
Effects Study of Sensors’ Placement on the Accuracy of a 3D
TDOA-Based Localization System

Ahcene Bellabas1 a, Ammar Mesloub1 b, Belaid Ghezali2, Abdelmadjid Maali3 c and Tahar Ziani3
1Lab. Traitement du signal, Ecole Militaire Polytechnique, BP 17 Bordj El Bahri, Algeria

2Ecole Supérieure ALI CHABATI, Algiers, Algeria
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Abstract: Time Difference of Arrival (TDOA) based measurements are used for passive localization systems in various
applications. While significant research has been performed on the development of TDOA measurement-
based approaches, there has been relatively little focus on the sensor deployment geometry which significantly
impacts the location estimation accuracy. Therefore, a study on the effects of four sensors’ placement on lo-
cation accuracy has been conducted. Several factors are considered in numerical simulations analysis which
have an obvious effect on the localization accuracy. Based on the analysis of the Geometric Dilution of Preci-
sion (GDOP) performance metric, a comparison is conducted between square and star geometries. The results
show that the star geometry gives better performance in terms of location estimation accuracy, especially when
the main receiver is positioned within the polygon formed with baseline angles of 120°. Furthermore, the star
geometry is used to study also the influence of sensor height and baseline length to achieve an optimum three-
dimensional sensor placement with four sensors. The results can be applied to enhance the sensor deployment
in 3D sensor geometry for TDOA-based localization systems.

1 INTRODUCTION

Recently, passive localization systems have assumed
a significant role in various civilian and military appli-
cations, including radar, sonar and navigation. These
systems commonly employ time measurement-based
localization techniques, which can be classified as fol-
lows: Time of Arrival (TOA) and TDOA, also known
as multilateration technique (Wan et al., 2018; Deng
et al., 2019). The later use TDOA measurements ob-
served at a set of spatially separated receivers. Each
TDOA measurement defines a hyperbolic line, and
the intersection of these lines gives the estimation of
the source location.

The literature has mainly focused on develop-
ing TDOA measurements-based approaches to im-
prove location estimation accuracy. Other works have
aimed to enhance localization performance in terms
of location estimation accuracy, which depends on
various factors such as the number of sensor used,
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the choice of main or reference sensor used to gener-
ate the TDOA measurements, the multilateration ap-
proach, and sensor deployment geometry (Sun et al.,
2016; Shehu and Sha’ameri, 2018a; Shehu, 2018).
Although the latter factor significantly influences the
location estimation accuracy, little research, as far as
we know, has been conducted on it, as works pre-
sented in (Qin et al., 2016; Shehu and Sha’ameri,
2018b). Therefore, in order to enhance localization
performance, it is necessary to investigate the optimal
geometry.

In this paper, we focus on studying the impact of
four sensors’ deployment geometry on the location
performance using TDOA measurements. Specifi-
cally, two geometries, namely square and star geome-
try, are evaluated to determine the optimal choice for
location estimation accuracy. The selected geometry
is then used to investigate the influence of other fac-
tors, namely baseline angle, sensor height and base-
line length. In this context, a baseline refers to the
line connecting the main sensor and one of the three
auxiliary sensors. The analysis of the GDOP parame-
ter (Li et al., 2011; Thompson et al., 2019) forms the
basis of this study, enabling a comprehensive assess-
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ment of the localization system’s performance under
varying deployment geometries.

The remainder of the paper is organized as fol-
lows: the location system geometry is described in
section 2, the hyperbolic position location (PL) ap-
proach and its theoretical model are shown in section
3, the theoretical derivation of the GDOP is given in
section 4, the simulation result and discussion are de-
tailed in section 5, which is followed by conclusion in
section 6.

2 SYSTEM GEOMETRY

Let us consider the scenario illustrated in Figure 1,
which presents a system geometry for TDOA-based
location consisting of four sensors (receivers). We set
sensor 1 as the main receiver and set others as the
auxiliary receivers. Let us consider (Xi,Yi,Zi) the po-
sition coordinates of the sensor i, for i = 1, ...,4. The
source is on the position (x,y,z).

Figure 1: System geometry considered for TDOA based lo-
calization.

The localization accuracy is dependent on the de-
ployment of the sensors, which can be character-
ized by the GDOP or the Cramer-Rao Lower Band
(CRLB) (Vankayalapati, 2014; Li et al., 2017; Zhang
and Lu, 2020; Diez-Gonzalez et al., 2020; Wang
et al., 2022). The CRLB is a concept widely used in
positioning performance analysis. It determines the
minimum achievable error of a locating system with
independence from the positioning algorithm used
(Álvarez et al., 2019).

In this work, the average values of GDOP for dif-
ferent sensors’ deployment geometries are examined
for optimization in a 3D TDOA-based location sys-
tem. The following steps are taken

• Two geometries are chosen to deploy the four sen-
sors, named star and square geometry (Figure 2).

• The geometry that will give the best localization

performance will be selected to study the influ-
ence of other factors on localization performance.

• The factors that will be studied are the baseline
angle, heights of the four sensors and baseline
length.

The subsequent sections of this paper cover two
main aspects. Firstly, we describe the hyperbolic po-
sition location system, followed by the development
of its GDOP to analyze the optimal sensors’ deploy-
ment geometry. Lastly, we present simulation results
that evaluate the TDOA localization performance for
various geometries.

Figure 2: Geometries considered for evaluation. (a) star
geometry. (b) square geometry.

3 HYPERBOLIC PL SYSTEM

TDOA measurements can be used to localize a target
(source). Its location is estimated by the intersection
of hyperboloids describing range difference measure-
ments between three or more sensors. The foci of the
hyperboloid are at the positions of the sensors i and j.
In a system with N sensors, there are N−1 linearly in-
dependent TDOA measurements. The geometric ap-
proach uses intersecting hyperboloid surfaces created
from the TDOA measurements made by the passive
sensors to determine the target location (Wong et al.,
2017).

The relationship between the Range Difference of
Arrival (RDOA) and TDOA, is given by

Ri, j = cτi, j = Ri −R j (1)

where Ri and R j, are the distances from the source
to the sensors i, j respectively, Ri, j and τi, j are the
RDOA and TDOA of a signal received by sensor pair
i and j and c is signal propagation speed.

In a three-dimensional (3D) system, the hyper-
boloids that describe the range difference, Ri, j be-
tween sensor positions are given by

Ri, j =
√
(Xi − x)2 +(Yi − y)2 +(Zi − z)2

−
√
(X j − x)2 +(Yj − y)2 +(Z j − z)2 (2)
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where: (Xi,Yi,Zi) and (X j,Yj,Z j) define the positions
of sensor i and j respectively, and (x,y,z) is the source
position.

The TDOA method offers a significant benefit as it
does not require knowledge of the transmit time from
the source, eliminating the need for strict clock syn-
chronization between the source and receiver (Wang
et al., 2019). Furthermore, unlike TOA methods, the
hyperbolic position location method can reduce or
eliminate common errors experienced at all sensors
due to the channel.

Referring all TDOAs to the main sensor, which is
assumed to be the reference for all sensors, let us use
’i’ with i = 2, ...,M to represent the auxiliary sensors.
The range difference between sensors with respect to
the main sensor, is

Ri,1 = cτi,1 = Ri −R1

=
√

(Xi − x)2 +(Yi − y)2 +(Zi − z)2

−
√
(X1 − x)2 +(Y1 − y)2 +(Z1 − z)2 (3)

where, Ri,1 and τi,1 are the range and time difference
measurements between the main sensor and the ith

sensor, and R1 is the distance from the main sensor
to the source. This defines the set of nonlinear hyper-
bolic equations whose solution gives the 3D source
location. Numerical methods are needed to solve
the nonlinear equations of (3) (Dı́ez-González et al.,
2022). Linearizing this set of equations is commonly
performed using typical TDOA location algorithms
which are: the Chan algorithm, Fang algorithm, and
Taylor series expansion algorithm (Foy, 1976; Chan
and Ho, 1994; Zhang and TAN, 2008; Al Harbi and
Helgert, 2010). Fang algorithm and Chan algorithm
are closed-form algorithms with analytic expressions.
Taylor series expansion algorithm is an iterative algo-
rithm without analytic expression.

4 GDOP FOR TDOA BASED
LOCALIZATION

GDOP is a metric used to describe the effect of geom-
etry on the relationship between the measurement and
position error. It is a measure of the quality of the ge-
ometric configuration of the sensor array and is used
to evaluate the accuracy of TDOA-based localization
systems (Elgamoudi et al., 2021). The lower the
GDOP, the better the geometric configuration. The
optimal placement of the sensors is the one that mini-
mizes the GDOP.

A range measurement can be expressed as

L = f (x,y,z) (4)

where L is a measured value, and (x,y,z) are unknown
coordinates of the source. We use the Taylor series
expansion algorithm to linearize the equation (4) by
developing the function f (x,y,z) to the first order

L ≈ f (x0,y0,z0)+
( ∂L

∂x )0dx
1!

+
( ∂L

∂y )0dy

1!
+

( ∂L
∂z )0dz

1!
(5)

where (x0,y0,z0) is the initial estimation of the source
coordinates, and ( ∂L

∂x )0, ( ∂L
∂y )0, and ( ∂L

∂z )0 are the par-
tial derivatives of the measured value L evaluated at
the initial estimation.

Assume there are n observations, equation (5) can
be written in the following matrix form

H∆x = ∆r (6)

∆x = (HT H)−1HT
∆r (7)

where ∆x is the vector offset of the true source posi-
tion from the linearization point, ∆r is the vector off-
set of the true range to the range values corresponding
to the linearization point, and H is a matrix that can
be presented as

H =


( ∂L1

∂x )0 ( ∂L1
∂y )0 ( ∂L1

∂z )0

( ∂L2
∂x )0 ( ∂L2

∂y )0 ( ∂L2
∂z )0

...
( ∂Ln

∂x )0 ( ∂Ln
∂y )0 ( ∂Ln

∂z )0

 (8)

In the case of hyperbolic multilateration system,
the measured values are TDOAs, so

L = Ri,1

=
√
(Xi − x)2 +(Yi − y)2 +(Zi − z)2

−
√
(X1 − x)2 +(Y1 − y)2 +(Z1 − z)2 (9)

with : i = 2, ...,M.
As previously mentioned, the considered TDOA

multilateration positioning system consists of a main
and three auxiliary sensors (M = 4). After calculat-
ing the various partial derivatives, matrix H can be
expressed as

H =



x0 −X2

R2
− x0 −X1

R1
,

y0 −Y2

R2
− y0 −Y1

R1
,

z0 −Z2

R2
− z0 −Z1

R1

x0 −X3

R3
− x0 −X1

R1
,

y0 −Y3

R3
− y0 −Y1

R1
,

z0 −Z3

R3
− z0 −Z1

R1

x0 −X4

R4
− x0 −X1

R1
,

y0 −Y4

R4
− y0 −Y1

R1
,

z0 −Z4

R4
− z0 −Z1

R1


(10)

GDOP is defined as the ratio of the Root Mean
Square (RMS) position error to the RMS ranging er-
ror (Elgamoudi et al., 2021)

GDOP =

√
σ2

x +σ2
y +σ2

z

σr
(11)
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with σ2
r the variance of the measurement error on the

range.
The provided mathematical expression for GDOP

is a general form applicable to various scenarios. In
the following discussion, we will specifically derive
an explicit expression for GDOP in the context of a
TDOA location system with four receivers.

Assuming the errors in the measurements on the
range are random, independent, have zero mean, and
an identical rms σr. The estimated distance is

R̂ j = R j +dr j, j = 1, ...,4 (12)

By performing the necessary calculations, we can de-
termine the variances and covariances of the errors on
range differences. The outcome of this calculation is
presented in the subsequent error covariance matrix
for RDOA

Q = σ
2
r


2 1 · · · 1
1 2 · · · 1
...

...
...

...
1 1 1 2

 (13)

The covariance of ∆x is calculated by using equation
(7) as follows

cov(∆x) = E[∆x∆xT ]

= E[(HT H)−1HT
∆r∆rT H(HT H)−1]

= H−1(HT )−1HT QHH−1(HT )−1

= H−1Q(HT )−1

= (HT Q−1H)−1 (14)

Finally, the expression for GDOP is presented as fol-
lows

GDOP =

√
σ2

x +σ2
y +σ2

z

σr

=

√
3

∑
i=1

((HT Q−1H)−1)i,i (15)

The GDOP can be obtained by deriving it from
the CRLB in the following manner (Thompson et al.,
2019):

GDOP =
1
σr

√
trace(CRLB(P)) (16)

where P is the source position (x,y,z).

5 SIMULATION AND ANALYSIS

We consider the depicted location system geometry
in Figure 1 for our analysis. The area of interest is

a surface [200×200] Km2, in which we calculate the
GDOP for a target at a height of 7000 m. The sen-
sor coordinates (Xi,Yi,Zi), i ∈ 1, . . .4 are chosen as
follows for the square geometry: {(0,0,0), (20,0,0),
(20,20,0), and (0,20,0)} Km. Similarly, for the
star geometry, the sensor coordinates are selected
as:{(0,0,0),(20,0,0), (−20,−20,0), and (0,20,0)}
Km.

The measurement noise was assumed to be Gaus-
sian white with zero mean and standard deviation
(RMS ranging error) σr = 1 m.

The results of the GDOP calculation for the two
sensor configurations, square and star geometry, are
depicted in Figures 3 and 4, respectively. The values
are presented in meters.

Figure 3: 3D GDOP calculation for square geometry.

Figure 4: 3D GDOP calculation for star geometry.

To ensure meaningful calculations, in cases where
the GDOP value at a specific location is excessively
large or cannot be calculated, a value of 300 is as-
signed.

These simulation results indicate that the positions
of the sensors has a direct impact on the performance
of localization, since changing their positions leads to
varying GDOP values. Thus, the deployment geome-
try of the sensors directly influences the performance
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of localization. From the former, it can be seen clairly
that the star geometry outperforms the square geome-
try in terms of performance.

These results reveal some intriguing observations.
Firstly, it is evident that the GDOP is notably higher
(worse) at the center of the square configuration. This
finding aligns with the report of (Li et al., 2011),
which highlights that deploying the base stations (sen-
sors) exclusively along the perimeter of an area leads
to poor DOP at the center of the polygon. Sec-
ondly, in the square geometry, a notable degradation
in GDOP occurs when moving along the direction of
the square’s medians beyond the receiver’s area (as
depicted in Figure 3). Consequently, this configu-
ration is unsuitable for target localization due to the
substantial ambiguity zone it presents.

Finally, in the scenario of the star geometry, the
localization accuracy exhibits a consistent pattern as
one moves farther from the sensors. Additionally, the
GDOP remains good within the inner region encom-
passing the receiver positions and the surrounding
area. For instance, when aiming for a tolerated local-
ization error of less than 100 m, the location system
covers a contiguous area exceeding [100×100] Km2.

The star geometry can be achieved by moving one
of the sensors to the center of the square geometry.
Consequently, placing a receiver at the center of a
polygon enhances the GDOP within the sensor’s area.

Therefore, this geometry will be utilized in subse-
quent analyses to study the impact of various factors
on localization performance. These factors include
the baseline angle, heights of the four sensors, and
baseline length.

5.1 Effect of Baseline Angle

Let us consider the sensor deployment geometry de-
picted in Figure 5. The coordinates of the four sensors
are as follows

(X1,Y1,Z1) = (0,0,0)(m)

(X2,Y2,Z2) = (R× sin(θ1),−R× cos(θ1),0)(m)

(X3,Y3,Z3) = (−R× sin(θ2),−R× cos(θ2),0)(m)

(X4,Y4,Z4) = (0,−R,0)(m)

The RMS ranging error and the baseline length are set
to fixed values: σr = 0.2 m, R = 20×103 m.

To investigate the impact of baseline angles, θ1
and θ2, we conducted a comprehensive analysis by
varying their values within the range of 15° to 165°.
For each configuration, the average GDOP was com-
puted over the designated area of interest. The results
obtained from the simulations are presented in Figure
6.

Figure 5: The selected geometry to study the effect of base-
line angle.
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Figure 6: Effect of baseline angles variation on location per-
formances. Angles are provided in degrees.

It is worth noting that the deployment geome-
try of the receivers significantly affects the perfor-
mance of localization. Based on the obtained results,
the optimal configuration is characterized by angles
of 120° between the different baselines [RS1 −RS2],
[RS1 −RS3], and [RS1 −RS4]. This particular config-
uration exhibits the lowest average GDOP.

5.2 Effect of Sensor Height

In this scenario, we focus on the optimal sensors’ de-
ployment geometry obtained in the previous subsec-
tion 5.1, where the baseline angles were set at θ=120°.
We now proceed to vary the height of the main sensor
while keeping heights of the other sensors (auxiliary)
at a fixed level. Similarly to previous simulations, we
calculate the average GDOP for each configuration.
The results are presented in Figure 7.

We observe that the larger the difference between
the height of the reference sensor and that of the other
sensors, the more the localization performance is de-
graded (Figure 7). Therefore, the height of the main
sensor in a TDOA-based localization system should
be close to that of the other sensors to achieve better
localization.
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Figure 7: Effect of the main sensor height on location per-
formances.

Now, let us explore the effect of changing the
height of an auxliary sensor on the localization per-
formance.
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Figure 8: Effect of auxiliary sensor height on location per-
formances.

When we keep the height of the main sensor fixed
and vary the heights of the remaining sensors one
by one, we observe that it has minimal impact on
the localization performance (Figure 8). The values
of GDOP remain practically stable throughout these
variations. This indicates that the height of individ-
ual auxiliary sensors does not significantly impact the
overall localization system performance.

5.3 Effect of Baseline Length

The baseline lenght is another factor to consider in
evaluating the performance of TDOA-based localiza-
tion. Its impact is investigated by variying the length
of the three baselines in the same way, examining its
effect on the GDOP values. It is important to note that
the deployment geometry remains the same (star ge-
ometry with baseline angle θ=120°) throughout this
analysis. The simulation results are presented in Fig-
ure 9. The values are presented in meters.

It is observed that lengthening baseline length
leads to improved localization accuracy. This im-
provement can be attributed to the larger TDOA val-
ues obtained with greater distances, leading to en-
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Figure 9: Influence of baseline length variation on location
performances.

hanced accuracy in the estimation of the source’s lo-
cation. However, it is important to note that there is a
limit to increasing the baseline length as it can lead to
a potential risk of signal detection failure by the sen-
sors, where the emitted signal from the source may
not be detected by a sensor. In such cases, with fewer
available equations, it becomes challenging to accu-
rately locate the source. Therefore, careful consider-
ation must be given to strike a balance between max-
imizing baseline length for improved accuracy while
ensuring reliable signal detection and localization.

6 CONCLUSION

This paper focuses on the optimization of sensor
deployment in a 3D TDOA-based location system.
GDOP is used as a performance metric to evaluate
localization performance. The GDOP for a TDOA
location system with four sensors is derived and an-
alyzed. It is shown that the deployment geometry of
the sensors directly impacts localization performance.
A comparison was first made between a square geom-
etry and a star geometry. The latter was efficient and
its localization accuracy exhibits a consistent pattern
as one moves farther from the sensors. Thus, the star
geometry was selected to investigate the influence of
other factors on localization performance, namely :
the baseline angle, sensor height, and baseline length.
It is found that a sensor deployment configuration
with baseline angles of 120° gives optimal results. As
for the impact of sensor height, only changes in the
main sensor height significantly affect localization er-
rors, as it serves as the reference in TDOA methods.
Finally, increasing the baseline length enhances loca-
tion accuracy. Future research should focus on formu-
lating an optimization problem for sensor deployment
and proposing algorithms to design an optimal strat-
egy. The effectiveness of the strategy should also be
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evaluated.
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