
A Data Service Layer for Web Browser Extensions

Alex Tacuri1 a, Sergio Firmenich1,2 b, Gustavo Rossi1,2 c and Alejandro Fernandez1 d

1LIFIA, CIC, Facultad de Informática, UNLP, Argentina
2CONICET, Argentina

fi

Keywords: Web Scraping, Web Browser Extensions.

Abstract: Web browser extensions are the preferred method for end-users to modify existing web applications (and
the browser itself) to fulfill unanticipated requirements. Some extensions improve existing websites based
on online data, combining techniques such as mashups and augmentation. To obtain data when no APIs
are available, extension developers resort to scraping. Scraping is frequently implemented with hard-coded
DOM references, making code fragile. Scraping becomes more difficult when a scraping pipeline involves
several websites (i.e., the result of scraping composes elements from various websites). It is challenging (if
not impossible) to reuse the scraping code in different browser extensions. We propose a data service layer for
browser extensions. It encapsulates site-specific search and scraping logic and exposes object-oriented search
APIs. The data service layer includes a visual programming environment for the specification of data search
and object model creation, which are exposed then as a programmatic API. While using this data service layer,
developers are unconcerned with the complexity of data search, retrieval, scraping, and composition.

1 INTRODUCTION

The web browser has evolved beyond being a mere
client for displaying web pages. It has transformed
into a robust platform capable of running feature-rich
applications known as web browser extensions (re-
ferred to interchangeably as browser extensions or
simply extensions). These extensions serve to en-
hance websites and augment the web browser with
additional functionalities. For instance, extensions
can introduce new capabilities to the browser, such
as web scraping. They can also enhance accessibil-
ity, integrate crypto-wallets, modify the appearance
or behavior of loaded web pages, customize the de-
fault behavior of the new tab page, or even serve as
a platform for hosting specific applications within the
web browser.

Numerous browser extensions rely on online con-
tent, often utilizing web scraping techniques to re-
trieve the necessary information. Alternatively, some
extensions leverage APIs to access specific data ele-
ments. For example, there are multiple browser exten-
sions designed to provide alerts regarding cryptocur-

a https://orcid.org/0000-0003-3159-5556
b https://orcid.org/0000-0001-9502-2189
c https://orcid.org/0000-0002-3348-2144
d https://orcid.org/0000-0002-7968-6871

rency fluctuations. These extensions typically scrape
information from online crypto portals or utilize APIs
to access real-time data.

In various other instances, information is scraped
from web pages and integrated into web augmentation
artifacts or mashup applications (Dı́az and Arellano,
2015).

While the availability of APIs has increased over
the years, web scraping remains a widely employed
technique for extracting web content, primarily due to
the lack of APIs provided by many existing websites.
However, web scraping poses several challenges.

Firstly, scraping code often relies on hardcoded
DOM references, making it susceptible to breakages
when websites undergo modifications. Any changes
to the website’s structure can render the scraping code
ineffective.

Secondly, scraping becomes more complex when
the process involves multiple websites. For instance,
scraping pipelines that aggregate data from various
sources requires additional effort to handle and inte-
grate the scraped elements effectively.

Thirdly, reusability of scraping code across dif-
ferent browser extensions is often challenging, if not
impossible. The specific requirements and contexts
of each extension may differ, necessitating modifi-
cations or customizations to the scraping code for

Tacuri, A., Firmenich, S., Rossi, G. and Fernandez, A.
A Data Service Layer for Web Browser Extensions.
DOI: 10.5220/0012165500003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 49-58
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

49



each use case. Overall, while web scraping remains
a prevalent technique for content retrieval, its imple-
mentation and maintenance can present difficulties
related to website changes, multi-site scraping, and
code reusability in different browser extensions.

This paper introduces a data service layer de-
signed specifically for browser extensions. This layer
serves as an encapsulation of site-specific search and
scraping logic, offering object-oriented search APIs.
A key component of the data service layer is a vi-
sual programming environment, which enables users
to specify data search and object model creation.
These specifications are then exposed as program-
matic APIs.

Users have the ability to define a search API that
leverages the search functionality of an existing web-
site and specifies how search results should be ab-
stracted into objects. Furthermore, users can com-
bine multiple search APIs to construct more complex
object models. When a search request is made to a
composed API, it automatically triggers requests to its
constituent APIs and establishes connections between
the resulting objects, ultimately returning a graph of
interconnected objects.

By utilizing these APIs, extension developers can
create browser extensions without being burdened by
the complexities of data search, retrieval, scraping,
and composition. The data service layer streamlines
the process and enables developers to focus on build-
ing extensions based on the APIs created through this
layer.

The data service layer serves as a crucial interme-
diary between a website’s DOM and the implemen-
tation of extensions. By separating the search APIs
and object models from the website’s structure, the
layer significantly simplifies the maintenance process
when websites undergo changes. With this approach,
browser extensions can continue functioning without
requiring immediate modifications.

The potential impact of this proposed data ser-
vice layer is substantial, particularly considering the
vast number of existing browser extensions and user
scripts available in public repositories. Just focusing
on Google Chrome Browser, there are currently over
137,345 extensions available. Furthermore, web aug-
mentation artifacts such as user scripts have their own
extensive repositories, with platforms like greasy-
fork.org hosting thousands of artifacts. Integrating
these existing artifacts with the data service layer
could greatly enhance their functionality and ease the
development of new extensions.

This paper is structured as follows. Section 2
presents a motivating example. Section 3 presents
the approach, its architecture, the tool involved in

creating search APIs, and the tool used for defining
information models. Section 3.4 briefly presents a
usability study. Section 5 introduces related works,
and finally, Section 6 presents conclusions and future
works.

2 MOTIVATING EXAMPLE

Figure 1 depicts a UI mockup of a browser extension
that provides a mashup application for the domain
of scientific research. The development of the men-
tioned mashup application involves integrating multi-
ple components and implementing web scraping tech-
niques. Here is a breakdown of the steps involved:

• Utilize the search engine from Springer: The
browser extension needs to incorporate the search
functionality provided by Springer. This involves
making requests to the Springer search engine and
retrieving the results.

• Parse the DOM of the results page: Once the
search results are obtained from Springer, the
browser extension needs to parse the HTML
DOM (Document Object Model) of the results
page to extract relevant information about the ar-
ticles, such as their titles and other details.

Figure 1: Mockup of a browser extension to mashup results
from Springer, Google Scholar, and DBLP.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

50



Figure 2: Procedure to create the Springer search API.

A Data Service Layer for Web Browser Extensions

51



• Retrieve the number of citations from Google
Scholar: After selecting an article from Springer,
the extension needs to extract the article’s title and
use it to search for the same article on Google
Scholar. By parsing the DOM of the Google
Scholar results page, the number of citations for
the article can be retrieved.

• Obtain related articles from DBLP: Similarly,
when an article’s author is selected, the extension
needs to extract the author’s information and use
it to search for related articles on DBLP. By scrap-
ing the relevant data from the DBLP website, the
extension can retrieve and display the related arti-
cles.

To accomplish these tasks, the browser extension
developer must create custom scrapers for all three
websites: Springer, Google Scholar, and DBLP. Ad-
ditionally, the developer must program the logic to es-
tablish the pipeline of data retrieval and processing.
This includes passing the article title from Springer
to Google Scholar and the author’s information from
Springer to DBLP.

3 THE APPROACH AND TOOLS

In this section, we present the approach and tools.
First, we provided an overview of the ANDES ap-
proach to create search APIs based on web page an-
notations. Then, we describe the architecture of our
proposal. Then, the model editor is presented, which
makes it possible to compose different search APIs to
create more complex information models.

3.1 ANDES Search APIs

This work is based on ANDES’ concept of search
APIs as reported in (removed for double blind revi-
sion, 2022). By means of web annotation and scrap-
ing techniques, ANDES abstracts the search function-
ality of any website into a reusable search API. Call-
ing the search operation on the API triggers the corre-
sponding search and scrapping behavior and returns
a collection of (JavaScript) objects. ANDES offers
tools to annotate the UI search components (search
input, trigger button, pagination buttons, etc.) and to
abstract the search results as domain objects. The user
defines the type of the resulting object, its properties,
and the mapping from the content of the results web
page to property values.

Further details about ANDES can be found in (re-
moved for double blind revision, 2022). For the sake
of comprehension, Figure 2 depicts the main parts

of the procedure to create a search API for Springer
(as required for the motivating example). The user
conducts a search on the website of interest (in this
case, Springer’s website) and, once results are dis-
played, clicks on the browser extension icon (Step
1). The main UI of the ANDES’ browser extension
opens. She selects the ”Services” button (Step 2) and
clicks on the ”New service” button (Step 3). She as-
signs a name to the new search service, in this case,
“Springer” (Step 4). Then, the user selects the text in-
put area in the search form using point-and-click in-
teraction (Step 5). Once the text input has been se-
lected, she chooses a UI element (a DOM node) con-
taining one result. Finally, she defines a semantic type
for the result and the repetition strategy that correctly
collects all results available on the sample page (Step
6). Behind the scenes, each option in this menu rep-
resents an xPath used to retrieve all the results. Once
result elements are identified, the user connects parts
(sub-nodes in the DOM) of the result element to prop-
erties (Step 7).

3.2 Architecture

The data service layer and related editors are pack-
aged as a standalone browser extension. Once in-
stalled in a web browser, the editors can be used to
define both the search APIs for specific websites and
the composition models to create more complex in-
formation objects. Both kinds of artifacts will become
available for other browser extensions.

Figure 3 shows an overview of the architecture.
It shows that the data service layer includes two tools
(Search API tool and API composition tool), each one
generating a kind of artifact that is stored in this layer.
It also provides an API Interaction service layer that

Figure 3: Data service layer architecture.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

52



allows other browser extensions to consume the in-
formation models created with the API composition
tool.

Figure 4 presents a high-level design of the data
service layer. Search APIs are exposed through in-
stances of SearchModel, managed by the Model-
Registry. Instances of SearchModel implement the
search() operation called by the clients of the data
service layer. In the most interesting case1, a Search-
Model has ComposedSearchAPI that drives the main
search and composition task. In turn, the Composed-
SearchAPI has one BasicSearchAPI (its main search)
and one or more Augmenters. Given an object (a
result from the main search), an Augmenter builds
a search query, conducts a search on another search
API, and injects the results as a new object property.
The collaboration will become clearer in the follow-
ing sections.

Figure 4: High-level design of the data service layer.

3.3 Search API Composition

To better understand how the data service layer is
used to create browser extensions, let us return to
the motivating example presented in Section 2. The
main idea is to obtain a search model based on the
composition of search APIs for Springer, DBLP, and
Google Scholar. The model should integrate infor-
mation from the three websites in a single response.
Specifically, when the model is asked to search for
something, it uses the Springer search service. In ad-
dition, the response also includes the number of cita-
tions obtained from Google Scholar and a collection

1In the simplest case, the SearchModels has only a Ba-
sicSearchAPI, which results in a functionality comparable
to what was already provided by ANDES as described in
Section 3.1

of related articles (articles from the first author) ob-
tained from DBLP.

To create an information model based on search
service composition, the user creates the search ser-
vices of the websites that he wishes to integrate, fol-
lowing the process presented in Section 3.1. Then,
the user starts the API Composition Tool from the ex-
tension’s main UI. Next, the extension shows an ed-
itor (Figure 7) where the defined search services are
presented in a panel on the left, and the composition
canvas is the main component of the UI. The user
drags&drops the services he wants to compose (i.e.,
Springer, Google Scholar, and DBLP services) into
the canvas. Each search service is shown as a node
of a graph. To integrate the results of the search ser-
vices, the user creates links between the nodes. A link
indicates that each result in the origin search service
(e.g., Springer) will have a property holding related
results in the target search service (e.g., DBLP). The
link is configured with a) the name of the property
holding the results (e.g., “related-articles”), b) a prop-
erty in the model of the origin service whose value
will be used as a query string to search in the desti-
nation service (e.g., “first-author”), and c) the strat-
egy used to select which results to keep (e.g., “all re-
sults”). In this way, the integration between services
can be one-to-one (connect to the object correspond-
ing to the first or to any search result) or one-to-N
(connect to a collection with all the results). Figure 5
depicts the resulting object model, following the de-
sign presented in Figure 4. The SearchModel relies
on a ComposedSearchAPI that starts with a Basic-
SearchAPI (on Springer) and uses two Augmenters.
One of them injects results obtained from a Basic-
SearchAPI configured on DBLP, and the other one
injects results from a BasicSearchAPI configured on
Google Scholar. Figure 6 provides additional details
regarding the interactions occurring when the search()
operation is called on a SearchModel object.

Figure 5: Object diagram corresponding to the motivating
example.

3.4 Using the Data Service Layer

In this section, two use cases are presented. The first
one corresponds to the mashup application presented
as the motivating example in Section 2. The sec-

A Data Service Layer for Web Browser Extensions

53



Figure 6: Interaction diagram corresponding to the motivat-
ing example.

ond one is a web augmenter that augments Springer’s
website with more information about a specific paper.
Both examples use the same search model, which was
presented in the previous section.

3.4.1 A Mashup Application

Consider the motivating example discussed in Section
2. The browser extension presents a main screen (see
the browser window in the middle of Figure 8) with
an input text, where the user enters a topic to search
for (in this example, it was “scraping”). The search
button triggers a search using the search model. Re-
sults are displayed along with the number of citations
(which is extracted from Google Scholar) and related
articles of the selected author (extracted from DBLP).
Next, we discuss key parts of the source code (see
Listing 1) to show that the developer remains uncon-
cerned about the underlying web requests and scrap-
ing tasks.

To trigger the search, the mashup developer uses
the data service layer whose API has the “search”
method, shown in line 2. This method receives sev-
eral parameters: the text to search, the name of the tar-
get search model. When the service layer is invoked
through the search function, it executes the model and
returns a JSON object, whose structure is composed
of the information extracted from the three websites.

1 $scope . s e a r c h D a t a = f u n c t i o n ( a r g s )
{

2 var a p i =new d a t a S e r v i c e L a y e r ( ) ;
3 a p i . s e a r c h ( a r g s . sea rchQuery ,

a r g s . searchModelName ) . t h e n (
p a p e r s =>{

4 $scope . r e s u l t s = p a p e r s
5 } )
6 }

Listing 1: Source code for the service layer invocation.

3.4.2 Springer Website Augmenter

Consider the augmentation of Springer’s website de-
picted in Figure 9. The website is augmented to show
further information about the paper that the user is
navigating. In this case, the augmenter adds the num-
ber of citations (extracted from Google Scholar) and
also further articles in which the first author has par-
ticipated (extracted from DBLP).

Note that the code the developer must write to
conduct searches and obtain the results is the same
as in the mashup application previously discussed.
The data service layer not only hides the complexity
of scraping data from several websites and integrat-
ing this data but also supports reuse among different
browser extensions.

4 PRELIMINARY EVALUATION

We conducted a usability study involving 16 partic-
ipants to assess the tool’s usability and identify any
usability issues. The intention is to subsequently con-
duct a more comprehensive experiment to examine
the impacts and applicability of the approach thor-
oughly. The method for creating basic search APIs
described in Section 3.1 was evaluated in (removed
for double blind revision, 2022).

In this new study, participants were asked to do 7
tasks related to the creation and edition of API com-
position models. The model that participants were
asked to create corresponds to the motivating exam-
ple, using Springer, Google Scholar, and DBLP. 13
participants managed to complete the tasks, 2 partici-
pants completed 4 tasks, and 1 participant completed
5 tasks. It is important to mention that participants
had no programming skills.

Upon completing the tasks, we utilized the Sys-
tem Usability Scale (SUS) method to assess usability,
which yielded an average score of 68.11. Based on
various standards, this score is considered acceptable.

5 RELATED WORKS

Web scraping means extracting non-structured (or
partially structured) data from websites, often simu-
lating the browsing behavior. Normally, it is used to
automate data extraction to obtain more complex in-
formation, which means that end users are not usually
involved in determining what information to look for
and still less about what to do with the abstracted ob-
jects.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

54



Figure 7: The API composition tool: Integration between Springer and DBLP search APIs.

Figure 8: Search results in the model containing Springer, Google Scholar and DBLP.

Some websites already tag their contents allowing
other software artifacts (for instance, a web browser

plugin) to process those annotations and improve in-
teraction with that structured content. A well-known

A Data Service Layer for Web Browser Extensions

55



Figure 9: Reusing the search API to augment Springer’s website.

approach for giving some meaning to web data is
Microformats (Khare and Çelik, 2006). Some ap-
proaches leverage the underlying meaning given by
Microformats, detecting those objects present on the
web page and allowing users to interact with them
in new ways. A very similar approach is Micro-
data. Considering Semantic web approaches and an
aim similar to our proposal, (Kalou et al., 2013)
presents an approach for mashups based on seman-
tic information; however, it depends too heavily on
the original application owners, something that is not
always viable. Moreover, when analyzing the Web,
we see that a the majority of websites do not pro-
vide this annotation layer. According to (Bizer et al.,
2013), only 5,64% among 40.6 million websites pro-
vide some kind of structured data (Microformats, Mi-
crodata, RDFa, etc.). This reality emphasizes the sig-
nificance of empowering users to incorporate seman-
tic structure in situations where it is lacking.

Several approaches let users specify the structure
of existing contents to ease the management of rel-
evant information objects. For instance, HayStack
(Karger et al., 2005) offers an extraction tool that al-
lows users to populate a semantic-structured informa-
tion space. Atomate it! (Kleek et al., 2010) offers
a reactive platform that could be set to the collected
objects by means of rule definitions. Then the user
can be informed when something interesting happens
(e.g., a new movie is available). (Van Kleek et al.,
2012) allows the creation of domain-specific appli-
cations that work over the objects defined in a PIM.
Rousillon is an interesting approach based on end-
user programming for defining scrapers based on hi-
erarchical data (Chasins et al., 2018). In (Katongo

et al., 2021), another approach is presented to enable
web customization through web scraping defined by
users without programming skills. However, it differs
from our approach because many browser extensions
can use our data service layer.

Web augmentation is a popular approach that lets
end users improve web applications by altering orig-
inal web pages with new content or functionality not
originally contemplated by their developers. Nowa-
days, users may specify their own augmentations by
using end-user programming tools.

In previous work, the ANDES approach (removed
for double blind revision, 2022) was introduced as a
means of enabling end-user programming of search
APIs based on the search functionality of websites.
While the current paper builds upon ANDES, two
noteworthy contributions distinguish it from the pre-
vious work. Firstly, ANDES primarily focuses on
ancillary searches, which involve using the created
search APIs to augment websites with the results of
specific ancillary searches. In contrast, the present
work extends the concept of search APIs by integrat-
ing them into a data service layer. This means that
the search APIs are now offered as part of a broader
framework that provides various data services. In
comparison with ANDES, the second significant con-
tribution of this paper is the proposed method and
tool for composing search APIs. They allow for the
creation complex information objects whose inter-
nal structures are populated with data retrieved and
scraped from multiple sources. By enabling the com-
position of search APIs, developers can leverage in-
formation from diverse sources to construct compre-
hensive information models.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

56



Other interesting tools have emerged in the con-
text of end-user programming and web augmentation
(Dı́az et al., 2014). Reuse in web augmentation has
also been tackled before. For example, Scripting In-
terface (Dı́az et al., 2010) is oriented to better sup-
port reuse by generating a conceptual layer over the
DOM, specifically for user scripts. Since the specifi-
cation of a scripting interface could be defined in two
distinct websites, the augmentation artifacts written
in terms of that interfaces could be reused. However,
these scripting interfaces do not consider the search
engines provided by web applications.

6 CONCLUSIONS AND FUTURE
WORKS

In this article, we highlight the unique nature of
browser extensions as software tools that enable users
to customize their web browsing experience. While
some browser extensions can be developed with-
out programming skills using end-user development
tools, the complexity increases when scraping is in-
volved.

The article introduces a data service layer ap-
proach to simplify the development process for
browser extensions that require web scraping. The
approach enables developers to define web scraping
operations in a no-code manner by automating the
interaction with search engines, effectively creating
search services or APIs for websites that do not of-
fer them. These search APIs can then be combined
to create more complex information models, allowing
developers to retrieve data from multiple websites in
a single invocation.

An exciting outcome of the presented approach
and tool is its potential integration into other browser
extensions that aim to provide end-user programming
capabilities. Incorporating this data service, including
the end-user programming tools for defining search
services and APIs composition, can serve as a foun-
dational layer within a broader end-user program-
ming tool for more general-purpose artifacts such as
mashups or web augmenters. In addition, this inte-
gration would empower users to leverage web scrap-
ing capabilities seamlessly, enhancing their ability to
customize and extend the functionality of browser ex-
tensions.

By embedding the data service layer into other ex-
tensions, developers can provide a comprehensive en-
vironment that combines the benefits of end-user pro-
gramming with the flexibility of web scraping. This
would enable a wider range of users to create sophis-
ticated browser extensions that rely on scraping and

aggregating information from various websites.
A usability study was conducted to assess the ef-

fectiveness of the approach. While some usability is-
sues were identified, the majority of participants, even
those without programming skills, were able to define
the necessary API compositions for the given tasks,
demonstrating promising results.

As part of future work, the authors plan to conduct
a more comprehensive experiment to validate other
aspects of the data service layer approach. This will
contribute to further refining and enhancing the us-
ability and effectiveness of the proposed method.

REFERENCES

Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuh-
macher, M., and Völker, J. (2013). Deployment of
rdfa, microdata, and microformats on the web - A
quantitative analysis. In Alani, H., Kagal, L., Fokoue,
A., Groth, P., Biemann, C., Parreira, J. X., Aroyo, L.,
Noy, N. F., Welty, C., and Janowicz, K., editors, The
Semantic Web - ISWC 2013 - 12th International Se-
mantic Web Conference, Sydney, NSW, Australia, Oc-
tober 21-25, 2013, Proceedings, Part II, volume 8219
of Lecture Notes in Computer Science, pages 17–32.
Springer.

Chasins, S. E., Mueller, M., and Bodı́k, R. (2018). Rousil-
lon: Scraping distributed hierarchical web data. In
Baudisch, P., Schmidt, A., and Wilson, A., editors,
The 31st Annual ACM Symposium on User Interface
Software and Technology, UIST 2018, Berlin, Ger-
many, October 14-17, 2018, pages 963–975. ACM.

Dı́az, O. and Arellano, C. (2015). The augmented web:
Rationales, opportunities, and challenges on browser-
side transcoding. ACM Trans. Web, 9(2):8:1–8:30.

Dı́az, O., Arellano, C., Aldalur, I., Medina, H., and Fir-
menich, S. (2014). End-user browser-side modifica-
tion of web pages. In Benatallah, B., Bestavros, A.,
Manolopoulos, Y., Vakali, A., and Zhang, Y., editors,
Web Information Systems Engineering - WISE 2014 -
15th International Conference, Thessaloniki, Greece,
October 12-14, 2014, Proceedings, Part I, volume
8786 of Lecture Notes in Computer Science, pages
293–307. Springer.

Dı́az, O., Arellano, C., and Iturrioz, J. (2010). Interfaces
for scripting: Making greasemonkey scripts resilient
to website upgrades. In Benatallah, B., Casati, F.,
Kappel, G., and Rossi, G., editors, Web Engineering,
10th International Conference, ICWE 2010, Vienna,
Austria, July 5-9, 2010. Proceedings, volume 6189 of
Lecture Notes in Computer Science, pages 233–247.
Springer.

Kalou, A. K., Koutsomitropoulos, D. A., and Pap-
atheodorou, T. S. (2013). Semantic web rules and on-
tologies for developing personalised mashups. Int. J.
Knowl. Web Intell., 4(2/3):142–165.

Karger, D. R., Bakshi, K., Huynh, D., Quan, D., and Sinha,
V. (2005). Haystack: A general-purpose information

A Data Service Layer for Web Browser Extensions

57



management tool for end users based on semistruc-
tured data. In Second Biennial Conference on In-
novative Data Systems Research, CIDR 2005, Asilo-
mar, CA, USA, January 4-7, 2005, Online Proceed-
ings, pages 13–26. www.cidrdb.org.

Katongo, K., Litt, G., and Jackson, D. (2021). Towards
end-user web scraping for customization. In Church,
L., Chiba, S., and Boix, E. G., editors, Programming
’21: 5th International Conference on the Art, Science,
and Engineering of Programming, Cambridge, United
Kingdom, March 22-26, 2021, pages 49–59. ACM.

Khare, R. and Çelik, T. (2006). Microformats: a pragmatic
path to the semantic web. In Carr, L., Roure, D. D.,
Iyengar, A., Goble, C. A., and Dahlin, M., editors,
Proceedings of the 15th international conference on
World Wide Web, WWW 2006, Edinburgh, Scotland,
UK, May 23-26, 2006, pages 865–866. ACM.

Kleek, M. V., Moore, B., Karger, D. R., André, P., and
m. c. schraefel (2010). Atomate it! end-user context-
sensitive automation using heterogeneous information
sources on the web. In Rappa, M., Jones, P., Freire,
J., and Chakrabarti, S., editors, Proceedings of the
19th International Conference on World Wide Web,
WWW 2010, Raleigh, North Carolina, USA, April 26-
30, 2010, pages 951–960. ACM.

removed for double blind revision, R. (2022). Title removed
for double blind revision. Comput. Stand. Interfaces.

Van Kleek, M., Smith, D. A., Shadbolt, N., et al. (2012). A
decentralized architecture for consolidating personal
information ecosystems: The webbox. In PIM 2012.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

58


