
Enhancing SSR in Low-Thread Web Servers: A Comprehensive
Approach for Progressive Server-Side Rendering with any Asynchronous

API and Multiple Data Models

Fernando Miguel Carvalho a and Pedro Fialho
ISEL, Polytechnic Institute of Lisbon, Portugal

fi
https://cc.isel.pt/

Keywords: Web Templates, Server-Side Rendering, Non-Blocking, Asynchronous, Concurrent.

Abstract: Naive server-side rendering (SSR) techniques require a dedicated server thread per HTTP request, thereby
limiting the number of concurrent requests to the available server threads. Furthermore, this approach proves
impractical for modern low-thread servers like WebFlux, VertX, and Express Node.js. To achieve progressive
rendering, asynchronous data models provided by non-blocking APIs must be utilized. Nevertheless, this
method can introduce undesirable interleaving between template view processing and data access, potentially
resulting in malformed HTML documents. Some template engines offer partial remedies through specific
templating dialects, but they encounter two limitations. Firstly, their compatibility is confined to specific
types of asynchronous APIs, such as the reactive stream Publisher API. Secondly, they typically support
only a single asynchronous data model at a time. In this research, we propose an alternative web templating
approach that embraces any asynchronous API (e.g., Publisher, promises, suspend functions, flow, etc.) and
allows for multiple asynchronous data sources. Our approach is implemented on top of HtmlFlow, a Java-
based DSL for writing type-safe HTML. We evaluated against state-of-the-art reactive servers, specifically
WebFlux, and compared it with popular templating idioms like Thymeleaf and KotlinX.html. Our proposal
effectively overcomes the limitations of existing approaches.

1 INTRODUCTION

In traditional thread-per-request architectures, each
incoming request is handled by a dedicated thread.
The web server creates a new thread to handle each
incoming request, which means that the number of
threads in the system can grow quickly as the load in-
creases. This can lead to performance issues and scal-
ability problems, as the system can become bogged
down by context switching and thread overhead (Kant
and Mohapatra, 2000).

An alternative approach involves employing a
user-level M:N threading runtime, which entails the
execution of numerous user-level threads (M) by mul-
tiple system threads (N) in a seamless manner. User-
level threads provide a lightweight solution for man-
aging a higher volume of concurrent sessions due to
their reduced per-thread overhead (Welsh et al., 2001;
von Behren et al., 2003; Qin et al., 2018). Neverthe-
less, this approach still necessitates a user-level I/O

a https://orcid.org/0000-0002-4281-3195

subsystem capable of alleviating system-level block-
ing and vital for the performance of I/O-heavy appli-
cations (Karsten and Barghi, 2020).

Conversely, within contemporary low-thread ar-
chitectures, also known as event-driven (Elmeleegy
et al., 2004), the server can handle a large number of
concurrent requests without blocking, which makes
it more scalable and efficient (Schmidt, 1995). To
that end, it uses non-blocking I/O to ensure that each
thread can handle multiple requests at the same time.

The non-blocking I/O model used in low-thread
servers is well suited for handling large volumes of
data asynchronously (Meijer, 2012). The combi-
nation of low-thread servers and asynchronous data
models has enabled the development of highly scal-
able, responsive, and resilient Web applications that
can handle a high volume of data (Jin et al., 2015).

This idea gained significant attention with the
rise of Node.js in 2009 (Chaniotis et al., 2014), and
later several technologies embrace this approach in
Java ecosystem namely, Netty (Maurer and Wolfthal,
2015), Akka HTTP (Davis, 2019), Vert.X (Fox, 2001)

Carvalho, F. and Fialho, P.
Enhancing SSR in Low-Thread Web Servers: A Comprehensive Approach for Progressive Server-Side Rendering with any Asynchronous API and Multiple Data Models.
DOI: 10.5220/0012165300003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 37-48
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

37

and Spring WebFlux (Johnson et al., 2004), being the
latter the most widely used Web framework in Java
according to several surveys, such as JetBrains’ State
of Java report (2021) and community activity, such as
Github and Stackoverflow.

Migrating legacy Web applications to state-of-the-
art low-thread Web servers, not only involves port-
ing the Web handlers (e.g. controllers (Alur et al.,
2001)), and data repositories (Fowler, 2002), but may
also concern the Frontend, when it uses a Server-
Side Rendering (SSR) approach (Alur et al., 2001),
where the Web server is also responsible for gener-
ating the HTML for a Web page. Although, Single-
Page Applications (SPAs) with Client-Side Rendering
(CSR) (Klauzinski and Moore, 2016) have become a
popular choice for building Frontend in modern Web
applications, Server-Side Rendering (SSR) still has a
significant installation base and continues to be used
in many Multi-Page applications.

However, only a few Java template engines prop-
erly deal with asynchronous data models. In our
work, we analyze a use-case of a Spring WebFlux ap-
plication and some limitations, and harmful effects,
that may emerge from the use of SSR Frontend with
asynchronous data models, such as: 1) unresponsive
blank page, 2) limited concurrency, 3) server runtime
exceptions, 4) ill-formed HTML, 5) single model use,
and 6) restricted asynchronous API.

Our work is built on top of HtmlFlow, a Java
DSL library for HTML. We present a new proposal
that addresses all the aforementioned issues through
the combination of three ideas: 1) functional tem-
plates, which regards the capacity of implementing
Web templates as higher-order functions (Carvalho.
and Duarte., 2019); 2) resume callback in continua-
tions (Haynes et al., 1984) to control transitions from
asynchronous handlers, and 3) chain-of-responsibility
design pattern (Gamma et al., 1995) to control the
flow between a chain of template fragments.

In the next section, we highlight some issues that
arise from the naive use of asynchronous techniques
in web templates. Then, in Section 3, we describe
state-of-the-art template engines for SSR. Following
that, in Section 4, we compare these template engines
in a case study of a Spring WebFlux application. Sec-
tion 5 explains how our proposal mitigates the lim-
itations of the competition. Next, in Section 6, we
evaluate different web templates and their issues re-
garding asynchronous data models. We conclude and
discuss future work in Section 7.

2 ASYNCHRONOUS APIs
MATTER

The non-blocking IO model used in low-thread
servers only functions properly if HTTP handlers do
not block. This implies that an HTTP handler can-
not wait for IO completion, such as reading a file,
querying a database, or any other kind of IO opera-
tion. Therefore, handlers must be designed to initiate
IO operations and return immediately, allowing other
handlers to execute while the IO operation completes
in the background. To ensure non-blocking I/O, han-
dlers should use asynchronous APIs to access data.
Asynchronous APIs allow handlers to submit requests
and receive notifications when operations complete,
all without blocking the thread.

However, while using a synchronous API can be
straightforward with its direct style of producing re-
sults through the returned value of function calls,
dealing with an asynchronous API can be more chal-
lenging. Asynchronous APIs do not have a stan-
dard approach, leading to several proposals such
as continuation-passing style (CPS) (Sussman and
Steele, 1975), async/await idiom (Syme et al., 2011),
reactive streams (Reactive Streams, 2015), Kotlin
Flow (Breslav, 2016), and others. The correct use
of an asynchronous API can help ensure that code
is efficient, reliable, and maintainable. On the other
hand, dealing with asynchronous data models in a
naive way, may produce several harmful effects. In
the context of a web server we may observe the fol-
lowing problems, not limited to:

1. unresponsive blank page;

2. limited concurrency,

3. server runtime exceptions.

A naive way of dealing with an asynchronous API
is blocking on completion. For example, in the Java
CompletableFuture, which is an implementation of
a Promise (Friedman and Wise, 1978), this may be
achieved getting its result from its method join():
T. This blocking approach can be used in any tem-
plate engine, including those analyzed in this work
(i.e. Thymeleaf, KotlinX.html and HtmlFlow) with
the same ill effect. These kind of handlers will pro-
duce an unresponsive blank page in the browser. Only
when all data models are completed we may see a re-
sulting HTML document. Rather than a progressive
behavior where the page would be rendered smoothly
as data becomes available, we will have an all or noth-
ing effect starting with a blank page and finishing with
the complete page.

Furthermore, while an handler is waiting for data
completion it is blocking a thread and preventing it

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

38

from doing another task, such as processing another
HTTP request, leading to limited concurrency. For
single threaded environments it means that it will han-
dle just one HTTP request at a time.

In some environments, blocking for completion
may cause even worse issues, lead to malfunction
and throw a server runtime exception. For instance,
in Spring WebFlux blocking an HTTP handler may
throw: IllegalStateException with the message:
block()/blockFirst()/blockLast() are blocking, which
is not supported in thread reactor-http-nio-1.

Another example is the Eclipse Vert.x for
JVM (Fox, 2001), which includes a low-thread server
based on Netty and in similar blocking situations
may throw an exception, such as: io.vertx.core.-
VertxException: Thread [vert.x-eventloop-thread-
1,5,main] has been blocked for 2997 ms, time limit
is 2000 ms

When a blocking operation occurs within such a
server, it can lead to resource contention and poten-
tially degrade the scalability of the server. The ex-
ceptions serve as warnings to developers that block-
ing operations are being performed in a context where
they are not supported or recommended. They high-
light the potential risk of blocking and encourage de-
velopers to refactor their code to use non-blocking al-
ternatives or offload blocking operations to separate
threads or asynchronous tasks.

While the web application might still appear to
work fine despite these exceptions, it is important to
address them to ensure the proper functioning and
scalability of the application within the intended low-
thread and non-blocking architecture. Ignoring or
suppressing these exceptions can lead to potential per-
formance issues, thread starvation, and decreased re-
sponsiveness of the web server under high load.

3 STATE OF THE ART

In this chapter, we will begin by introducing the latest
advancements in Web Templates with SSR. Following
that, we will address several issues that arise from the
utilization of asynchronous data models.

3.1 Related Work

Thymeleaf (Fernández, 2011) is the default template
view engine in Spring framework. Thymeleaf has a
powerful expression language that allows developers
to dynamically manipulate data in their HTML tem-
plates. Also, Thymeleaf is the only Spring built-in
view engine that supports asynchronous data mod-
els with progressive rendering (Deinum and Cosmina,

2021), emitting the resulting HTML in a series of in-
cremental updates as the template is being resolved,
rather than waiting for the entire template to be re-
solved before emitting any HTML. All the others
built-in view engines, such as Freemarker, Handle-
bars, Jade or JTwig produce an unresponsive blank
page while awaiting for data completion. On the other
hand, JSP (Bergsten, 2003) is not compliant and not
even supported in WebFlux.

Web templates may also be classified according to
the domain-specific language (DSL) they use, which
is a programming language specialized to a particu-
lar application domain (e.g. HTML) (Landin, 1966).
j2Html (Ase, 2015), KotlinX.html (Mashkov, 2015)
and HtmlFlow (Carvalho, 2017), are examples of Java
libraries DSLs for HTML. In common these DSLs
use functions to define their languages. According
to (Fowler, 2010) we can distinguish their APIs be-
tween: 1) nested function and 2) method chaining.

Nested function combines functions by making
function calls arguments in higher-level function
calls. This approach can be used to organize code and
create reusable code blocks, allowing an efficient and
modular programming style. In Listing 1 we present
an example of a DSL for HTML using a nested func-
tion approach. Yet, a simple sequence of nested func-
tions ends up being evaluated backwards to the order
they are written. This means that arguments are first
evaluated before the function being invoked. In List-
ing 1, p() is first evaluated and its resulting paragraph
will be the argument of the call to div(), which in
turn will be the argument of body() and hencefor-
ward.

html (
head (

t i t l e ("My title")) ,
body (

d i v (
p ("Some text"))))

Listing 1: Nested function.

The backward evaluation behavior may incur in sev-
eral issues. Since arguments are evaluated before the
high-level function is called, this technique may not
support progressive rendering to emit HTML on de-
mand according to functions calls order. Otherwise
the HTML would be generated backwards. Thus,
it may require some sort of auxiliary data structure
to manage elements processing and control HTML
emission, which in turn may lead to additional perfor-
mance overhead compared to other alternatives that
do not require such a data structure.

Method chaining pattern avoids the backward
evaluation behavior, since it is based on methods calls

Enhancing SSR in Low-Thread Web Servers: A Comprehensive Approach for Progressive Server-Side Rendering with any Asynchronous
API and Multiple Data Models

39

Html ()
. head ()

. t i t l e ("My title")
. body ()

. d i v ()
. p ("Some text")

Listing 2: Method chaining.

with receiver, which is the object the method is being
called on (Evans et al., 2022). The receiver object is
passed as an implicit argument to each method call,
allowing for each subsequent method to be called on
the result of the previous method. In the example of
Listing 2, the result of Html() call is an HTML ele-
ment that will be the receiver for the next head() call,
which in turn produces an Head element that will be
the receiver for the next title() call, and hencefor-
ward.

J2html uses a nested function approach where
templates has a similar layout to that one presented
in Listing 1. The result of the execution of a j2Html
template is a tree structure composed of Tag ob-
jects(Gamma et al., 1995). The render() method is
then used to traverse the tree and produce an HTML
document. Also, j2Html does not have built-in sup-
port for asynchronous data models.

KotlinX.html also uses a nested function approach
to generate HTML, but instead of using objects as ar-
guments, it uses function literals (i.e. lambdas) to rep-
resent HTML tags and attributes. By using function
literals as arguments, KotlinX.html is able to delay the
evaluation of the HTML tags until the render stage,
which solves the problem of backward evaluation that
could occur with j2html’s object-based approach.

HtmlFlow was designed to be a lightweight and
efficient Java DSL library for generating HTML, and
one of its key features is its fluent API with a method
chaining approach, similar to the sample presented
in Listing 2. When using HtmlFlow, developers can
chain together a series of method calls to define the
structure and content of their HTML templates. As
each method is called, it emits HTML code directly,
rather than instantiating and storing intermediate ob-
jects. This approach allows HtmlFlow to generate
HTML more efficiently and with lower memory over-
head than some other HTML generation libraries that
may instantiate and store a large number of objects
representing HTML nodes or elements.

In Table 1 we present a brief comparison between
the web templates and the properties we have dis-
cussed in this section, regarding non-asynchronous
data models. We also included a performance met-
ric regarding the throughput of each web template in
Spring templates benchmark (Reijn, 2015). These re-

Table 1: Comparing template views in terms of DSL ap-
proach, host language, and ability of providing functional
templates, progressive rendering and their relative perfor-
mance to HtmlFlow in Spring templates benchmark.

Library DSL Language Functional Prog. Bench

Thymeleaf External Thymeleaf × ✓ 32%

j2html Nested Java ✓ × 26%

KotlinX Nested Kotlin ✓ ✓ 58%

HtmlFlow Chain Java ✓ ✓ 100%

sults are relatively to HtmlFlow throughput, which is
the most performant engine among the evaluated web
templates.

3.2 Asynchronous Data Models Issues

However, the use of asynchronous data models in web
templates can introduce new issues, namely:

1. limited asynchronous API

2. single data model

3. ill-formed HTML

4. nested callbacks

One of the main challenges is the lack of a stan-
dard API for asynchronous calls, as there are multi-
ple different APIs and idioms available, as described
in Section 2. Additionally, web templates may only
support a limited asynchronous API, which can pose
a limitation on application development. This is es-
pecially true when the API provided by the non-
blocking drivers is incompatible with the web tem-
plate’s asynchronous support.

Additionally, while most web templates can bind
with multiple synchronous data models, they may not
be able to do the same for asynchronous data mod-
els, limiting the progressive rendering to a single data
model.

Despite this, even for web templates that do not
face the single data model issue, another problem may
arise regarding the correct emission of HTML. The
asynchronicity between the dispatch and completion
of the IO operation may lead to undesired interleav-
ing between data access and HTML definition, po-
tentially resulting in an ill-formed HTML document.
An example of such an ill-formed HTML document
is presented in Listing 6 of Section 4.3.

Even though a web page may still be readable and
function correctly despite containing invalid HTML,
it is still important to strive for valid and well-formed
code. Valid HTML code ensures that the web page is
accessible to a wider range of users and devices, and
it also helps search engines to understand the content
of the page better, which can improve search engine
rankings.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

40

(a) First fragment (b) 1st and 2nd fragments (c) Final web page

Figure 1: Expected output from Disco web app for The Rolling Stones band.

Finally for web templates dealing with data
models through the continuation-passing style
(CPS) (Sussman and Steele, 1975) we can observe an
idiomatic pattern emerging on source code from the
use of nested callbacks. The level of nesting will be
proportional to the number of asynchronous models
used in the web template which can lead to code that
is difficult to read and maintain. This scenario is
commonly referred to as ”callback hell” (Kambona
et al., 2013).

4 CASE STUDY

In this chapter, we will present how Thymeleaf and
KotlinX.html deal with asynchronous data models in
a web application running in a state of the art non-
blocking server, namely Spring WebFlux (Deinum
and Cosmina, 2021).

In the next subsection we start describing our case
study of a WebFlux application named Disco. Af-
ter that, we analyze how Thymeleaf and KotlinX.html
behave in this application.

4.1 Disco Non-Blocking Web
Application

The Disco WebFlux application consumes data from
two Web APIs, namely MusicBrainz (an open music
encyclopedia that collects music metadata) and Spo-
tify (an audio streaming). The Disco application will
fetch information from MusicBrainz about the foun-
dation, origin and genres of a band, and from Spotify
it will get its popular tracks.

In Figure 1 we present the expected output of

an HTML document from the Disco web application
for The Rolling Stones band, in three accumulated
fragments. The first fragment of Figure 1a is im-
mediately rendered since it does not depend of any
asynchronous data. Then, the rest two fragments of
Figures 1b and 1c are emitted incrementally as their
data models become available. We deliberately made,
Spotify data model with a higher latency than Mu-
sicBrainz to observe a progressive render between
these two steps. In Listing 3 we present the corre-
sponding HTML source to the final web page of Fig-
ure 1c.

<html>
<body>

<div>
<h3>The Rolling Stones </h3>
<hr>
<h3>MusicBrainz info:</h3>

Founded: 1962
From: London
Genre: rock , blues rock , ...</

li>

<hr>
Spotify popular tracks:
Paint it Black , Start ...</

span>
<hr>

</div>
<footer>

<small>
3003 ms (response handling time)

</small>
</footer>

</body>
</html>

Listing 3: Expected HTML source code for web page of
Figure 1c.

Enhancing SSR in Low-Thread Web Servers: A Comprehensive Approach for Progressive Server-Side Rendering with any Asynchronous
API and Multiple Data Models

41

Notice, we are including a footer with the to-
tal processing time, since the handler receives the
request, until the template finishes processing the
footer element. To turn visible the effects of pro-
gressive rendering we inserted an explicit delay of 2
seconds on the first data source (i.e. MusicBrainz) and
3 seconds on the second one (i.e. Spotify). Since we
are fetching data sources concurrently, then the han-
dler processing duration is at least equal to the largest
delay of the data sources, in this case 3 seconds.

Since the analyzed web templates are compatible
with both Java and Kotlin, and Spring WebFlux is as
well, we choose Kotlin as the programming language
for the Disco web application due to its conciseness
and expressiveness.

The Disco domain model has two main entities de-
fined by MusicBrainz and SpotifyArtist classes.
In this case we have a repository for each domain
entity to access its data source (Fowler, 2002). Be-
cause we are dealing with asynchronous data sources
our repositories produce asynchronous effects. In this
case, we choose a CompletableFuture return type
to represent an asynchronous computation that may
complete at some point and produce a result.

4.2 Thymeleaf

Web templates (such as JSP, Handlebars or
Thymeleaf) are based in HTML documents, which
are augmented with template specific markers (e.g.
<%, {{}} or ${}) representing dynamic information
that can be replaced at runtime by the results of
corresponding computations to produce a view. In
addition to specific Thymeleaf templating marks (i.e.
${}) we may find thymeleaf attributes that define the
execution of predefined logic, such as, for each loop
(i.e. th:each).

In Listing 4 we present the Thymeleaf template
that produces the view of Figure 1c. For simplicity we
are just including the dynamic parts, since the static
blocks are equal to those presented in Listing 3. This
template deals with 4 model attributes: artistName
(line 1), musicBrainz (lines 3), spotify (line 13)
and start (line 18).

Except for attributes artistName and start that
are a String and a long, both musicBrainz and
spotify are instances of CompletableFuture. In
this case, passing a CompletableFuture or any other
kind of promise to a Thymeleaf template will post-
pone processing releasing the thread to other tasks.
When data becomes available and the promise is ful-
filled, the template processing resumes making the
CompletableFuture’s content available as model at-
tributes.

1 <h3 th:text="${artistName}"></h3>
2 ...
3 <ul th:each="item : ${musicBrainz}">
4 <li th:text="*{’Founded: ’ + item.year

}">
5
6 <li th:text="*{’From: ’ + item.from}">
7
8 <li th:text="*{’Genre: ’ + item.genres

}">
9

10
11 ...
12 <th:block
13 th:each="track: ${spotify.popularSongs

}"
14 th:text="${track + ’, ’}">
15 </th:block >
16 ...
17 <small
18 th:text="${#dates.createNow().getTime

() - start} + ’ms (response
handling time)’">

19 </small>

Listing 4: Example of Thymeleaf template of Disco web
application.

Yet, until model attributes musicBrainz and
spotify become available the browser is display-
ing an unresponsive blank page waiting for server re-
sponse. To address this issue on Spring WebFlux,
the asynchronous objects must be wrapped into a
ReactiveDataDriverContextVariable. When a
model attribute of this type is present, the template en-
gine enters data-driven mode, where data is streamed
to the client as it becomes available, rather than wait-
ing for the entire response to be generated before
sending it. This allows the static parts of the web tem-
plate to be immediately emitted, displaying an initial
web page as presented in Figure 1a before the asyn-
chronous data is completed and the web page is fin-
ished.

But, there are two notable limitations of Reacti-
veDataDriverContextVariable, regarding the is-
sues 1) limited asynchronous idiom and 2) single data
model, described in of Section 3. First, the model at-
tribute must be a reactive stream Publisher (Reac-
tive Streams, 2015), meaning that dealing with any
other kind of asynchronous model always requires a
conversion to Publisher. Second, the web template
can only have a single model attribute of this type.

Regarding 1) limited asynchronous idiom,
actually, converting from CompletableFuture
to Publisher can be achieved through the
Mono.fromFuture() method of the Reactor li-
brary, which returns a new instance of Mono that
implements Publisher. A Publisher represents
multi-valued data and it is expected that Thymeleaf
web template contains some kind iteration on

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

42

the data-driver variable, normally by means of a
th:each attribute. This means that it requires a
th:each block to access musicBrainz even it just
contains a single value (i.e. line 3 of Listing 4).
However, this requirement may introduce a semantic
mismatch when dealing with a single value, such as
the CompletableFuture<MusicBrainz>. The use
of the th:each block implies an iteration, whereas in
this case, a continuation-based idiom would be more
appropriate to convey the intended meaning.

On the other hand, regarding 2) single data model
use, when we have multiple asynchronous objects,
we can compose them into a single object using
operators such as zip, combineLatest, or merge.
However, when we do this, we won’t have the
benefit of progressive rendering that we get with
ReactiveDataDriverContextVariable. Instead,
we will have to wait for all the asynchronous oper-
ations to complete before the final result can be ren-
dered.

4.3 KotlinX.html

Since KotlinX.html is a Kotlin DSL library for HTML
we can take advantage of its host programming lan-
guage features to deal with data models, without
any special constructs like ReactiveDataDriver-
ContextVariable to handle data-driven rendering.
The Java CompletableFuture API provides comple-
tion handlers that can be used to chain dynamic blocks
of a template to be processed only when data become
available.

Here, we are using the thenAccept handler
to register a callback that is called when the
CompletableFuture completes. In the next ex-
ample, the callback function mb -> ... is passed
as an argument to the thenAccept method of the
musicBrainz CompletableFuture:
musicBrainz.thenAccept { mb -> ... }

This callback function will be executed when the
musicBrainz future completes, and it will receive the
result of the future, which is represented by the mb
parameter.

KotlinX.html can emit HTML to any output com-
patible with the Appendable interface. The exten-
sion function appendHTML() takes a receiver of a
type that implements the Appendable interface, and
returns a TagConsumer object that we can use to
write HTML tags and attributes. On the other hand,
WebFlux allows building reactive responses from a
Publisher<String>. Thus, to use KotlinX.html in
WebFlux, we use an auxiliary type AppendableSink
that is able to produce a Publisher<String> from
an Appendable.

1 fun artistView(
2 start: Long ,
3 artisName: String ,
4 musicBrainz: CF<MusicBrainz >,
5 spotify: CF<SpotifyArtist >
6): Publisher <String > =

AppendableSink {
7 this
8 .appendHTML()
9 .html {

10 body {
11 div {
12 h3 { text("$artisName") }
13 hr()
14 h3 { text("MusicBrainz info:")

}
15 ul { musicBrainz.thenAccept {

mb ->
16 li { text("Founded:${mb.year}"

) }
17 li { text("From:${mb.from}") }
18 li { text("Genres:${mb.genres}

") }
19 hr()
20 b { text("Spotify ...: ") }
21 span { spotify.thenAccept {

spt ->
22 text(spt.popularSongs.

joinToString(", "))
23 hr()
24 footer {
25 small {
26 text("${currentTimeMillis()

-start} ms (response
handling time)")

27 }
28 }
29 this.close()
30 } // thenAccept
31 } // span
32 } // thenAccept
33 } // ul
34 } // div
35 } // body
36 } // html
37 .asFlux()

Listing 5: Example of KotlinX.html template of Disco
web application. For readability we replaced type name
CompletableFuture by CF.

In Listing 5 we present the definition in
KotlinX.html for the web page of Figure1c. In Kotlin,
a block of code enclosed in curly braces {...} is
known as a lambda, and can be used as an argument to
a function that expects a function literal. For example,
when we write body{...}, we are invoking the body
function with a lambda as its argument. This lambda
can be used to define the contents of the HTML tag
represented by the body function.

The constructor of AppendableSink used in List-

Enhancing SSR in Low-Thread Web Servers: A Comprehensive Approach for Progressive Server-Side Rendering with any Asynchronous
API and Multiple Data Models

43

ing 5 receives a lambda that is called with that
AppendableSink object as the receiver (i.e. this).
The last statment of the web template definition (line
29) should close the AppendableSink to make the
resulting Publisher be completed. This is manda-
tory to let WebFlux know that the HTML emit is
completed and the HTTP connection can be ter-
minated. Finally, notice how AppendableSink is
converted into a Publisher in line 37 through its
method asFlux, where Flux is an implementation of
Publisher.

Notice we make plain use of thenAccept com-
pletion handler to deal with the resulting data model
(i.e. mb in line 15 and spt in line 21) without the need
of a special construct like th:each in Thymeleaf. Us-
ing the non-blocking API of CompletableFuture we
achieve a progressive rendering, which first emits the
resulting web page of Figure 1a and then proceeds to
the next partial page of Figure 1b resulting from com-
pletion of MusicBrainz data model and before com-
pletion of Spotify data. The web page will finish with
the expected output of Figure 1c when the last data
model completes.

Yet, there are still some issues to deal. First, the
call to thenAccept returns immediately and the en-
closing HTML builder (i.e. ul on line 15 and span
on line 22) will emit the end tag before the continu-
ation has been performed, leading to the issue 3) ill-
formed HTML of Section 3.2. The resulting HTML
will be out of order as presented in Listing 6. Notice,
elements ul, div, body and html are closed (lines 7,
8, 9, and 10) before their inner elements have been
emitted with data from MusicBrainz and Spotify web
APIs.

Modern browsers have become quite forgiving
when it comes to rendering HTML that does not com-
ply with the specifications. They try to interpret and
render the content as best as they can, even if the
HTML source is invalid or contains errors.

Secondly, we can observe an emerging idiomatic
anti-pattern in the source code, specifically in the
chaining of callbacks (e.g., between lines 16 and 23).
This anti-pattern often leads to a pyramid-like struc-
ture, particularly when dealing with nested callbacks,
regarding the issue 4) nested callbacks of Section 3.2.
As the template becomes dependent on more asyn-
chronous data models, the callbacks become nested
deeper within each other, exacerbating the issue of
callback nesting.

1 <html>
2 <body>
3 <div>
4 <h3>The Rolling Stones </h3>
5 <hr>
6 <h3>MusicBrainz info:</h3>
7
8 </div>
9 </body>

10 </html>
11 Founded: 1962
12 From: London
13 Genres: rock , blues rock , ...
14 <hr>
15 Spotify popular tracks:
16 Paint it Black , Start Me

...
17 <hr>
18 <footer>
19 <small>
20 3011 ms (response handling time)
21 </small>
22 </footer>

Listing 6: Example of ill-formed HTML source resulting
from undesirable interleavings between template processing
and asynchronous data access.

5 HtmlFlow ASYNCHRONOUS
SUPPORT

HtmlFlow uses a method chaining approach as de-
scribed in Section 3.1, and one of its key features
that solves the problem of the ill-formed HTML with
asynchronous models is its method builder () to
close HTML tags. Element tags should be explicitly
closed through the invocation of this method.

Views in HtmlFlow are built from a function of
type HtmlTemplate, specified by the following Java
functional interface:

interface HtmlTemplate {
void resolve(HtmlPage page);

}

The HtmlPage instance provides the HTML
builder methods, including next special methods,
where P is the type of the parent HTML element and
M is the type of the data model:

__()
dynamic(BiConsumer <P,M> cont)
await(AwaitConsumer <P,M> cont)

For example in Listing 7 the HTML fragments de-
limited by a continuous blue line are static and re-
solved once, on first rendering. On the other hand, the
HTML fragments delimited by a dashed red line are
dynamic and resolved on every template processing.

Former implementation of HtmlFlow used an im-
perative flag-based approach to control the global

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

44

Listing 7: HtmlFlow template of Disco web application.
For readability we cleared the generic argument in calls to
await<ArtistAsyncModel> method.

state of HTML emission, and determine whether it is
inside a static, or a dynamic HTML fragment.

During the initial rendering, HtmlFlow retains
an internal data structure containing the HTML out-
comes from each static block. In the case of the tem-
plate shown in Listing 7, HtmlFlow would store the
designated static blocks depicted in Figure 8. In sub-
sequent renders, HtmlFlow’s resolution process will
intertwine HTML emission, alternating between the
content retrieved from the staticHtmlBlocks data
structure and the execution of consumers provided to
dynamic and await builders.

Calling the BiConsumer of a dynamic fragment
uses a direct style and when it returns it proceeds
emitting HTML of the following static HTML block
and henceforward.

Yet, HtmlFlow cannot follow a direct style when
invoking the AwaitConsumer of an await builder.
The AwaitConsumer denotes an asynchronous func-

Listing 8: Resulting static HTML blocks data structure re-
suting from HtmlFlow processing.

tion that may return before completion. Emitting the
subsequent static HTML fragment upon the return
of the AwaitConsumer call could result in the asyn-
chronous fragment appearing in an incorrect order.

For that reason, the AwaitConsumer<T,M> re-
ceives a third parameter, which is a completion call-
back, used to notify HtmlFlow that it can proceed ren-
dering the next HTML fragment. This is based on the
same idea of the resume function in continuations and
coroutines (Haynes et al., 1984), to transfer control
from one coroutine to another.

Given that, the new HtmlFlow rendering process
is based on a chain of continuations specified by the
interface HtmlContinuation, where each implemen-
tation is responsible for emitting a static, a dynamic
or an asynchronous fragment, and call the next node.
This technique has similarities with the way how the
chain-of-responsibility design pattern (Gamma et al.,
1995) assembles the logic of a series of processing
objects having the responsibility, to either handle a
request or forward it to the next object on the chain.
In our case, each continuation has both roles handling
an HTML fragment and forwarding it to the next one.

To use the template of Listing 7 we must first
create an HtmlViewAsync, which is a container of
an HtmlTemplate that wil make a preprocessing
of the static HTML fragments and dynamic ones.
Later, we may write the resulting HTML of the
HtmlViewAsync to any Appendable object through
its method writeAsync(Appendable out, Object
model). This writeAsync method returns a Comple-
tableFuture that completes when all HTML has
been emitted.

To use HtmlFlow in WebFlux we take advan-
tage of the same AppendableSink described in
Section 4.3. to emit the resulting HTML to a
Publisher<String>. This sink should be closed
when the CompletableFuture from the write-
Async completes. Given an HtmlViewAsync for the
template of the Listing 7 named artistView, then
the resulting Publisher<String> with the HTML is
produced with:

Enhancing SSR in Low-Thread Web Servers: A Comprehensive Approach for Progressive Server-Side Rendering with any Asynchronous
API and Multiple Data Models

45

val html = AppendableSink { artistView
.writeAsync(this, model)
.thenAccept { this.close() }

}.asFlux()

6 EVALUATION

In the initial subsection, we provide a summary of
the feature comparison among the assessed template
engines for Server-Side Rendering (SSR). After that
we describe the testing environment, followed by our
analysis of the performance results in the next section.

6.1 Feature Comparison

In Table 2 we highlight the characteristics of each
template engine dealing with asynchronous models
through a non-blocking API, according to the issues
pointed in Section 3.2: 1) limited asynchronous API,
2) single data model, 3) ill-formed HTML and 4)
nested callbacks.

Table 2: Comparing template engines dealing with asyn-
chronous models.

Library
Asynchronous Model 3. Valid

HTML
4. Avoid
nested

callbacks1. API 2. Multiplicity

Thymeleaf Publisher 1 - ✓

KotlinX Any * × ×

HtmlFlow Any * ✓ ✓

Unlike Thymeleaf, building a web template with
KotlinX.html is not limited either to: 1) a specific
kind of asynchronous API (i.e. Publisher), nor to
2) a single asynchronous data model.

However, employing KotlinX.html to construct
templates with asynchronous data models can poten-
tially result in improperly structured HTML. Further-
more, when utilized with multiple asynchronous data
models, it might give rise to nested callbacks and lead
to a pyramid-like source code structure.

As a DSL for HTML, HtmlFlow has the same ad-
vantages of KotlinX.html, but it also solves the issues
3) and 4). It does not suffer either from the idiomatic
callback hell, nor producing ill-formed HTML.

6.2 Environment

To perform an unbiased comparison we used one
of the most popular benchmarks for template en-
gines, the Comparing Template engines for Spring
MVC, simply denoted as Spring templates bench-
mark(Reijn, 2015). This benchmark uses the Spring

MVC middleware to host a web application that pro-
vides a route for each template engine. Each route
deals with the same information to fill the template
(i.e. List<Presentation>), which makes it possi-
ble to flood all the routes with a high number of re-
quests and asserts which route responds faster. The
Presentation domain entity is according to the Java
definition of Listing 9

record P r e s e n t a t i o n (
long id ,
S t r i n g t i t l e ,
S t r i n g speakerName ,
S t r i n g summary

) { }

Listing 9: Presentation domain entity.

The repository has 10 instances of Presentation
and each template produces an HTML document with
a table of 10 rows. The generated HTML code is ap-
proximately 80 lines long and has a size of around 9
KB.

We have implemented three modifications to eval-
uate template engines in a non-blocking context:
1. changed repository to return a reactive

Publisher<T> rather than a List<T>.
2. replaced Spring MVC by Spring WebFlux and

their controllers with functional routes (Deinum
and Cosmina, 2021).

3. integrated Java Microbenchmark Harness
(JMH) (Shipilev, 2013) to conduct performance
tests and gather precise results.
To execute requests to the functional routes dur-

ing the JMH benchmark, we utilized the Spring
WebTestClient. This approach differed from the
original Spring templates benchmark, which em-
ployed an external Apache HTTP server benchmark-
ing tool to stress test and perform HTTP requests. By
directly testing the functional routes within the same
process, we eliminated the need for the external tool
and excluded the HTTP communication from the per-
formance results.

Our tests were done on a local machine running
Ventura 13.3.1 on a MacBook Pro with Apple M1
Pro, 8 cores (6 performance and 2 efficiency), and
OpenJDK 64-Bit Server VM Corretto-17.0.5.8.1.

6.3 Results

We conducted our tests in JMH by varying the num-
ber of worker threads, specifically 1, 2, 4, and 8. As
the number of worker threads increased, the level of
concurrent requests also escalated, allowing us to ob-
serve the scalability of each template view.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

46

Figure 2: Throughput of Thymeleaf, KotlinX.html and
HtmlFlow in Spring templates benchmark with WebFlux
and JMH.

According to the results presented in Figure 2,
when running these tests with progressive rendering,
Thymeleaf demonstrates limitations in scalability un-
der these conditions.

On the flip side, both KotlinX.html and HtmlFlow
exhibit scalability as the number of handler threads
increases.

KotlinX.html exhibits slightly better throughput
than HtmlFlow. This is because KotlinX.html does
not ensure well-formed HTML with an asynchronous
data model, and it does not require any special care
to guarantee the correct chaining of HTML elements,
as HtmlFlow does. This alleviates the rendering pro-
cess in KotlinX.html, resulting in slightly better per-
formance compared to HtmlFlow.

7 CONCLUSIONS

Our proposal for server-side rendering Web templates
on top of HtmlFlow is the only non-blocking solution
that is able to deal with any number, and any kind
of asynchronous data models and still produce well-
formed HTML. Also, our use of CPS in asynchronous
views avoids nesting callbacks, among different asyn-
chronous models.

Now we plan to take a step further and take
advantage of the async/await idiom (Syme et al.,
2011) in asynchronous fragments. The async/await
idiom enables writing asynchronous code that looks
like synchronous code, without the need for call-
backs. In Kotlin, the async/await idiom is imple-
mented using coroutines and suspending functions.
Yet, KotlinX.html builders use non-suspending func-
tions as parameters, which means that they cannot be
used directly with the async/await idiom.

Since HtmlFlow uses a method chaining ap-
proach, it is possible to extend its API through Kotlin
extension functions that provide the ability to extend
a class or an interface with new functionality without
having to inherit from the class. Thus, can we sim-
plify the asynchronous idiom of HtmlFlow through
Kotlin extensions and async/await? Is there any in-

trinsic overhead on that approach? How do we com-
pare it with present proposal? Those are some of the
research questions for future work.

REFERENCES

Alur, D., Malks, D., and Crupi, J. (2001). Core J2EE Pat-
terns: Best Practices and Design Strategies. Prentice
Hall PTR, Upper Saddle River, NJ, USA.

Ase, D. (2015). Kotlin dsl for html. Technical report.
Bergsten, H. (2003). JavaServer Pages. O’Reilly Media,

Inc.
Breslav, A. (2016). Kotlin Language Documentation.
Carvalho, F. M. (2017). Htmlflow java dsl to write typesafe

html. Technical report, https://htmlflow.org/.
Carvalho., F. M. and Duarte., L. (2019). Hot: Unleash web

views with higher-order templates. In Proceedings of
the 15th International Conference on Web Information
Systems and Technologies, WEBIST ’19, pages 118–
129.

Chaniotis, I., Kyriakou, K.-I., and Tselikas, N. (2014). Is
node.js a viable option for building modern web appli-
cations? a performance evaluation study. Computing,
97.

Davis, A. L. (2019). Akka HTTP and Streams, pages 105–
128. Apress, Berkeley, CA.

Deinum, M. and Cosmina, I. (2021). Building Reactive
Applications with Spring WebFlux, pages 369–420.
Apress, Berkeley, CA.

Elmeleegy, K., Chanda, A., Cox, A. L., and Zwaenepoel,
W. (2004). Lazy asynchronous i/o for event-driven
servers. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’04,
page 21, USA. USENIX Association.

Evans, B., Verburg, M., and Clark, J. (2022). The Well-
Grounded Java Developer, Second Edition. Manning.

Fernández, D. (2011). Thymeleaf. Technical report,
https://www.thymeleaf.org/.

Fowler, M. (2002). Patterns of Enterprise Application Ar-
chitecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Fowler, M. (2010). Domain Specific Languages. Addison-
Wesley Professional, 1st edition.

Fox, T. (2001). Eclipse vert.x tool-kit for building re-
active applications on the jvm. Technical report,
https://vertx.io/.

Friedman and Wise (1978). Aspects of applicative program-
ming for parallel processing. IEEE Transactions on
Computers, C-27(4):289–296.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Co., Inc.,
Boston, MA, USA.

Haynes, C. T., Friedman, D. P., and Wand, M. (1984). Con-
tinuations and coroutines. In Proceedings of the 1984
ACM Symposium on LISP and Functional Program-
ming, LFP ’84, page 293–298.

Enhancing SSR in Low-Thread Web Servers: A Comprehensive Approach for Progressive Server-Side Rendering with any Asynchronous
API and Multiple Data Models

47

Jin, X., Wah, B. W., Cheng, X., and Wang, Y. (2015). Sig-
nificance and challenges of big data research. Big
Data Res., 2(2):59–64.

Johnson, R., Hoeller, J., Donald, K., Sampaleanu, C.,
Harrop, R., Risberg, T., Arendsen, A., Davison, D.,
Kopylenko, D., Pollack, M., et al. (2004). The
spring framework–reference documentation. inter-
face, 21:27.

Kambona, K., Boix, E. G., and De Meuter, W. (2013). An
evaluation of reactive programming and promises for
structuring collaborative web applications. In Pro-
ceedings of the 7th Workshop on Dynamic Languages
and Applications, DYLA ’13, New York, NY, USA.

Kant, K. and Mohapatra, P. (2000). Scalable internet
servers: Issues and challenges. ACM SIGMETRICS
Performance Evaluation Review, 28(2):5–8.

Karsten, M. and Barghi, S. (2020). User-level threading:
Have your cake and eat it too. Proc. ACM Meas. Anal.
Comput. Syst., 4(1).

Klauzinski, P. and Moore, J. (2016). Mastering JavaScript
Single Page Application Development. Packt Publish-
ing.

Landin, P. J. (1966). The next 700 programming languages.
Communications of the ACM, 9(3):157–166.

Mashkov, S. (2015). Kotlin dsl for html. Technical report.
Maurer, N. and Wolfthal, M. (2015). Netty in Action. Man-

ning.
Meijer, E. (2012). Your mouse is a database. Queue,

10(3):20:20–20:33.
Qin, H., Li, Q., Speiser, J., Kraft, P., and Ousterhout, J.

(2018). Arachne: Core-aware thread management. In
Proceedings of the 13th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’18,
page 145–160, USA. USENIX Association.

Reactive Streams (2015). Reactive streams specification.
Reijn, J. (2015). Comparing template engines for spring

mvc. Technical report, https://github.com/jreijn/spri
ng-comparing-template-engines.

Schmidt, D. (1995). Reactor. an object behavioral pattern
for concurrent event demultiplexing and event handler
dispatching.

Shipilev, A. (2013). Java microbenchmark harness (the
lesser of two evils).

Sussman, G. and Steele, G. (1975). Scheme: an interpreter
for extended lambda calculus. AI Memo No. MIT,
Artificial Intelligence Laboratory.

Syme, D., Petricek, T., and Lomov, D. (2011). The f#
asynchronous programming model. In Rocha, R. and
Launchbury, J., editors, Practical Aspects of Declar-
ative Languages, pages 175–189, Berlin, Heidelberg.
Springer Berlin Heidelberg.

von Behren, R., Condit, J., Zhou, F., Necula, G. C., and
Brewer, E. (2003). Capriccio: Scalable threads for in-
ternet services. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, SOSP
’03, page 268–281, New York, NY, USA. Association
for Computing Machinery.

Welsh, M., Culler, D., and Brewer, E. (2001). Seda: An ar-
chitecture for well-conditioned, scalable internet ser-

vices. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’01,
page 230–243, New York, NY, USA. Association for
Computing Machinery.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

48

