wide
variety of input as possible, JB4JSON-LD does not
restrict the form of the JSON-LD input it deserializes.
Instead, it internally transforms the input to the ex-
panded form (so that it always has the same structure)
and then proceeds with deserialization.

2.2.2 Polymorphism Support

Polymorphism in programming is usually meant in
the sense that a set of types share a common ances-
tor that can be used in their place (Booch, 1994). In
the context of JB4JSON-LD, polymorphism is inter-
esting for deserialization. In this case, the requested
result type may have subtypes and JB4JSON-LD will
determine which of these subtypes should be actually
instantiated based on the input classification (this be-
havior is configurable).

Consider the class hierarchy in Figure 1. The
application may request deserialization of type Re-
source. However, if the type of the JSON-LD ob-
ject on input corresponds to Dataset, JB4JSON-LD
will actually return an instance of Dataset. JSON li-
braries such as Jackson6 support the same behavior.
However, because plain JSON does not support ob-
ject classification, it has to be configured in a library-
specific way.

6Arguably the most popular JSON mapping library
for Java. https://github.com/FasterXML/jackson, accessed
2023-09-14.

Java Binding for JSON-LD

209



Resource

Document Fi le Datase t

Class

Powered By�Visual Paradigm Community Edition

Figure 1: Simple hierarchy classes to showcase polymor-
phism.

2.2.3 Object References

As already mentioned in Section 1, JSON-LD al-
lows referencing an object by its identifier on repeated
encounters instead of always serializing it in full.
JB4JSON-LD supports this standard feature out of the
box. In contrast, plain JSON mapping libraries such
as Jackson have to simulate this behavior by assigning
identity to objects and referencing this identity when
the object is encountered again. However, their clients
have to be configured to handle this provider-specific
implementation.

2.2.4 Multilingual Strings and Typed Values

Language-tagged strings are a feature JSON-LD of-
fers to support internationalization of applications and
data. JB4JSON-LD supports string internationaliza-
tion by mapping the MultilingualString class, which
represents strings with language tags (see Listing 2
for language-tagged string data and the correspond-
ing entity class in Listing 4).

Typed values then allow extending the limited set
of data types supported by JSON (boolean, number,
string, array, object, null) by stating their lexical form
together with a type declaration. A typical example
would be temporal values such as date, time, and date-
time, which can be naturally expressed in Java, but not
in plain JSON. Listing 5 shows such a typed value (the
type is declared the context object).

Listing 5: A short example of how typed values are repre-
sented in JSON-LD.
{

"@context": {

"created": {

"@id": "http://purl.org/dc/terms/created",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime"

},

},

"created": "2023-06-06T04:00:00.000Z"

}

2.2.5 Custom Serializers and Deserializers

When the built-in serialization and deserialization ca-
pabilities of JB4JSON-LD are not enough or not suit-
able for a particular use case, it is possible to register
custom serializers and deserializers the library should
use instead. When invoked, these custom components
receive an object representing the current serializa-
tion/deserialization context and are expected to return
the appropriate result.

2.3 Architecture

The architecture of JB4JSON-LD decouples JSON-
LD production and ingestion from serialization and
deserialization. The goal is to prevent client applica-
tions from being locked to a single JSON processing
library (such as the aforementioned Jackson). Integra-
tion modules can be implemented for different JSON
processing libraries. Figure 2 illustrates the compo-
nent structure of the library and its Jackson integra-
tion module as well as the flow of the data.

Serialization expects the library integration to im-
plement a generator of the JSON string. The serializer
traverses the specified object graph, using an imple-
mentation of the Visitor pattern (Gamma et al., 1995)
to build a representation of a JSON tree that is then
written out via the provided JSON generator. The se-
rialization algorithm thus makes two traversals – one
transforms the input object graph to an abstract repre-
sentation of a JSON tree and the other writes out this
abstract representation into actual JSON.

Deserialization assumes that the integration will
provide it with a Java representation of the input
JSON-LD in the expanded form (Sporny et al., 2020).
This means that all values are represented by lists, and
objects are maps where keys are property identifiers.
Deserialization is then a matter of a single traversal.

Both serialization and deserialization keep track
of already visited objects so that there is no risk of
infinite recursion on circular references as well as the
possibility of reusing the object references.

3 RELATED WORK

JSON-LD is not the only approach attempting to ex-
tend the capabilities of JSON. JSON Schema7 is a
language allowing annotation and validation of JSON
documents. While it can be used to describe the struc-
ture of the data, its main use is in its validation (Pezoa
et al., 2016). In a sense, JSON Schema is to JSON

7https://json-schema.org/, accessed 2023-09-14.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

210



Figure 2: A simplified diagram of the architecture of JB4JSON-LD and its Jackson integration module. Items with bold
border represent parts of the library, circles represent data artifacts, hexagons represent components of external libraries. The
arrows illustrate the flow of data. Element size does not indicate complexity.

what SHACL (Kontokostas and Knublauch, 2017)
is to RDF. JSON Schema, with certain extensions,
has also been proposed as an ontology modeling lan-
guage (Angele and Angele, 2021).

However, the main focus of this work is JSON-
LD. There are multiple ways of using JSON-LD in an
application. Since JB4JSON-LD is a Java library, the
primary focus of the following will be on Java.

The most basic way of processing JSON-LD in an
application is viewing it as yet another serialization
of RDF (Cyganiak et al., 2014). In this case, existing
RDF-access libraries like Jena (Carroll et al., 2004) or
RDF4J (Broekstra et al., 2002) (and their equivalents
in other programming languages, such as RDFLib8 in
Python) can be used to produce and consume JSON-
LD. Nevertheless, such libraries are arguably not suit-
able for building a domain-specific Web service API
because their primary purpose is general data access
and storage.

A more high-level approach would be to use
JSON-LD manipulation libraries such as JSONLD-
Java9 or Titanium10 to map domain objects to nodes
in a JSON-LD graph. JSONLD-Java supports (at the
time of writing this paper) version 1.0 of the JSON-
LD specification, whereas Titanium already supports
version 1.1 (Sporny et al., 2020). Again, other pro-
gramming languages have similar solutions, for ex-
ample, json-ld.net11 in C#, json-ld12 in Ruby or
PyLD13 in Python.

8https://rdflib.dev/, accessed 2023-09-14.
9https://github.com/jsonld-java/jsonld-java, accessed

2023-09-14.
10https://github.com/filip26/titanium-json-ld, accessed

2023-09-14.
11https://github.com/linked-data-dotnet/json-ld.net, ac-

cessed 2023-09-14.
12https://github.com/ruby-rdf/json-ld, accessed 2023-

09-14.
13https://github.com/digitalbazaar/pyld, accessed 2023-

09-14.

Using the aforementioned libraries for mapping
to/from domain objects still requires rather a lot of
boilerplate code. Instead, one would like to declar-
atively describe the mapping and use a serializer/de-
serializer to automatically transform the data to/from
JSON-LD. There exist several solutions besides the
one described in this paper. jackson-jsonld14 is a
module for working with JSON-LD for the Jackson
library and it was actually the original inspiration for
JB4JSON-LD. It defines its own set of mapping an-
notations and is easy to integrate into an application.
However, the last commit in the library Git reposi-
tory is from September 2017, indicating that it may
not be maintained anymore. Another similar library is
hydra-java15. hydra-java is a part of a larger ecosys-
tem of modules for enriching Web applications with
machine-readable hypermedia based on the Hydra vo-
cabulary (Lanthaler, 2021). The modules allow gen-
erating API responses containing data in JSON-LD
as well as links to other relevant endpoints and data in
accordance with the HATEOAS16 principles (Field-
ing, 2000). The latest commit in the library repository
is from March 2019. calamus17 in Python offers sim-
ilar functionality, where mapping is declared via spe-
cial classes called schemas. Pinto18 is a generic map-
per of Java objects to/from RDF. It uses the RDF4J
Model API for output and input, so it supports most
RDF syntax formats, including JSON-LD. Its integra-
tion into an application’s REST API is, due to the
lack of integration with Jackson or similar libraries,
slightly more complicated. Unfortunately, the last

14https://github.com/io-informatics/jackson-jsonld, ac-
cessed 2023-09-14.

15https://github.com/dschulten/hydra-java, accessed
2023-09-14.

16Hypermedia as the Engine of Application State
17https://github.com/SwissDataScienceCenter/calamus,

accessed 2023-09-14.
18https://github.com/stardog-union/pinto, accessed

2023-09-14.

Java Binding for JSON-LD

211



commit in Pinto’s repository is from December 2019,
indicating that it is yet another abandoned project.

3.1 Comparison

This section compares all the high-level JSON-LD
mapping libraries – JB4JSON-LD (presented by this
paper), jackson-jsonld, hydra-java, Pinto and calamus
– in terms of the features described in Section 2.2,
plus any additional relevant capabilities provided by
any of the libraries. An overview of the comparison
is shown in Table 1, the following text provides de-
tails.

3.1.1 Multiple JSON-LD Forms

jackson-jsonld and hydra-java serialize objects to
compacted JSON-LD with context. hydra-java is
able to read only data in the same form. In con-
trast, jackson-jsonld is able to deserialize also ex-
panded JSON-LD and compacted JSON-LD without
context (JSON attributes using full property IRIs).
Pinto relies on the serialization capabilities of the un-
derlying RDF4J implementation, which produces ex-
panded JSON-LD by default. Thanks to the reliance
on RDF4J, it is also able to read any valid form of
JSON-LD input for deserialization. Similarly, cala-
mus also outputs JSON-LD without context and is
able to deserialize various forms of JSON-LD.

3.1.2 Polymorphic Deserialization

None of the other tested libraries are able to utilize
polymorphism when deserializing JSON-LD input.
JB4JSON-LD not only supports this feature, but also
allows configuring its precise behavior (whether su-
pertypes or subtypes should be preferred).

3.1.3 Object References

hydra-java supports object references both in serial-
ization and deserialization. However, this behavior
has to be configured by using the Jackson JsonIdenti-
tyInfo annotation.19 Without it, hydra-java fails to se-
rialize circular object references with a stack overflow
exception. jackson-jsonld suffers from the same is-
sue, but using JsonIdentityInfo disables JSON-LD se-
rialization completely and the output is in plain JSON.
Neither Pinto nor calamus are able to handle circu-
lar references and produce a stack overflow exception
both for serialization and deserialization.

19https://github.com/FasterXML/jackson-annotations/
wiki/Jackson-Annotations#object-references-identity,
accessed 2023-09-14.

3.1.4 Multilingual Strings, Typed Values

jackson-jsonld, hydra-java, and calamus support nei-
ther multilingual strings nor typed values. One inter-
esting discovery is that jackson-jsonld actually does
not handle the JSON-LD @type attribute and, without
instructing Jackson to ignore unknown properties, de-
serialization fails with @type not being recognized as
a known attribute. Pinto does support datatype speci-
fication for attributes, but does not support language-
tagged strings.

3.1.5 Custom Serializers and Deserializers

jackson-jsonld and hydra-java themselves do not sup-
port custom (de)serializers. However, since both li-
braries are based on Jackson, which does support
(de)serializer customization, it is possible to over-
come this deficiency. Nevertheless, such an approach
does not, for example, provide access to the current
JSON-LD context and cannot thus be considered a
fully implemented feature. Pinto supports custom
(de)serializers via the so-called codecs – classes that
provide both serialization and deserialization of val-
ues of a specific type. As far as it was possible to de-
termine from the rather scarce documentation of cala-
mus, it does not support custom serializers and dese-
rializers.

3.1.6 Additional Features

JB4JSON-LD, hydra-java, and Pinto allow exposing
Java enum constants as resources with their own IRIs.
This can be seen as a representation of the OWL
ObjectOneOf construct (Motik et al., 2012).

JB4JSON, jackson-jsonld, and hydra-java are also
able to handle context term conflicts, i.e., two at-
tributes of the same name (in different Java classes)
mapped to different properties. Such situations
are handled by utilizing JSON-LD embedded con-
texts (Sporny et al., 2020). Pinto and calamus do not
use the JSON-LD context for serialization at all, so
no term conflicts can occur. On the other hand, not
using context makes them incompatible with clients
that support only plain JSON.

calamus provides one unique feature (among the
other compared libraries) – it allows validating the
serialization output/deserialization input against the
specified ontology. If the data are not valid, it pro-
vides a report indicating the offending properties.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

212



Table 1: Overview of the JSON-LD library comparison. Criteria are mainly based on the features discussed in Section 2.2.
Each criterion can have a value of ✓ for satisfaction, or × for dissatisfaction.

Feature JB4JSON-LD jackson-jsonld hydra-java Pinto calamus
Multiple JSON-LD forms ✓ ✓ × ✓ ✓
Polymorphic deserialization ✓ × × × ×
Object references ✓ × ✓ × ×
Multilingual strings, typed values ✓ × × ×✓ ×
Custom (de)serializers ✓ × × ✓ ×
Enum mapping ✓ × ✓ ✓ ×
Embedded contexts ✓ ✓ ✓ × ×

4 DEMO

There are multiple Web applications utilizing
JB4JSON-LD. This paper introduces two of them – a
simple demo showcasing the library and a real-world
information system.

4.1 JOPA JSON-LD

JOPA JSON-LD20 is one of several demo projects
associated with JOPA. This particular application
is a trivial example derived from a medical trial
management tool developed at the author’s research
group (Klı́ma, 2018). It demonstrates, besides sev-
eral other JOPA features, the ability to easily create
a JSON-LD-compatible application REST API with
the help of JB4JSON-LD.

The demo shows that both JSON and JSON-LD
can be simultaneously supported by an application us-
ing JB4JSON-LD, the appropriate format selected via
HTTP content negotiation (Fielding, 2000). The con-
figuration is trivial and can be found in the WebApp-
Config class. Instructions on how to run the demo are
available in the linked GitHub repository.

4.2 TermIt

TermIt21 (Ledvinka et al., 2020) is a SKOS (Miles
and Bechhofer, 2009)-compatible terminology man-
ager built with Semantic Web technologies – one of
them being JSON-LD. Similarly to the aforemen-
tioned demo application, TermIt’s REST API sup-
ports both JSON and JSON-LD, and JSON-LD is ac-
tually used in communication between TermIt’s fron-
tend, written in TypeScript, and the backend. Never-
theless, other applications integrated with TermIt may

20https://github.com/kbss-cvut/jopa-examples/tree/
master/jsonld, accessed 2023-09-14.

21Source code available at https://github.com/kbss-cvut/
termit, accessed 2023-09-14.

(and often do) choose to use JSON rather than JSON-
LD as a data format.

Experience shows that while for singular objects
the JSON-LD context adds a slight data overhead,
for more complex data structures (like hierarchies of
terms), JSON-LD is able to decrease the amount of
transferred data thanks to using only identifiers in-
stead of serializing a single object multiple times.
Support for polymorphism also greatly simplifies data
processing both on client and server side (multiple
kinds of resources use the same general logic).

A demo instance of TermIt is available online22

and credentials demo/demo can be used to log into the
application.

5 CONCLUSIONS

This paper has presented JB4JSON-LD, a library for
mapping Java objects to/from JSON-LD based on an
explicit mapping using annotations. It has been ar-
gued that JSON-LD can bring major benefits to Web
application APIs, especially concerning their interop-
erability, and that JB4JSON-LD is a library that al-
lows adding support for this data format easily.

A set of the most important features was described
and a comparison with similar software libraries w.r.t.
these features was provided. This comparison showed
that JB4JSON-LD is the only library to cover of them.
Two demo applications – one a simple, dedicated ex-
ample, the other a real-world information system –
were introduced to showcase the library’s potential.

One of the main future tasks of JB4JSON-LD de-
velopment is adding support for the JSON-LD 1.1
standard, because the current version is tied to JSON-
LD 1.0 due to its reliance on JSONLD-Java. In ad-
dition, providing more powerful and precise ways to
customize the serialization/deserialization process are

22https://kbss.felk.cvut.cz/termit-demo, accessed 2023-
09-14.

Java Binding for JSON-LD

213



also planned, for example, per-attribute string literal
format configuration support.

ACKNOWLEDGEMENTS

The author would like to thank Dr. Petr Křemen for
his invaluable feedback.

REFERENCES

Angele, K. and Angele, J. (2021). JSON towards a sim-
ple Ontology and Rule Language. In Soylu, A.,
Nezhad, A. T., Nikolov, N., Toma, I., Fensel, A., and
Vennekens, J., editors, Proceedings of the 15th In-
ternational Rule Challenge, 7th Industry Track, and
5th Doctoral Consortium @ RuleML+RR 2021 co-
located with 17th Reasoning Web Summer School
(RW 2021) and 13th DecisionCAMP 2021 as part of
Declarative AI 2021 Leuven, Belgium (virtual due to
Covid-19 pandemic), 8 - 15 September, 2021. CEUR-
WS.org.

Bittner, T., Donnelly, M., and Winter, S. (2006). Ontology
and Semantic Interoperability, chapter 6. CRC Press,
Boca Raton, Florida.

Booch, G. (1994). Object-oriented Analysis and Design
with Applications (2nd Ed.). Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA.

Broekstra, J., Kampman, A., and van Harmelen, F. (2002).
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. In Proceedings of
the First International Semantic Web Conference on
The Semantic Web, pages 54–68.

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D.,
Seaborne, A., and Wilkinson, K. (2004). Jena: Im-
plementing the semantic web recommendations. In
Proceedings of the 13th international World Wide Web
conference (Alternate Track Papers & Posters), pages
74–83.

Cyganiak, R., Wood, D., and Lanthaler, M. (2014). RDF
1.1 Concepts and Abstract Syntax. W3C recommen-
dation, W3C. http://www.w3.org/TR/rdf11-concepts/,
accessed 2023-09-14.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine.

Forman, I. R. and Forman, N. (2004). Java Reflection in
Action (In Action Series). Manning Publications Co.,
Greenwich, CT, USA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Guarino, N., Oberle, D., and Staab, S. (2009). What Is an
Ontology?, chapter 1, pages 1–17. Springer-Verlag
Berlin Heidelberg.

Klı́ma, T. (2018). Semantic manager for prospective clini-
cal trials. B.S. thesis, Czech Technical University in
Prague. https://dspace.cvut.cz/handle/10467/76531?
locale-attribute=en, accessed 2023-09-14. The thesis
is in Czech.

Kontokostas, D. and Knublauch, H. (2017). Shapes con-
straint language (SHACL). W3C recommendation,
W3C. https://www.w3.org/TR/shacl/, accessed 2023-
09-14.

Křemen, P. and Kouba, Z. (2012). Ontology-Driven Infor-
mation System Design. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Part C, 42(3):334–344.

Lanthaler, M. (2021). https://www.hydra-
cg.com/spec/latest/core/. W3C draft, Hydra W3C
Community Group. https://www.hydra-cg.com/spec/
latest/core/, accessed 2023-09-14.

Lanthaler, M. and Gütl, C. (2012). On Using JSON-LD
to Create Evolvable RESTful Services. In Proceed-
ings of the Third International Workshop on RESTful
Design, WS-REST ’12, page 25–32, New York, NY,
USA. Association for Computing Machinery.

Ledvinka, M., Křemen, P., Saeeda, L., and Blaško, M.
(2020). TermIt: A Practical Semantic Vocabulary
Manager. In Proceedings of the 22nd International
Conference on Enterprise Information Systems - Vol-
ume 1: ICEIS, pages 759–766, Setúbal, Portugal. IN-
STICC, SciTePress.

Miles, A. and Bechhofer, S. (2009). SKOS Simple
Knowledge Organization System Reference. W3C
Recommendation, W3C. http://www.w3.org/TR/
skos-reference, accessed 2023-09-14.

Motik, B., Parsia, B., and Patel-Schneider, P. F. (2012).
OWL 2 Web Ontology Language Structural Specifi-
cation and Functional-Style Syntax. W3C recommen-
dation, W3C. https://www.w3.org/TR/owl2-syntax/,
accessed 2023-09-14.

Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M., and Vrgoč,
D. (2016). Foundations of JSON Schema. In Proceed-
ings of the 25th International Conference on World
Wide Web, WWW ’16, page 263–273, Republic and
Canton of Geneva, CHE. International World Wide
Web Conferences Steering Committee.

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M.,
Champin, P.-A., and Lindström, N. (2020). JSON-
LD 1.1 A JSON-based Serialization for Linked Data.
W3C Recommendation, W3C. https://www.w3.org/
TR/json-ld11/, accessed 2023-09-14.

Su, X., Riekki, J., Nurminen, J. K., Nieminen, J., and
Koskimies, M. (2015). Adding semantics to internet
of things. Concurrency and Computation: Practice
and Experience, 27(8):1844–1860.

Xin, J., Afrasiabi, C., Lelong, S., Adesara, J., Tsueng, G.,
Su, A. I., and Wu, C. (2018). Cross-linking BioTh-
ings APIs through JSON-LD to facilitate knowledge
exploration. BMC Bioinformatics, 19(30).

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

214


