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Abstract: This paper studies an application of indefinite proximity learning to the prediction of baskets of products of
logs in the sawmill industry. More precisely, it focuses on the usage of the dissimilarity space embedding
framework to generate a set of features representing wood logs. According to this framework, data points are
represented by a vector of dissimilarity measures toward a set of representative data points named landmarks.
This representation can then be used to train any of the large variety of available ML models requiring struc-
tured features. However, this framework raises the problem of selecting these landmarks. A new method is
proposed to select these landmarks which is compared with four other methods from the literature. Numer-
ical experiments are run to compare these methods on a dataset from the Canadian sawmill industry. The
data representations obtained are used to train random forests and neural networks ensemble models. Re-
sults demonstrate that both the Partition Around Medoids (PAM) method and the newly proposed CoreSelect
methods lead to a small but significant reduction in the mean square error of the predictions.

1 INTRODUCTION

The process of sawing a wood log into lumber is di-
verging and in co-production. From a single log, a
sawmill will obtain simultaneously several products
with different dimensions and grades. In addition, the
heterogeneity of shape and internal defects between
logs make it difficult to anticipate what set of lum-
ber would be obtained from sawing a log. All these
factors greatly complicate production planning and
control in this industry. Simulation tools have been,
however, widely studied alone or in conjunction with
other decision-support tools to alleviate these prob-
lems (Chabanet et al., 2023). Simulators can, in par-
ticular, be used to predict the set of lumber that would
be obtained by sawing a specific log. This set of lum-
ber is named the Basket of Products (BoP) of the log
in the following of this study. To repeat this operation
over all logs to be sawed, or at least a representative
sample, allow to approximate the mix of product that
would be obtained by a specific production plan.

Several authors, however, have mentioned the
important computational time associated with saw-
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ing simulation models (Morneau-Pereira et al., 2014;
Wery et al., 2018). This complicates their use for
short-term decision problems which might still re-
quire several thousand simulation runs. To alleviate
this problem, (Morin et al., 2015), in particular, pro-
posed to train machine learning surrogate models of
these simulation models. These surrogate models,
equivalently called metamodels, are machine learn-
ing models trained on past simulation results to pre-
dict the BoP of logs. These surrogate models are,
therefore, approximations of the simulation models
for specific sawmill configurations.

Many different sawmill simulation surrogate mod-
els have been studied in the literature. They can
be distinguished, in particular, by the input consid-
ered to describe a log and predict its BoP. Some saw-
ing simulation models like Optitek (Goulet, 2006) or
SAWSIM1 can, indeed, process logs described by 3D
scans of their surfaces. These scans are 3D point
clouds providing information over the shape of the
logs. Few ML models are, however, able to process
this type of input directly. For this reason, (Morin
et al., 2015; Morin et al., 2020) propose surrogate
models making predictions from structured represen-

1https://www.halcosoftware.com/software-1-sawsim,
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tations of the logs based on know-how features com-
monly used in the industry. In particular, they use
the length of the logs, their volumes, diameter at
both extremities, curvature, and shrinking. (Selma
et al., 2018) propose to use a dissimilarity function
to compare pairs of logs from their scans and predict
their BoP using a nearest-neighbors scheme. More
precisely, they propose to use the Iterative Closest
Point (ICP) dissimilarity which is a consequence of
the ICP algorithm commonly used to align 3D shapes
(Besl and McKay, 1992). The idea of using pairwise
ICP dissimilarity toward class medoids as features for
other ML models was investigated, for example, by
(Chabanet et al., 2021b) in the case of neural network
surrogate models. Lastly, (Martineau et al., 2021)
study several neural network surrogate models, in-
cluding models based on the architecture pointnet (Qi
et al., 2017), which is able to learn directly from 3D
point clouds.

This study focuses on surrogate models predicting
BoP from pairwise dissimilarities. Several previous
studies have, in particular, proposed sawing simula-
tion surrogate models able to predict the BoP of a log
based on a vector of features composed of the dis-
similarities of this log toward a set of representative
logs from the model training dataset. This strategy is
called the dissimilarity space embedding framework
in the literature (Duin and Pękalska, 2009). For ex-
ample, (Chabanet et al., 2021b) use such vectors as in-
put to multi-layer perceptrons, while (Chabanet et al.,
2021a) use a variant of a naïve Bayes classifier. These
past studies, however, do not study alternative meth-
ods for the selection of the representative data points,
also called landmarks, used to generate the vectors of
dissimilarity features fed to the classifier.

The main contribution of this study is, therefore,
the proposition of a novel method to select landmarks
and its comparison with four other methods from the
literature. The landmarks selected by these methods
are used to train two types of ensemble models to pre-
dict BoP of logs.

The remainder of this article is organized as fol-
lows. Section 2 reviews the literature on indefinite
proximity learning and formally introduces the dis-
similarity space embedding framework. Section 3
presents the learning problem studied, the landmarks
selection methods compared in this study as well as
the dataset used during experiments. Experimental
results are detailed in section 4. Lastly, section 5 con-
cludes this study.

2 INDEFINITE PROXIMITY
LEARNING

Non-metric proximity (similarity or dissimilarity)
functions naturally arise in many fields to compare
how alike two data items are. For example, the dy-
namic time warping dissimilarity (Müller, 2007) is a
popular method to compare time series, or the Jaccard
dissimilarity (Luo et al., 2009) has been used in many
studies to compare text documents. Learning from
these proximity functions can be an attractive alterna-
tive to learning from descriptive features. Most of the
common methods proposed to learn from proximity
function require specific properties such as symmetry
or semi-definiteness which are not always respected
in practice. Several families of methods have been,
however, proposed by the literature to deal with the
non-metric case (Schleif and Tino, 2015).

Many methods, for example, rely on applying
transformations to the proximity matrix M that con-
tains the pairwise proximity evaluation on the train-
ing dataset to make it positive semi-definite (Munoz
and de Diego, 2006). Once transformed, the matrix
M can, then, be used to train kernel-based models like
Support Vectors Machines (SVM). The out-of-sample
extension of these methods, i.e, their extension to data
points not in the training dataset to make new pre-
dictions, is, however, often not straightforward, and
computationally costly (Schleif and Tino, 2015).

Other authors, like (Ong et al., 2004), extend the
theory of reproducing kernel Hilbert spaces, which
underlie, for example, SVM, to reproducing Krein
spaces. Learning algorithms in a Krein space can
consider non-definite proximity matrices. This theory
leads, in particular, to training models that are linear
combinations of dissimilarities toward training data
points.

Lastly, another general method, which is the one
considered in this study, is the proximity (similarity
or dissimilarity) space embedding method (Duin and
Pękalska, 2009). Such a scheme first selects a small
set of prototypes, called landmarks, in the training
dataset. A point is, then, represented by the vec-
tor of dissimilarities toward these prototypes. More
precisely, considering a training set D and a subset
R = {r1, ...,rq} ⊆ D, a data point x is represented by:

D(x,R) = (d(x,r1), ...,d(x,rq)), , (1)

where d denotes the proximity function. The
points r1, ...,rq are the landmarks.

The use of dissimilarity space embedding has
been, in particular, extensively studied in the context
of labeled graph classification (Livi et al., 2014). This
framework has been, similarly, applied to time series
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classification. (Jain and Spiegel, 2015), for exam-
ple, study a method to train SVM models for time se-
ries classification, using the time warping dissimilar-
ity and a dissimilarity space embedding framework.
Lastly, this framework has been used to predict BoP
of logs based on the ICP dissimilarity in (Chabanet
et al., 2021a; Chabanet et al., 2021b).

This method has, in particular, two main advan-
tages which motivate its choice in this study. The first
advantage is that it does not restrict the choice of the
ML model used. Data points are effectively embed-
ded in a vector feature space. Therefore, any of the
many and extensively studied ML models designed
to learn in this classic setting can be used. For the
specific problem studied in this paper, this allows, for
example, to train Random Forests (RF) or multi-layer
perceptrons to predict BoP from the ICP dissimilarity
space. RF were, in particular, proven effective when
trained on know-how features (Morin et al., 2020).
The second advantage is that it allows the user to se-
lect the dimension of the proximity space. This is im-
portant because, while a larger proximity space might
lead to better models, at least up to some point, it
also means that more proximity function evaluations
are required to embed new data points before mak-
ing a prediction. Such evaluations can, however, be
computationally expensive. The ICP dissimilarity, for
example, is the result of an iterative optimization al-
gorithm whose complexity is dependent on the num-
ber of points in the point clouds. Computational ef-
ficiency is, however, very important in the context of
surrogate models.

Such a method, however, raises the problem of
how to select landmarks. The best selection method,
however, is dependent on the learning problem and
dataset (Pękalska et al., 2006).

3 CASE STUDY

This study focuses on the usage of the dissimilarity
space embedding framework to train sawing simula-
tion surrogate models to predict baskets of products
of logs from 3D scans of their surface. From a ma-
chine learning perspective, this problem can be mod-
eled and has been modeled as either a classification
problem or as a regression problem.

If the problem is modeled as a classification prob-
lem, every BoP present in the training dataset is asso-
ciated with a class to be predicted. The main advan-
tage of this method is that the surrogate model will
always predict a feasible BoP. However, these train-
ing datasets can contain many different BoP, some of
them appearing only once in the training dataset. It is

Figure 1: Example of a 3D scan of a log.

also possible that the training dataset does not contain
all of the possible BoP.

If the problem is modeled as a (multi-output) re-
gression problem, a BoP is modeled as a vector of
size p where p is the number of standard products that
can be sawed in the sawmill considered. The ith ele-
ment of this vector correspond to the quantity of the
ith type of lumber present in the BoP. While this elimi-
nates the problem caused by rare and unobserved BoP,
it also means that unfeasible BoP will be predicted.
Typically, BoP predicted by regression model con-
tains fractional quantities of product. It should be no-
ticed, however, that these predictions are not designed
to be used individually, but aggregated by batches of
logs and fed to operational research models. For these
reasons, in this study, the problem of predicting BoP
of logs is modeled as a regression problem.

3.1 Dataset

The dataset used in this study originates from the
Canadian forest-product industry. It contains infor-
mation over 2219 pine, fir, and spruce wood logs.
More precisely, each log has a 3D scan, a set of six
know-how features, and a BoP obtained by simulat-
ing the sawing of the log with the software Optitek.

The 3D scans are point clouds, describing the sur-
face of the logs. They are, therefore, constituted of an
unordered list of points with three coordinates each.
The number of points in a cloud varies from scan to
scan and is, in particular, dependent on the length of
the logs. The points are ordered in rough ellipsoids
spanning the log surface. An example of such a scan
is provided in figure 1.

In addition to these scans, each log is described by
six know-how features: its length, diameters at both
extremities, curvature, shrinking, and volume. These
features are, in particular, used by (Morin et al., 2015)
to predict BoP of logs. Models trained to predict BoP
from these descriptive features are, therefore, used as
baselines in this study.

Some of these features are used in this industry to
classify logs in the log yard. This is, in particular, the
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Figure 2: Histogram of the length of the logs in the dataset.

case of the length and diameters. Logs from differ-
ent clusters would have different possible BoP. This
dataset, in particular, can be divided into four clus-
ters, based on the length of the logs. Figure 2 presents
the histogram of the length of logs, to which was fitted
a mixture of four Gaussian distributions.

The sawmill model set to the simulator Optitek to
generate this dataset was able to produce 47 types of
products. The BoP are, therefore, modeled as vec-
tors of dimension 47. In total, 870 different BoP are
present in this dataset, of which 614 appear only once.

3.2 Landmarks Selection

In this study, five methods will be compared to select
landmarks to train dissimilarity features. These dis-
similarity features will also be compared to the know-
how features introduced in the previous section.

The first and simplest method is to select land-
marks at random in the training dataset. It is used as
a baseline, for example, by (Pękalska et al., 2006) on
binary and multi-class classification problems. While
systematic methods perform, overall, better, the dif-
ference is sometimes small and depends on the num-
ber of landmarks selected.

The second method is an algorithm providing a
locally optimal solution to the k-medoid clustering
problem. It is often named alternate in the litera-
ture. The k-medoid problem consist in finding a sub-
set R = (r1, ...,rq) in a dataset D = (x1, ...,xn) so that
R minimize:

q

∑
i=1

∑
x∈Ci

d(x,ri) , (2)

with x ∈Ci if d(x,ri) = minr∈R d(x,r).
This method is named k-center in (Pękalska et al.,

2006) and is, overall, the best-performing method on
the classification problems it was tested on. While
(Pękalska et al., 2006) apply it on a class-by-class ba-
sis, however, it is applied on the whole dataset here.
This method is based on a k-medoids algorithm, i.e, a
generalization of the well-known k-means algorithm

for data clustering. The landmarks correspond to the
cluster centers. The general principle of this algo-
rithm is presented in algorithm 1.

Algorithm 1: Alternate.

Input D = (x1, ...,xn), set of training inputs
Output R = (r1, ...,rq), set of landmarks

Initialize R = (r1, ...,rq) at random or following an
heuristic.
Initialize clusters C1, ...,Cq so that D =

⋃
j∈J1,qKC j

while End condition is False do
for x ∈ D do

i← max j∈J1,qK(d(x,r j))
set x into Ci

end for
for i ∈ J1,qK do

ri← argminx∈Ci(∑x∈Ci(d(x,r j))
end for

end while

This algorithm is iterative. The complexity of one
iteration is O(n2) with n the size of the training dataset
(Schubert and Rousseeuw, 2021). Iterations are per-
formed until some ending condition appends, either
that a maximum number of iterations is reached or
that the set of landmarks stops changing.

The third method is based on the Partitioning
Around Medoids (PAM) algorithm (Sarle, 1991). It
solves the same k-medoid problem and is more com-
putationally intensive but more accurate (Schubert
and Rousseeuw, 2021). PAM is constituted of two
parts: Build, which initializes the centers of the clus-
ters, and Swap, which swaps cluster centers with
other data points in order to decrease the clustering
cost defined in equation 2. An outline of the Swap
procedure is presented in algorithm 2. Depending on
the exact implementation, the complexity of one iter-
ation ranges from O(n2) to O(q2n2) with n the size of
the training dataset and q the number of clusters. The
implementation used for this article is O(q(n− q)2)
(Maranzana, 1963).

The fourth method evaluated in this study is
named Dselect and proposed by (Kar and Jain, 2011).
This heuristic is based on the idea that landmarks
should be as dissimilar from one another as possi-
ble. In particular, they introduced a heuristic, named
Dselect, that iteratively selects new landmarks as the
ones minimizing the average dissimilarity toward pre-
viously selected landmarks. A pseudocode of this
heuristic is presented in algorithm 3. It is an itera-
tive greedy algorithm. Contrary to k-medoids where
all landmarks are reevaluated at every iteration, Dse-
lect starts from an empty set of landmarks and adds
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Algorithm 2: PAM Swap.

Input D = (x1, ...,xn), set of training inputs
Output R = (r1, ...,rq), set of landmarks

R← Build(D)
Initialize clusters C1, ...,Cq empty
for x ∈ D do

i← max j∈J1,qK(d(x,r j))
set x into Ci

end for
while cost decrease do

for r ∈ R do
for x ∈ D\R do

Compute cost change when swapping r
and x

end for
end for
perform the best swap

end while

them one by one until the set is completed. As such,
the complexity of the whole algorithm is O(nq2) with
n the size of the training dataset and q the number of
landmarks. It is, therefore, less costly than Alternate
and PAM as long as the number of landmarks remains
small in comparison with the dataset size.

Algorithm 3: Dselect.

Input D = (x1, ...,xn), set of training inputs
Output R = (r1, ...,rq), set of landmarks

r1 ← random element from D
for i ∈ J1,qK do

ri← argmaxx∈D\R(
1
i ∑r j∈R d(x,r j))

end for

The fifth method evaluated is a variant of Dselect
which is proposed in this study. This method is named
CoreSelect. A pseudocode is given in algorithm 4.
Like Dselect, it is a greedy algorithm. The difference
is that at every iteration, the next landmark is selected
as the data point that maximizes their minimal dis-
similarity with previously selected landmarks. A mo-
tivation for this modification of Dselect is that, in the
metric case, this strategy yields an approximate solu-
tion to a q-center problem (Dyer and Frieze, 1985):

min
R=(r1,...,rq)⊂X

∆(r1, ...,rq) , (3)

with

∆(r1, ...,rq) = max
x∈X

min
R

d(x,ri) . (4)

More precisely, it ensures that the maximum dis-

tance between a point and the nearest selected land-
mark is at most twice that of the optimal solution. It
should be noticed that this q-center problem is dif-
ferent from the one solved by the alternate and PAM
algorithms. These algorithms minimize the sum of
distances toward cluster centers. On the other hand,
this method has been proven to be an approximate so-
lution to the problem of minimizing the radiuses of
the clusters. The complexity of this algorithm is the
same as Dselect: O(nq2).

Algorithm 4: CoreSelect.

Input D = (x1, ...,xn), set of training inputs
Output R = (r1, ...,rq), set of landmarks

r1 ← random element from D
for i ∈ J1,qK do

ri← argmaxx∈D\R(minr j∈R(d(x,r j))
end for

3.3 Surrogate Models

Two ensemble models are used as sawing simulation
surrogate models in this study. The first is the Ran-
dom Forest (RF) algorithm (Breiman, 2001). The pre-
diction of the forest is the average of the prediction
of individual decision trees. Random forests were,
in particular, selected for their good performances as
sawmill simulator surrogate models in (Morin et al.,
2015; Morin et al., 2020) on know-how features. An
important characteristic of random forest is that, to
lower the correlation between the base trees and fur-
ther reduce the variance of the ensemble, trees are
trained on bootstrap samples of the training dataset.
In addition, every split of the tree is optimized on a
random subsample of the available features. Hyper-
parameters for this model were selected by trial and
error. In particular, the number of trees in the forest
was set to 500, the total number of landmarks used for
the dissimilarity space embedding was set to 100 and
the fraction of the number of features considered to
optimize each split was set to 10, except for the base-
line using the know-how features. In this case, all six
features are considered for each split selection.

The second ensemble model investigated in this
study is an ensemble of small artificial neural net-
work (ANN) models. These neural networks are feed-
forward models with a single hidden layer, trained
with the Levenberg-Marquardt algorithm. Similarly
to what was done in (Chabanet et al., 2021b), the ac-
tivation function of the hidden layer is a hyperbolic
tangent and the activation function of the output layer
is a sigmoid. The sigmoid output, in particular, ensure
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Table 1: Average number and standard deviation over 30 repetitions of the number of landmarks in each length cluster.

Selection method Cluster 1 Cluster 2 Cluster 3 Cluster 4
Random 12.0 (3.1) 6.7 (2.5) 59.9 (5.9) 21.5 (4.4)
Alternate 3.3 (1.2) 3.0 (1.3) 90.2 (2.0) 3.5 (1.0)

PAM 23.8 (2.9) 16.3 (2.6) 40.0 (2.4) 19.9 (2.2)
Dselect 48.8 (0.5) 0.03 (0.2) 0.9 (0.6) 50.3 (0.6)

CoreSelect 27.5 (3.0) 17.2 (3.0) 35.9 (3.1) 19.4 (1.8)

Table 2: Average and standard deviation over 30 experi-
ment repetitions of the MSE obtained for each model on the
evaluation set.

Selection
method

Random
Forest

ANN
ensemble

Know-how 1.819 (0.035) 1.968 (0.020)
Random 1.773 (0.027) 1.828 (0.020)
Alternate 1.847 (0.035) 1.985 (0.041)

PAM 1.762 (0.029) 1.823 (0.020)
Dselect 1.781 (0.034) 1.855 (0.023)

CoreSelect 1.763 (0.029) 1.830 (0.020)

that, after rescaling the predictions, the quantities of
lumber predicted are always between 0 and the max-
imum quantity observed in the training dataset. The
number of neurons in the hidden layer was set by tri-
als and errors to 2, which is consistent with the results
of (Chabanet et al., 2021b). As for the random forest
model, the number of landmarks was set to 100 and
the number of weak learners to 500. The number of
features used as input for each network was set to 10.

4 EXPERIMENTAL RESULTS

Experiments are run as follows. The dataset is, first,
divided at random into a small training set of size 500,
and an evaluation set of size 1719. For each landmark
selection method, 100 landmarks are selected on the
training set and used to embed the data in a dissimi-
larity space. The know-how features are also used to
obtain a sixth representation of the data. For each rep-
resentation, a random forest and an ANN ensemble
are trained on the training set. The Mean Square Error
(MSE) of the prediction is measured on the evaluation
set. To average out the impact of the exact train-test
separation of the dataset, this process is repeated 30
times.

Table 1 presents the number of landmarks selected
by each method in each of the 4 length clusters de-
fined in section 3.1. These numbers are averaged over
30 repetitions of the experiments. Different selection
methods have different behavior. The number of land-

marks selected by the random method in each cluster
is, naturally, proportional to the size of each cluster.
Therefore, the largest cluster, cluster 3, which repre-
sents 60% of the dataset, has, on average, approxi-
mately 60% of the landmarks. Similarly, cluster 4,
which represents 22% of the dataset, contains, on av-
erage, approximately 22% of the landmarks. On the
opposite, the smallest cluster, cluster 2, contains only
6.7% of the landmarks.

Both PAM and CoreSelect smooth slightly the dis-
tribution of the landmarks over the clusters. In partic-
ular, 40.0 and 35.9 landmarks are selected in average
in cluster 3 by PAM and CoreSelect respectively. This
is less than the amount selected by the random selec-
tion method. On the opposite, they select respectively
16.3 and 17.2 landmarks in cluster 2.

Dselect and Alternate have very different behav-
ior. Dselect, in particular, mostly selects landmarks in
the two extremal clusters, clusters 1 and 4. This might
be explained, in the metric case, by the tendency of
DSelect to select the next point far from the geometric
median of the previously selected landmarks, which is
the point minimizing the sum of distances toward the
landmarks. On the opposite, Alternate selects most of
the landmarks, 90 on average, from cluster 3 which is
the largest cluster.

The MSE evaluated on the evaluation test for the
different landmark selection methods and surrogate
models are presented in table 2. Several facts have to
be mentioned. First, the lowest MSE is obtained for
the RF surrogate model and the PAM and CoreSelect
landmark selection results. These two MSE cannot
be said to be statistically different from these exper-
iments. In particular, a paired student test over the
MSE measured on the 30 repetitions of the experi-
ment has a p-value of 0.41. It should be noticed, how-
ever, that CoreSelect has a lower computational cost
than PAM. Comparing both these methods to the third
best method, i.e., the RF model with random land-
marks, yields p-values lower than 3× 10−5 in both
cases. Therefore, both PAM and the newly proposed
CoreSelect selection methods allow to improve upon
the random baseline, as well as the know-how fea-
tures. On the contrary, both the Dselect and Alternate
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selection methods show significantly worse MSE for
the Random Forest model. P-values of the students
test are 3× 10−10 and 5× 10−4 respectively. This
might be due to the highly irregular dispersion of the
landmarks across clusters.

In general, ANN ensemble surrogate models have
higher MSE than RF surrogates. The impact of the
various landmarks selection methods over the average
MSE is, however, different. In particular, in this case,
the method with the lowest MSE is PAM alone. This
time, using CoreSelect does not lead to lower MSE
than the random method. In particular, the p-value
of a paired student test is, here, 0.32. Both Dselect
and Alternate, however, lead to higher MSE than the
random selection method.

Table 3: Average and standard deviation over 100 repeti-
tions of the time required by each method to select 100 land-
marks in a subset of size 500 of the dataset.

Selection
method Selection Time

Random 8.9×10−5 (2.8×10−4)
Alternate 2.6×10−2 (1.9×10−3)

PAM 15.7 (0.6)
Dselect 2.0×10−2 (6.7×10−4)

CoreSelect 2.3×10−2 (6.8×10−4)

To complement the previous experimental results,
the computation times required by the selection meth-
ods with the implementation used for these experi-
ments were estimated. Dselect and CoreSelect were
implemented from scratch in Python using the numpy
library. Alternate and PAM were implemented as
wrapper around clustering functions from the scikit-
learn-extra2 library. All experiments were run on a
computer with an intel Core i7 vPRO 10th generation
CPU at 2.70GHz. Table 3 presents the average times
required by each landmark selection method, over a
hundred new random subsets of size 500 of the whole
dataset. Unsurprisingly, the fastest method is by far
the random selection. Dselect, CoreSelect, and Alter-
nate have very similar computational times, between
0.020 and 0.026 seconds in these experiments. On
the opposite, PAM is very slow, as it needs, on av-
erage, 15.7 seconds to select the landmarks. Consid-
ering that the two best methods are, here CoreSelect
and PAM which perform similarly with random forest
models, Coreselect present a clear advantage in terms
of time.

2https://scikit-learn-extra.readthedocs.io/en/stable/
install.html, last accessed in May 2023

5 CONCLUSION

This article studies surrogate models for sawmill sim-
ulation. In particular, it focuses on the use of the
dissimilarity space embedding framework to create a
feature space used to train models and make predic-
tions. Because this framework raises the question of
the methods used to select the landmarks which form
its core, five landmarks selection methods are com-
pared on this method.

Numerical experiments were run using a dataset
from the Canadian Sawmill industry to train RF and
ANN ensemble models on data representations ob-
tained from each method. Results were also com-
pared with baselines obtained from know-how repre-
sentation of the data points.

Among the combinations of landmarks selection
methods and ML models evaluated, the lowest MSE
was obtained for the RF model, with landmarks ob-
tained from either the PAM or the newly proposed
CoreSelect method. CoreSelect, however, has lower
computational complexity than PAM.

Several limits to this study should, however, be
mentioned and lead to future works. First, previous
works have shown that the performances of these sur-
rogate models can change widely from one sawmill to
another, especially depending on the number of stan-
dard products they produce. Therefore, the experi-
ments presented in this study should be repeated on
other independent datasets. Similarly, the impact of
the size of the training dataset and of the number of
landmarks should be investigated in detail. Lastly, the
reason why CoreSelect leads to lower MSE than the
random baseline with the RF models but not with the
ANN ensemble should be explored as it might lead to
a deeper insight into the behavior of these models on
dissimilarity spaces.
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Pękalska, E., Duin, R. P., and Paclík, P. (2006). Prototype
selection for dissimilarity-based classifiers. Pattern
Recognition, 39(2):189–208.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 652–660.

Sarle, W. S. (1991). Finding groups in data: An introduction
to cluster analysis.

Schleif, F.-M. and Tino, P. (2015). Indefinite prox-
imity learning: A review. Neural Computation,
27(10):2039–2096.

Schubert, E. and Rousseeuw, P. J. (2021). Fast and eager
k-medoids clustering: O (k) runtime improvement of
the pam, clara, and clarans algorithms. Information
Systems, 101:101804.

Selma, C., Bril El Haouzi, H., Thomas, P., Gaudreault,
J., and Morin, M. (2018). An iterative closest point
method for measuring the level of similarity of 3d
log scans in wood industry. Service Orientation in
Holonic and Multi-Agent Manufacturing: Proceed-
ings of SOHOMA 2017, pages 433–444.

Wery, J., Gaudreault, J., Thomas, A., and Marier, P. (2018).
Simulation-optimisation based framework for sales
and operations planning taking into account new prod-
ucts opportunities in a co-production context. Com-
puters in industry, 94:41–51.

NCTA 2023 - 15th International Conference on Neural Computation Theory and Applications

486


